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Abstract. Recent studies have shown that fusing multi-modal neu-
roimaging data can improve the performance of Alzheimer’s Disease
(AD) diagnosis. However, most existing methods simply concatenate fea-
tures from each modality without appropriate consideration of the corre-
lations among multi-modalities. Besides, existing methods often employ
feature selection (or fusion) and classifier training in two independent
steps without consideration of the fact that the two pipelined steps are
highly related to each other. Furthermore, existing methods that make
prediction based on a single classifier may not be able to address the
heterogeneity of the AD progression. To address these issues, we pro-
pose a novel AD diagnosis framework based on latent space learning
with ensemble classifiers, by integrating the latent representation learn-
ing and ensemble of multiple diversified classifiers learning into a unified
framework. To this end, we first project the neuroimaging data from dif-
ferent modalities into a common latent space, and impose a joint sparsity
constraint on the concatenated projection matrices. Then, we map the
learned latent representations into the label space to learn multiple diver-
sified classifiers and aggregate their predictions to obtain the final clas-
sification result. Experimental results on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset show that our method outperforms
other state-of-the-art methods.

1 Introduction

Alzheimer’s disease (AD) impairs patients’ memory and other cognitive functions
and is often found in people over 65 years old [1]. As there is no cure for AD,
timely and accurate diagnosis of AD and its prodromal stage (i.e., Mild Cognitive
Impairment (MCI)) is highly desirable in clinical practices.

Neuroimaging techniques including Magnetic Resonance Imaging (MRI) and
Positr-on Emission Topography (PET) have been widely used to investigate the
neurophysiological characteristics of AD [15,18]. As neuroimaging data are very
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high-dimensional, existing methods often use Region-Of-Interest (ROI) based
features instead of the original voxel based features for analysis [4,17]. Recently,
many studies have been proposed to fuse the complementary information from
multi-modality data for accurate AD diagnosis [10,14,19]. For example, Zhu
et al. [19] use Canonical Correlation Analysis (CCA) to first transform multi-
modality data into a common CCA space, and then use the transformed features
for classification. Hinrichs et al. [8] use Multiple Kernel Learning (MKL) to
fuse multi-modality data by learning an optimal linearly combined kernels for
classification.

Most of the multi-modality data based AD studies in the literature are based
on the 2-step strategy, where feature selection or fusion is first performed, and
then a classifier (e.g., Support Vector Machine (SVM)) is learned [10,19]. Because
the features selected in the first step may not be best to the classifier in the
second step, which will degrade the final classification performance. Further,
most methods [10,19] also focus on learning a single classifier for AD diagnosis,
which is difficult to address the heterogeneity of complex brain disorder. To
deal with this disease heterogeneity issue, it is more reasonable to train a set of
diversified classifiers and ensemble them (instead of training a single classifier),
which has been shown effective in previous studies [2,5].

To this end, we propose a novel multi-modal neuroimaging data fusion via
latent space learning with ensemble classifier for AD diagnosis framework, which
can seamlessly perform latent space learning and ensemble of diversified classi-
fiers learning in a unified framework. Specifically, we first project neuroimaging
data from different modalities (i.e., MRI and PET) into a common latent space,
to exploit the correlation between MRI and PET features, and learn the latent
representations. Concurrently, we also select a subset of discriminative ROI-
based features from both modalities jointly, by imposing a cross-modality joint
sparsity constraint on the concatenated projection matrices (as shown in Fig. 1).
This is based on the assumption that, both the structure and function of an ROI
could be affected by the disease progression, hence it is intuitive to select the
same ROI based features for MRI and PET data in the latent space. Further,
we learn multiple diversified classifiers by mapping the latent representations
into the label space, and use an ensemble strategy to obtain the final result.
Note that we integrate all the above learning tasks into a unified framework, so
that all components can work together to achieve a better AD diagnostic model.
We have verified the effectiveness of our method on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset.

2 Methodology

Latent Space Learning with Cross-Modality Joint Sparsity. Given a
multi-modality data set X = {Xy, -, Xy}, where X,,, € R%*" denotes the
feature matrix for the m-th modality with d,,, features and n subjects, and M is
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Fig.1. A flow diagram of our proposed AD diagnosis framework. We project multi-
modality data (i.e., MRI and PET in our case) into a common latent space to exploit the
correlation among multi-modal neuroimaging data. Besides, a joint sparsity constraint
(denoted by the dashed red rectangles) is imposed on different modalities, to encourage
the selection of same ROIs from MRI and PET data. Furthermore, multiple classifiers
with diversity constraint are trained and an ensemble strategy is used to obtain the
final classification result.

the number of modalities. To exploit the correlations among different modalities,
we project different modalities into a common latent space as follows:

in 3 (IVEX —HE + Vil ), 1)
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where V,,, € R%*" ig a projection matrix, H € R"*" is a matrix of latent
representation, 7y is the regularization parameter, and h is the dimension of
2.

'Lj’
where V € R?") in Eq. (1) to enforce row-wise sparsity in V,,, by penalizing the
coefficients in each row of V,,, together. In other words, the ¢ ;-norm encourages
the selection of useful (ROI-based) features from X,, during the latent space
learning. To encourage cross-modality joint sparsity, assuming the features from
different modalities are related, the objective function in Eq. (1) is extended to
the following formulation:

the latent space. We use 3 1-norm regularizer (i.e., ||Vl2,1 = 2?21 Z?Zl v

M
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where a joint sparsity constraint is imposed on the concatenated projection
matrices. In our case, ROI-based features are used for both the MRI and PET
data, thus Eq. (2) will enforce the features from the same ROI to be selected for
multi-modalities. This is based on the assumption that both the brain structure
(quantified by MRI features) and function (quantified by the PET features) will
be degraded for the same AD-affected ROIs. In this way, the correlations among
multi-modality data can effectively be exploited.
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It is worth noting that the Frobenius norm in Eq. (2) is sensitive to sample
outliers. To address this issue, we reformulate Eq. (2) as:

. M E V V
i S Bl Ve Varla, )

st. H=VIX, +E,,m=1,... M,

where an error term E,, € R"*" is introduce to model the reconstruction error
(i.e., the first term in Eq. (2)), and use ¢;-norm to penalize E,,.

Ensemble of Diversified Classifiers Learning. After obtaining the latent
representations from multi-modality data, we regard the new representations in
the latent space as input to train a classifier. As SVM is a widely used classifier
due to its promising performance in many applications [13], we incorporate the
latent space learning and classifier learning into a unified framework as follows:

S Fyi bl w e b) + AU (W)

min
V7717Em1w1H1b
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st. H=V.X, +E,,m=1,..., M,

2,1

where h; € R"*! is the latent representation of the i-th sample (i.e., i-th column
of H), y; € {—1,1} is the corresponding label, and w and b denote the weight
vector and bias of the classifier, respectively. Besides, f(-) in Eq. (4) is the
classifier loss function, while the second term in Eq. (4) is the regularizer for w
(e.g., 1 or fo-norm of w). If we use hinge loss function for f(-), the first term in
Eq. (4) can be given as:

S feblwb) =" (1-(mIw+ by, (5)

where the operation (z)4 := maz(x,0) keeps x unchanged if it is non-negative,
and returns zero otherwise, and p is a constant with either value 1 or 2 to have
physical meaning. In Eq. (4), only a classifier is trained, which may not be able to
address the heterogeneity of AD progression. In addition, some studies have also
indicated that ensembling multiple classifiers may result in a more robust and
accurate classifier. Thus, following the work in [6], we replace the loss function
in Eq. (4) with the loss functions from multiple classifiers, as follows:

. C n T »
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where W = [w; - - - wg] € RP*C is a matrix with each of its column denoting the
weight vector for one classifier, b = [b; - - - bc] € RE*! is the corresponding bias
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vector, and C' is the number of classifiers. To ensure that we have a diversity of
classifiers rather than redundant classifiers, we minimize the exclusivity function
between each pair of classifier weight vectors, given as {min ||w;ow,l||o,7 # j} [6],
where o denotes Hadamard product, and || - ||o denotes ¢p-norm. This constraint
will ensure the column weight vectors in W be exclusive and orthogonal to each
other, thus giving us diversified classifiers.

However, as this constraint is too strong and difficult to optimize, we choose
to minimize the relaxed exclusivity function instead, i.e., given by {min ||w; o
wjlli =min)_, |w;(k)| - |w;(k)|,i # j}, where w;(k) denotes the k-th element
in w;, and | - | denotes the absolute operator. Following the work in [6], we use
the following regularizer as a diversity constraint to encourage the learning of
diversified classifiers. The regularizer is given as:

1
VW) =5 [WIE+ 3, lwiow;lh

1 K c , 1
=33 O Iwe)? = W

The derivation details for the above equation can be found in [6].

(7)

2
1,2

Unified AD Diagnosis Framework. By integrating the latent space learning
and ensemble learning of diversified classifiers into a unified framework, the final
objective function of our proposed model is given as:

C n A
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2.1 Optimization and Prediction

The objective function in Eq. (8) is not jointly convex with respect to all
variables. Therefore, we utilize the Augmented Lagrange Multiplier (ALM)
[11] algorithm to solve Eq. (8) efficiently and effectively. After we train our
model and obtain W and b, we can obtain the ensemble classifier weight and
bi?s via w = %Zil w,, and b = %Zil b.. Then, for a testing sample
Xtest — [xlest XU the corresponding testing label y,.,, is estimated
by using y;..; = sign(hl,,w + b), where hy.q; = i Zf\le VI Xtest denoting
the latent representation of the testing sample.

3 Experiments

3.1 Subjects and Neuroimage Preprocessing

In this study, we select 379 subjects from the ADNI cohort (www.adni-info.org)
with complete MRI and PET data at baseline scan, including 101 Normal Con-
trol (NC), 185 MCI, and 93 AD. In our experiments, we used ROI-based features
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from both MRI and PET images (i.e., M'=2 in our study). Then, we further pro-
cessed the MR images using a standard pipeline including the following steps: (1)
intensity inhomogeneity correction, (2) brain extraction, (3) cerebellum removal,
(4) tissues segmentation, and (5) template registration. After that, the processed
MR images were divided into 93 pre-defined ROIs [9], and the gray matter vol-
umes in these ROIs were computed as MRI features. For PET data, we aligned
the PET images to their corresponding MR images by using affine registration,
and calculated the average intensity value of each ROI as PET features. Thus,
we have 93 ROI-based features from both the MRI and PET data, respectively.

3.2 Experimental Setup

We evaluated the effectiveness of the proposed model by conducting the fol-
lowing two binary classification experiments: i.e., AD vs. NC and MCI vs. NC
classifications. We used classification accuracy (ACC) and Area Under Curve
(AUC) as evaluation metrics.

We compared our proposed framework with the following comparison meth-
ods: (1) baseline method (“ORI”), which concatenates MRI and PET ROI-based
features into a long vector for SVM classification, (2) Lasso based feature selec-
tion method [16], which selects features from both modalities using ¢;-norm, (3)
CCA [7] and MKL [8] based multi-modality fusion methods; and (4) Deep learn-
ing based feature representation method, i.e., Stacked Auto-encoder (SAE) [12].
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0.95 _}_ b

0.9 =
0.85
ACC AUC
T T
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Fig. 2. Comparison of classification results using two evaluation metrics (i.e., ACC and
AUQ) for two classification tasks: AD/NC (top) and MCI/NC (bottom).
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Note that all the above comparison methods are based on 2-step strategy, where
feature selection and feature fusion (or feature learning) are first performed,
before using SVM (from LIBSVM toolbox [3]) for classification. We performed
10-fold cross validation for all the methods under comparison, and reported
the means and standard deviations of the experimental results. For parame-
ter setting of our method, we determined the regularization parameter values
(i.e., {\, 8,7} € {1075,...,10%}) and the dimension of the latent space (i.e.,
h € {10,...,60}) via an inner cross-validation search on the training data, and
searched the number of classifiers C' in the range {5,10,15,20}. We also used
inner cross-validation to select hyper-parameter values for all the comparison
methods. Besides, we further determined the soft margin parameter of SVM
classifier via grid search in the range of {1074, ... ,10%}.

Figure 2 shows the classification performance of all the competing methods.
From Fig.2, it can be clearly seen that our proposed method performs con-
sistently better than all the comparison methods in terms of ACC and AUC.
Compared with the Lasso based feature selection method, which fuses multi-
modality data without effective consideration of the correlation between MRI
and PET, our method performs significantly better. In addition, our method
also outperforms SAE, which uses high-level features learned from auto encoder
for classification. This is probably due to the fact the SAE is an unsupervised
feature learning method that does not consider label information. In addition,
to verify the effectiveness of ensemble of diversified classifiers, we also compare
the performance of our proposed method for the cases of using single classifier
and multi-classifiers, with “Ours_s” denoting the results of our proposed method
using a single classifier. From the results shown in Fig. 2, our proposed method
using the ensemble of diversified classifiers performs better than the case of using
only a single classifier.

To analyze the benefit of multi-modalities fusion, Fig. 3 illustrates the perfor-
mance comparison of different methods using independent modality (i.e., MRI
or PET). Note that, multi-modality fusion methods (i.e., CCA and MKL) are

[ ORI [Lasso [C1SAE [l Ours [ ORI [ Lasso [JSAE M Ours
0.95 0.95
0.9 09
0.85 0.85
08 ACC AUC 08 ACC AUC
(a) AD/NC
0.8 0.8
I ORI [ Lasso ] SAE M Ours ORI [ Lasso C1sAE M Ours
0.75 075
0.7 0.7
0.65 0.65
0.6 0.6
ACC AUC ACC AUC
(b) MCI/NC

Fig. 3. Comparison of results for two classification tasks (i.e., (a) AD/NC and (b)
MCI/NC) using two different modalities: MRI (left) and PET (right).
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excluded in this comparison. From Fig. 3, it can be seen that our method still
outperforms other comparison methods. Besides, comparing Figs.2 and 3, we
can see that all the methods perform better when using multi-modality data,
compared to the use of just the single modality data.

al.1.1 1. T XX R
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Fig. 4. Top selected regions for two classification tasks: AD/NC (top) and MCI/NC
(bottom).

Furthermore, we also identified the potential brain regions that can be used
as AD biomarkers. We ranked the ROIs based on their average weight values.
Figure 4 shows the top ranked ROIs by using our proposed method for different
tasks. Specifically, for AD/NC task, the top selected ROIs (common to both
MRI and PET data) are globus palladus right, precuneus right, precuneus left,
entorhinal cortex left, hippocampal formation left, middle temporal gyrus right,
and amygdala right. For MCI/NC task, the top selected ROIs are angular gyrus
right, precuneus right, precuneus left, middle temporal gyrus left, hippocam-
pal formation left, postcentral gyrus right, and amygdala right. These regions
are consistent with some previous studies [10,19] and can be used as potential
biomarkers for AD diagnosis.

4 Conclusion

In this paper, we have proposed an AD diagnosis model based on latent space
learning with diversified classifiers. This is different from the conventional AD
diagnosis models that often perform feature selection (or fusion) and classifier
training separately. Specifically, we project the original ROIs-based features into
a latent space to effectively exploit the correlations among multi-modality data.
Besides, we impose a cross-modality joint sparsity constraint to encourage the
selection of same ROIs for MRI and PET data, based on the assumption that the
degenerated brain regions would affect both brain structure and function. Then,
using the learned latent representations as input, we learn multiple diversified
classifiers and further use an ensemble strategy to obtain the final result, so that
the ensemble classifier is more robust to disease heterogeneity. Experimental
results on ADNI dataset have demonstrated the effectiveness of the proposed
method against other methods.
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