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Abstract. In this paper, we study the application of Recurrent Neural Networks
(RNNs) to discriminate Alzheimer’s disease patients from healthy control
individuals using longitudinal neuroimaging data. Distinctions between Alz-
heimer’s Disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects
in a multi-modal heterogeneous longitudinal dataset is a challenging problem
due to high similarity between brain patterns, high portions of missing data from
different modalities and time points, and inconsistent number of test intervals
between different subjects. Due to these challenges, to distinguish AD patients
from healthy subjects, conventionally researchers use cross-sectional data when
applying deep learning methods in neuroimaging applications. Whereas we
propose a method based on RNNS to analyze the longitudinal data. After
carefully preprocessing the data to alleviate the inconsistency due to different
data sources and various protocols of capturing modalities, we arrange the data
and feed it into variations of RNNs, i.e., vanilla Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU). The accuracy, F-score, sensitivity,
and specificity of our models are reported and are compared with the most
immediate baseline method, multi-layer perceptron (MLP).
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1 Introduction

Alzheimer’s disease (AD) is one of the most frequent types of dementia, which leads to
memory loss and other cognitive disabilities. As the majority cases of dementia fall in
the Alzheimer’s category, diagnosis and prognosis of this disease, especially in the
early stage, has exceptional importance [1–3]. Early diagnosis, before the occurrence of
the irreversible brain deformation, enables early treatment and plays a significant role
in patient care, prediction of the progression risks, and severity recognition [3–5].
However, regardless of enormous efforts, pinpointing the prodromal stage of mild
cognitive impairment is remained an open research field. Having incomplete samples in
the longitudinal medical studies is a common phenomenon, as many patients may miss
some of the tests and modalities in a time step or miss a complete visit within the
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study’s lifespan. Generally, missing values occur for a variety of reasons including
drop out of subjects from the study, insufficient resolution, image corruption, budget
limitation, etc. [5–7]. Many algorithms simply discard subjects with missing modalities
from further experiments, which indeed results in a considerable loss of valuable
information. Disease diagnosis accuracy might be improved if the missing parameters
could be estimated correctly from the rest of the available data or modalities. Fur-
thermore, to have a better understanding of the disease progression and to correctly
label a subject as Normal Control (NC), Mild Cognitive Impairment (MCI), or
dementia (i.e., AD), data from every visit should not be scrutinized independently from
the earlier steps. Currently, a majority of the classification algorithms focus on the
cross-sectional data and only analyze a specific interval’s biomarkers for the diagnosis
and disregard the former patient’s status for the decision making process. To address
this shortcoming, recent studies moved toward longitudinal data analysis and proposed
new methods to leverage valuable temporal data by considering the inherent correla-
tions of such data [6–8].

Effectively mining AD longitudinal data is a challenging task, owing to its
heterogeneous measurements, varying length of samples, missing modalities and tests,
and small sample size. In this study, for the first time (to the best of our knowledge), we
employ two RNN models, namely the Long Short Term Memory (LSTM) and the
Gated Recurrent Unit (GRU), to discover the regression patterns of the subjects from
the longitudinal data with missing variables and intervals, especially for the task of
classifying AD/MCI vs. NC, which is a challenging task only depending on the cross-
sectional dataset. The progression of the patients during time should be studied care-
fully to capture the correct status of the patient through the passage of time. Accord-
ingly, in this study, we conduct several experiments to investigate the effectiveness of
the RNNs in AD diagnosis. We compare the outcomes of the LSTM and GRU model
with Multi-Layer Perceptron (MLP) to evaluate the efficacy of the sequential models.

2 Dataset

The data used in this study is obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether structural magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI
and early AD. Recently the largest longitudinal dataset, which is a subset of ADNI
1/Go/2 cohorts, has been extracted from ADNI by Bruno M. Jedynak and Michael
Donohue to make a baseline for researchers in the field to propose and apply quanti-
tative templates for the progression of Alzheimer’s disease. This is an invaluable
baseline for accurate evaluation of the proposed algorithms.

The database has 1721 distinct subjects (521 NC, 864 MCI, and 336 AD) examined
every 6 months during 11 years’ period making 23 time points for a patient in the case
of performing all the test regularly every six month (i.e., baseline, 6 months,
12 months, …, 132 months). For every visit multiple outcomes provided including
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ADAS13, CDRSB, RAVLT.learning MMSE, FAQ, FDG PET, Amyloid PET, CSF,
ABETA, CSF TAU, CSF PTAU, FS WholeBrain, FS Hippocampus, FS Entorhinal, FS
Ventricles, FS MidTemp, FS Fusiform and the covariates: age, APOE4 (yes/no),
Gender, Education. The primary phenotype is the diagnostic group and Mini-Mental
State Examination (MMSE). Sample data-point curation pipeline in our work is pre-
sented in Fig. 1. This figure shows that the samples are composed of features extracted
from volumetric magnetic resonance imaging (MRI) including cortical thickness,
hippocampal volume and shape along with fluoro-2-Deoxy-D-glucose, florbetapir F18,
and PIB (which is radiotracer capable of highlighting deposits of beta-amyloid) from
PET imaging, and some other Cerebrospinal fluid (CSF) features, such as TAU, PTAU
and ABETA. Around 12 functional and behavioral assessment results such as Rey’s
Auditory Verbal Learning Test and Montreal Cognitive Assessment (MoCA) scores are
also measured and used as features in this dataset.

The volumetric MRI measurements provide the cortical thickness, volume and
shape of hippocampal or voxel-wise tissue probability [1–4] to measure the brain
atrophy; 18-Fluoro-DeoxyGlucose PET imaging (FDG-PET) estimates the glucose
hypometabolism in bilateral temporal, temporal, occipital areas or posterior cingulated
brain regions [5–7]. Furthermore, global cognitive impairment tests are used by clin-
icians for screening and measuring individuals who are at the risk of AD; or cere-
brospinal fluid (CSF) to measure the increase in t-tau, p-tau, or the decrease of amyloid-
b, which is a sign of cognitive declination. Therefore, in total 47 features are used to
represent each subject at each time point.

3 Models

In this section, we briefly overview the LSTM and GRU models used in our model and
then explain our model design using these architectures for classifying the subjects into
one of the AD, MCI, or NC categories from longitudinal data.

Fig. 1. Sample data point curation
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3.1 Long Short Term Memory Unit (LSTM)

RNNs with internal memory and feedback loop have previously been adopted mostly
for processing arbitrary input sequences, like in handwriting recognition, speech
recognition, natural language processing, and time series prediction applications. One
of the main challenges in applying RNNs to long sequential data is that the gradient of
some learnable weights become too small or too large if the network is unfolded for too
many time steps. These phenomena are called the exploding and vanishing gradients
problem [9]. LSTM was, hence, proposed by Hochreiter et al. for the first time in 1997
to solve the vanishing gradient problem through a gating mechanism [10]. An LSTM
has three gates. The first gate determines whether the information should be forgotten
or not. The second gate decides about updating the cell state, and the last gate is
responsible for the cell output. Since then, several variations of LSTM architecture
have been implemented especially with the utilization of Graphics Processing Units
(GPUs).

3.2 Gated Recurrent Unit (GRU)

To adaptively capture dependencies of different time scales in each recurrent unit, Cho
et al. [11] introduced a gated recurrent unit (GRU). Similar but not the same as LSTM
design, GRU has two gates, a reset gate r, and an update gate z. Intuitively, the reset
gate determines how to combine the new input with the previous memory, and the
update gate defines how much of the past memory to keep around. Having simpler
architecture than LSTM with a smaller number of parameters, GRU provides better
results in some applications [12] and is less prone to overfitting, especially in cases that
there are not enough training data.

3.3 Our Model

RNN models have achieved popularity due to their power in pattern recognition for the
time series and sequential data. While there are plenty of research papers on regression
and classification modeling of AD data with well-established and novel machine
learning techniques, along with many deep convolutional neural networks for 2D and
3D brain MRI classification, number of research works exploiting RNNs for finding the
patterns in the AD longitudinal data sets is limited [13–18]. Only a few papers recently
adopted them for regression analysis on the clinical medical data [19]. Here, we employ
RNN deep learning techniques for the classification of the subjects. All features are
normalized by subtracting the mean value of each feature and dividing the result by the
standard deviation of that feature in all samples (i.e., using their z-scores), before the
analysis. To deal with missing modalities, we simply replace them with zero values.
Since our goal is to showcase the usage of RNNs for longitudinal predictive analysis,
we leave extensive data imputation experiments for future works. A recent work also
models AD progression with RNN models [20]; however our work is different from
that in multiple aspects. We use not only MRI features but also PET, Cognitive tests,
and genetic features for modeling the disease. We also propose multiple approaches for
handling the missing intervals and compare the potential RNN models with each other.

Predictive Modeling of Longitudinal Data for AD Diagnosis 115



As described in Sect. 2, the dataset contains N = 1721 subjects each scanned in 24
different time points. Data from each time point is represented by n = 47 features.
Figure 2 overviews the data arrangement. A challenge in analyzing longitudinal data
sets is dealing with missing data at different time steps for some of the subjects. To
address this inconsistency in the data points and to be able to input the data to RNNs,
we define three settings: (1) In our first attempt, we fill the missing intervals with zero
to create a same input size data for all the subjects and compose a stack of 1721, 2D
matrices that all have a set of 47 biomarkers in the columns as features and all the
possible time steps in the rows as time steps. We refer to this arrangement as zero fill.
(2) In the second attempt, we buffer the data at every time point and replicate it in its
next missing interval. This scheme is named as replicate fill. (3) In the last configu-
ration we change the orientation of the input data and stack all the available intervals on
top of each other, disregarding the missing intervals and pad them to the maximum size
of the possible time steps, this is called padding.

One LSTM and GRU model with the memory of the maximum size of the available
time steps, which is 24, are designed to process this stack of data. Each subject’s time
point data is fed to the corresponding cell along with its final diagnosis label (i.e., AD,
MCI, or NC) allowing the model to learn the pattern of the change in the features for
each subject. Figure 3 represents this pipeline. In two different sets of experiments, we
replace the cells in this figure with LSTM and GRU sets and report the results.

Fig. 2. Data arrangement for the RRN model
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4 Experiments

In all the experiments, we train and tune the RNN model with different configurations
of the hidden layers, percentages of drop out, various activation functions, loss, opti-
mizers and different combination of other hyperparameters to find the best setting of the
model through a grid search. We knowingly made the models as small as possible to
avoid overfitting, which can easily mislead the comparison. Data has been split into
70% training, 15% validation set and the rest for the testing set. The best configuration
of the LSTM and GRU is represented in Table 1.

For evaluations, we calculate the Accuracy, Sensitivity, Specificity, and F-score of
all models. The results of LSTM and GRU models for all arrangements of the data are
compared in Table 2, along with the results of their counterpart from non-recurrent
networks, i.e., Multi-Layer Perceptron (MLP). The data is flattened to a 1D long vector
and fed into the MLP once for each patient.

According to Table 2, LSTM and GRU models are superior to the MLP network in
most of the cases as they result in the highest accuracy and F-score. Our LSTM model
yields nearly 1% accuracy improvements over MLP in classifying AD patients from
NC subjects. Interestingly, the RNN models with the zero fill data arrangement for the
missing data yields consistently better results. The superiority is not significant, which
can be mainly due to the limited amount of data in this domain, besides the high portion
of the missing time points and modalities. These challenges prevented the vanilla
RNNs to find the appropriate patterns despite various input data arrangement. Second,
RNNs, especially the LSTM models, have a large number of trainable parameters,
which necessitate the model to be trained in a great corpse of sequential data and
despite having drop out layers in the architecture, they are still prone to overfitting to
the training data in this relatively small dataset. The third is the limited hand engineered
and structured feature set, used in this experiment. One of the main superiority of the
RNNs is their power in automatic feature learning from the raw data, which can be
further explored in the future.

Fig. 3. RNN model used in this study.
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5 Conclusion

In this paper, we introduced the applications of LSTM and GRUs to model prediction
tasks over the longitudinal data from the ADNI dataset. The proposed models can be
used for the diagnosis of Alzheimer’s disease. We also incorporated three different
strategies to deal with the incomplete and missing data (from time points and
modalities). Trying different variations of RNNs (i.e., LSTM and GRU), we found
slightly better performance using the LSTM model. Our model can classify AD vs. NC
with an accuracy of 95.9%, even with simple replicate and zero filling of the missing
data. It also performs better classification of AD vs.MCI and NC vs.MCI patients. As a
direction for future works, designing an end-to-end convolutional and LSTM model for
this longitudinal dataset can be of great interest, to accurately learn powerful image
features (from MRI and PET) and simultaneously learn the classifier parameters.
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