
Toward Real-Time Decentralized
Reinforcement Learning Using Finite Support

Basis Functions

Kenzo Lobos-Tsunekawa(&), David L. Leottau,
and Javier Ruiz-del-Solar

Department of Electrical Engineering, Advanced Mining Technology Center,
Universidad de Chile, Santiago, Chile

{kenzo.lobos,dleottau,jruizd}@ing.uchile.cl

Abstract. This paper addresses the design and implementation of complex
Reinforcement Learning (RL) behaviors where multi-dimensional action spaces
are involved, as well as the need to execute the behaviors in real-time using
robotic platforms with limited computational resources and training times. For
this purpose, we propose the use of decentralized RL, in combination with finite
support basis functions as alternatives to Gaussian RBF, in order to alleviate the
effects of the curse of dimensionality on the action and state spaces respectively,
and to reduce the computation time. As testbed, a RL based controller for the in-
walk kick in NAO robots, a challenging and critical problem for soccer robotics,
is used. The reported experiments show empirically that our solution saves up to
99.94% of execution time and 98.82% of memory consumption during execu-
tion, without diminishing performance compared to classical approaches.

Keywords: Reinforcement Learning � Decentralized control
Multi-agent systems � Robot soccer � RoboCup � Standard Platform League

1 Introduction

Reinforcement Learning (RL) has been applied in robotics for learning complex
behaviors. However, even though successful implementation of RL in robotics have
increased largely in the last few years [18], there are still many factors that limit the
massive use of RL in general robotic problems, such as the high dimensionality of the
state and action spaces, and the need of numerous real-world experiments.

The first factor is related to the inherent complexity of behaviors required by robots
operating in the real world. Thus, when fine-grained RL controllers are required to
achieve high performance, classic RL models scale exponentially their complexity,
according to the dimensionality of the state and action spaces. This is undesirable since
it causes two main effects: an unfeasible number of training episodes to achieve
asymptotic convergence, and an impracticable computational cost for real-time exe-
cution, since the controller actions usually need to be executed in short time cycles to
achieve high performance. In light of these issues, the RL approach becomes limited to
those problems in which high computation resources are available, long experiment

© Springer Nature Switzerland AG 2018
H. Akiyama et al. (Eds.): RoboCup 2017, LNAI 11175, pp. 95–107, 2018.
https://doi.org/10.1007/978-3-030-00308-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_8&domain=pdf

and training times are possible, and/or the design or modeling can be simplified without
sacrificing performance.

In this work, we propose to deal with these issues, without oversimplifying the
problem itself, by: (i) using Decentralized Reinforcement Learning (D-RL), which
empirically accelerates convergence [4] and reduces considerably the effects of the
curse of dimensionality on the action space; and (ii) applying Finite Support Basis
Functions (FSBF) in the state representation of RL, which provides a representation
similar as the one resulting from the use of Gaussian RBF (Radial Basis Functions), but
with much reduced computation time.

To validate our approach, we consider the specific case of the in-walk kicks [12] in
robotic soccer, where the robot must learn to push the ball toward a desired target, only
by using the inertia of its own gait. This problem becomes an ideal testbed, since it is a
challenging and relevant problem in robotic soccer, and both the state and action spaces
must be sufficiently fine-grained to capture the complexity of the problem and achieve
competitive performances. Moreover, the solution must run on real time, on an
embedded device such as the NAO robot’s CPU [19].

The proposed model for the in-walk kick problem is similar to the one presented in
[6, 9], since this task can be considered as a particular case of the ball-pushing
behavior. However, those works differ from ours, since for this case, all three axes of
the gait velocity vector are learned autonomous and simultaneously through RL, and no
human intervention is required during the learning process. In addition, we introduce a
novel approach to adapt and synchronize the RL time step to the time step of the
robot’s gait.

The remainder of this paper is organized as follows: D-RL is reviewed shortly in
Sect. 2. Section 3 presents a brief overview about FSBF for the proposed state rep-
resentation. Then, the in-walk kick behavior and the proposed modeling are described
in Sect. 4. Finally, Sect. 5 presents an experimental validation of the proposed
methodology, and in Sect. 6 conclusions of this work are given.

2 Decentralized Reinforcement Learning

Two main limitations were previously remarked about the use of RL in complex
behaviors performed with physical robots: the high number of training episodes to
achieve asymptotic convergence, and the expensive computational cost for real-time
execution. Under the presence of multi-dimensional action spaces, the standard RL
solutions can be called Centralized RL (C-RL) systems, if each of those action sub-
spaces are discretized (in a finite set of actions), combined, and computed as a single set
of actions.

In C-RL, the number of possible actions grows exponentially with the action space
dimensionality. This makes it hard exploring sufficiently the whole action-state space,
producing a very slow convergence, and increasing exponentially the execution time.
D-RL helps to alleviate both issues, by splitting the learning problem into multiple
independent agents, each acting in a different action space dimension [4]. This allows
the design of independent state models, reward functions, and learning agents for each

96 K. Lobos-Tsunekawa et al.

action dimension. The benefits of the D-RL over C-RL in terms of computation time
can be quantified as [2]:

DRLspeedup ¼
QM

m¼1 A
m

PM
m¼1 A

m
ð1Þ

where M is the number of agents (action space dimensionality), and Am the number of
possible discrete actions in the action dimension m.

In [2], a robotic application of D-RL is presented, where the individual action
components are learned in parallel by independent learning agents. Moreover, [4]
shows empirically that D-RL is not only capable of attain coordination among agents
without any explicit mechanism of coordination, but that D-RL outperforms C-RL in
two different problems: a modified version of the popular MountainCar3D testbed, and
a physic robot tasked with a ball-pushing problem.

3 Finite Support Basis Functions

One important design component of a RL agent is how it deals with the state space.
While for discrete state space problems the classic tabular representation is natural,
other representations are preferred for continuous, or discrete but large, state spaces.

For real-time applications, linear parametric approximations are usually used, being
among the most used tile coding [16] and Gaussian RBF [14]. Although Gaussian RBF
have many desired mathematic properties, their use is usually restricted due to its high
computation time, and therefore the fast tile coding is used, even when Gaussian RBF
can achieve a better performance [15].

To deal with this issue we propose the use of FSBF, as replacements of Gaus-
sian RBF to provide a similar state space representation, with a much-reduced com-
putation time, due to the sparsity introduced by these FSBF in the feature vector.
Although the approximation of Gaussian RBF has been addressed in [7, 17], mainly in
the field of control systems, the computational benefits of this approximation have not
been presented, and no previous applications of this kind of approximation have been
presented in the context of RL, where the speedup produced by its use can be very
large, due to the need to compute the Q-Values for every possible action.

Consider the case of a Gaussian RBF representation, in which Gaussians are placed
in a uniform fashion over the state space S, with dimensionality Sj j ¼ N. In each

dimension i, ni 1D Gaussians are used, creating a total amount of M ¼ QN
i¼1

ni multi-

variate Gaussians. Then, the Q-Values needed for value iteration algorithms are
computed as:

Q s; að Þ ¼
PM

j¼1 /i sð ÞhajPM
j¼1 /i sð Þ ð2Þ

where ha are the weights for action a, and / is the M-dimensional feature vector.

Toward Real-Time Decentralized Reinforcement Learning 97

The main issue with linear Gaussian RBF approximators, is that M grows expo-
nentially with N, and since Gaussians are non-zero over the entire space, all the
elements in the sum must be calculated explicitly, even if only a few of them actually
contribute to the sum. However, if multivariate Gaussians are chosen with the same
diagonal covariance matrix, Eq. (2) can be rewritten as:

Q s; að Þ ¼
P

k2A
QN

n¼1 /
i
ki sið Þ

� �
hak

P
k2A

QN
n¼1 /

i
ki sið Þ

� � ð3Þ

where /i
ki are 1D Gaussians, and A ¼ f k1; . . .; kNð Þjki ¼ 1; . . .; ni i ¼ 1; . . .;Ng.

From Eq. (3), it can be noted that the number of different 1D Gaussians
PN
i¼1

ni is

much lower that the number the
QN
i¼1

ni multivariate Gaussians, and that the same 1D

basis function appears many times in the sum.
It follows that if the unidimensional basis is chosen with finite support region, then

the number of non-zero terms in the sum becomes strongly reduced, thus saving much
computation time. Some examples of FSBF are 3-r Gaussians approximations, and
kernels like Epanechnikov, cosine and even triangular functions, as shown in Fig. 1.

Using this methodology, the computation cost depends only on the width chosen
for the unidimensional basis functions, and their density in the state space, instead of
the number of basis functions. This allows to place more basis functions over the state
space without extra computation time, if their density and support region width are
kept. Finally, the computation speedup from using this strategy can be expressed as:

statespeedup ¼
QN

i¼1 niQN
i¼1 widthi

ð4Þ

where widthi is the support region width of the basis functions in the dimension i, in
terms of the distance among basis functions in the same dimension.

In Sect. 5, the proposed state representation is empirically validated with the in-
walk kick problem by comparing it with the standard Gaussian RBF representation.

Fig. 1. Normalized finite support functions.

98 K. Lobos-Tsunekawa et al.

4 Validation Problem: The in-Walk Kick in Biped Robots

In the context of robotic soccer, kick motions can be considered the second most
important robot motion after walking, due to their impact in the game performance.
Given that, several methods have been developed for the design and implementation of
kick motions [1, 10, 12, 13]. These methods can be classified in two groups: methods
that create independent motions [1, 10, 13], and methods that make use or modify the
robot gait to perform a kick (in-walk kicks) [11]. While the former methods are able to
make full use of the hardware capabilities of the robot and can be studied indepen-
dently, the later have the advantage of a much faster activation time, since they do not
need to wait for the robot to finish the walking motion and to stabilize, saving critical
time in challenging game situations. The in-walk kicks were originally introduced and
implemented in [12], in which the gait phases are modified to create kick motions. To
the best of our knowledge no other implementations have been reported. It must be
noted that the in-walk kicks approach is not only limited by the hardware capabilities of
the robot, but also by the gait design and implementation.

In this work, we propose a variant of the in-walk kick [12], which is commonly
used in the Standard Platform League (SPL) of the RoboCup competition1. The pro-
posed implementation consists of in-walk kicks that are performed using only the
inertia of the gait, without any specially designed kick motion. Details of the modeling
and implementation are presented below.

4.1 General Modeling

We propose an end-to-end implementation of the in-walk kicks, by designing a RL
based controller over the omnidirectional gait developed in [5] as released in [11], i.e.
designing a controller over the velocities commands vx, vy and vh.

The proposed in-walk implementation can be viewed as an instance of the ball-
pushing behaviors proposed in [6, 9], and the same state and action models can be
used. These models have been thoroughly validated in many implementations of the
ball-dribbling behavior (another example of ball-pushing behavior), such as 2D sim-
ulators [6, 8], 3D simulators [3, 7, 9] and on physical robots [3, 9], obtaining excellent
results in the RoboCup 2015 and 2016, in the SPL league.

The basic state model of the ball-pushing behaviors presented in [6] consists on the
distance from the robot to the ball (q), the bearing of the robot with respect to the ball
(c), the angle formed between the robot, the ball and the target (u), and the distance
from the ball to the desired target (w). All these distances and angles are calculated
from a foot coordinate frame, and the specific foot is chosen by a handcrafted foot
selector. The angles and distances are shown in Fig. 2.

1 RoboCup SPL official web site: http://www.tzi.de/spl/bin/view/Website/WebHome.

Toward Real-Time Decentralized Reinforcement Learning 99

http://www.tzi.de/spl/bin/view/Website/WebHome

4.2 Extended Ball-Pushing Modeling for Humanoid Biped Robots

Although several publications validate that the previous state model can obtain good
performances [3, 6, 8], that modeling does not consider many aspects of the physical
robot such as its biped nature and the used gait implementation [5]. We propose the
following extensions to the previous model, since in the in-walk kick problem, as
opposed to the ball-dribbling problem, the performance is the result of a single inter-
action between the robot and the ball, thus needing as much precision as possible:

– Gait Synchronization: Previous implementations of RL controllers for the ball-
dribbling use a fixed time step among actions. However, the implementation of the
robotic gait in [5] is constantly planning its next step, and only reads velocity
commands once in each phase (half-step). Neglecting this phenomenon derives in
taking actions in different parts of the phases, producing a violation of the Markov
property. To address this issue, we propose a model in which the controller’s
actions are taken once per half step, instead of using a fixed time step.

– Phase Type: Even if the agent actions are synchronized with the gait generator
(walking engine), symmetric situations arise since at the end of each phase, the
robot has one foot forward and the other foot backwards, and if this phenomenon is
not included in the state model, precise time step planning becomes very difficult.
To model this phenomenon, a binary state can be added to the state model to
represent which foot is currently forward.

– Foot Selector: Even though the foot selector proposed in [9] works well, it can limit
the performance, mainly in symmetric situations where the foot selector can arbi-
trarily assign the farthest foot from the ball. We propose to calculate the features q,
c and u from the center of the robot, instead from the selected foot coordinate
system, so the RL agent can learn its own foot selector.

4.3 Decentralized Reinforcement Learning Modeling

This work uses the results presented in [4, 8] which empirically validate the effec-
tiveness of the decentralized approach in mobile robotics and common testbeds.

Fig. 2. Geometric state variables for the NAO using a magenta jersey. Obstacles, such as the
NAO robots using cyan jerseys are not considered in the state formulation. (Color figure online)

100 K. Lobos-Tsunekawa et al.

The design of the action space while critical, maintains the approach presented in
[8]. Since the requested velocity vector of the omnidirectional biped walk engine is
[vx, vy, vh], it is possible to decentralize this 3-Dimensional action space by using three
separate learning agents, Agentx, Agenty, and Agenth acting in parallel in a multi-agent
task. Careful considerations must be taken in the number of discrete actions for each
agent. While larger numbers of actions produce more complex behaviors, it also
increases the number of episodes needed for convergence, since not only the search
space grows, but also coordination among agents is more difficult. The proposed action
space is shown in Table 1, where the minimum and maximum values for each velocity
component are the ones used in [11].

The proposed state model shared by the three independent agents is presented in
Table 1, where the geometric state variables qcenter , ccenter and ucenter are calculated
from the center of the robot, phaseType represents which foot is currently forward, and
the number of cores corresponds to the number of 1D basis functions placed uniform
along each state dimension (the product of the number of cores becomes the dimen-
sionality of the feature vector).

Finally, the reward is chosen the same for each independent agent, to ensure a full-
cooperation task. Since the objective is to kick as strong and accurate as possible, a
high positive reward must be given at the terminal state when the robot hits the ball, but
decay depending on the ball trajectory deviation from the target, and the distance
between the ball and the target. For non-terminal states, a reward similar to the ball-
dribbling problem [6] is used to guide the robot towards the ball:

r ¼
K exp � werror

w0

� �
exp � aerror

a0

� �
if ball touched

� q
qmax

þ uj j
umax

þ cj j
cmax

� �
otherwise

8<
: ð5Þ

where werror is the distance that the ball still needs to travel to reach the target in its
current trajectory, aerror is the angle deviation of the ball’s trajectory from a straight line
to the target, and the parameters w0 and a0 allow the design of rewards with more focus
on kick strength or precision. Finally, the gain parameter K is used for convergence
purposes, since the high positive reward can only be given once per episode.

Table 1. State and action spaces for the D-RL modeling of the in-walk kick problem.

Joint state space: S ¼ q; c;u½ �T Action space: A ¼ vx; vy; vh
� �T

Feature Min Max N. Cores Agent Min Max N. Actions

qcenter 0 mm 800 mm 15 vx 0 mm/s 120 mm/s 16
ccenter −70° 70° 11 vy −70 mm/s 70 mm/s 15
ucenter −90° 90° 13 vh −30°/s 30°/s 17
phaseType – – Binary

Toward Real-Time Decentralized Reinforcement Learning 101

5 Results

5.1 Experimental Set up

We present experiments that compare the proposed state model presented in Sect. 4
(gait synchronization, phase type and no foot selector) against the one presented in [8],
as well as the use of the different basis functions presented in Sect. 3. It is worth
mentioning that in these experiments we use just the proposed D-RL modeling and not
C-RL, since in the in-walk kick with biped robots problem the action space is large
enough to make the use of C-RL unfeasible (with more than a thousand discrete
actions).

The experiments are performed in the SimRobot 3D simulator released in [11].
Since the objective of the training is to achieve fast yet powerful and accurate kicks,
with the intent to score goals in as many situations as possible, the training conditions
must be both challenging and general. In each episode, the ball is situated on a fixed
position from the goal, with a distance of 1.5 m, which is the experimental maximum
distance that a linear controller can achieve in the current environment. Furthermore,
the robot starts in a random position, at 1 m from the ball and always facing it, but with
a uj j\umax, as shown in Fig. 3. This random initialization is designed so the learning
agent can successfully learn many points of operation, and thus achieve a general kick
behavior. The episode termination criterion is given by the following conditions:
episode timeout of 200 s, the robot or the ball leaves the field, or the ball is pushed by
the robot. Since episodes can finish in less than a few seconds and with unsuccessful
kicks, a high number of episodes is needed. In the following experiments, the total
number of training episodes is set to 1,500.

The performance indexes considered for the experiments are defined as follows:

– DistanceError ðwÞ: The distance left to travel from the ball to the goal line,
normalized by the initial 1.5 m distance. This measures the ability to perform strong
kicks.

Fig. 3. Training environment. The red seg-
ment represents possible initial positions of
the robot, and the red circle is the kick target.
(Color figure online)

Table 2. Training parameters.

Parameter Value

Learning rate 0.1
Discount factor 0.99
k 0.9
r 0.5 D
Width 3 D

Decay 15
K 50
w0 300 mm
a0 14°

102 K. Lobos-Tsunekawa et al.

– AngleError ðaÞ: The angle deviation of the ball’s trajectory from a straight line to
the target, normalized by the maximum angle that would score a goal. This mea-
sures the accuracy of the kicks, and depends on the previous alignment.

The following experiments are performed using the popular Sarsa kð Þ algorithm for
training each of the three agents, with an exponentially decaying �-greedy exploration
(� ¼ exp �decay � episode=maxEpisodesð Þ). Since the idea of using FSBF to save
computation time needs to be validated, experiments are performed using the following
functions as 1D basis functions: cosine kernel, Epanechnikov kernel, triangular kernel,
and 3-r Gaussian approximation. The parameters used in the experiments are shown in
Table 2, where D is the distance between the centers of the basis functions in each
dimension, and the parameters K, w0 and a0 correspond to the parameters of the reward
in Eq. (5). The value of r is a very common heuristic choice, and the support area of
the other FSBF is set to match the 3-r Gaussian approximation in terms of support area,
to provide comparative results against fixed computation resources. For illustrative
purposes, a video showing some episodes of the learning evolution is shown in [20], in
which the proposed state model and the Epanechnikov basis functions are used.

5.2 State Model Comparison

The experiments in Fig. 4 show the learning evolution using the base state model for
the ball-pushing behaviors [8] and the one proposed here. In both cases, the state
representation is done using Gaussian RBF, and the rest of the parameters are taken
from Table 2. The learning evolution results are plotted by averaging 15 trials, and
error bars show the standard error.

These results show a significant improvement when using the proposed model. The
reason for the difference in the distance performance is explained by the fact that in the
base model a precise step planning could not be performed, and thereby, the kicks lose
strength. The differences in the angle performances are explained by the lack of foot
selector and the inclusion of the phaseType in the proposed state model, which allows

Fig. 4. Training performances for the different state models.

Toward Real-Time Decentralized Reinforcement Learning 103

the robot to align itself correctly to kick the ball, even in symmetric conditions, where
the previous foot selector choses arbitrarily foot assignments.

5.3 Basis Functions Comparison

To provide results for the proposed state representations, Fig. 5 presents the learning
evolution of different finite basis functions, as well as the traditional Gaussian RBF
representation. In the presented cases, the proposed state model is used, and the rest of
the parameters were taken from Table 2. Again, the learning evolution results are
plotted by averaging 15 trials, and error bars show the standard error.

The plots in Fig. 5 show that the FSBF are a competitive choice against Gaus-
sian RBF representations. While the 3-r Gaussian approximation maintains the per-
formance of standard RBF representation, the other basis functions, specially cosine
and Epanechnikov clearly outperform the Gaussian representation.

5.4 Execution Time and Memory Consumption

Since the proposed methodology must run in real time on an embedded system, its
execution time must be negligibly compared to the 17 ms cycles produced by the
image acquisition rate in the NAO, and the model must be small enough to fit in the
available memory. Table 3 presents the execution times and memory consumptions of
different approaches. This table also considers C-RL to remark the importance of the
proposed methodology in reducing computational resources. Memory consumption is
measured from model’s weights, and execution time is measured as the average exe-
cution time of a random policy, since the execution time does not depend on the
learned policy, and using random policies allows the inclusion of the C-RL approach in
the analysis, even if it was not trained. The FSBF used in Table 3 corresponds to the
3-r Gaussian approximation, and the executions times for other FSBF are very similar,

Fig. 5. Training performances for the different basis functions.

104 K. Lobos-Tsunekawa et al.

since the evaluation time of the 1D FSBF is negligibly compared to the feature vector
calculation. To provide comparable results, in all cases the number of discrete actions
per action dimension and cores are kept the same.

The results in Table 3 show that substantial computation resources can be saved by
using the proposed methodology. The effective speedup produced by the D-RL against
its C-RL counterpart comes close to the theoretical one expressed in Eq. (4) (an
effective speed of x69 against the theoretical of x85), and the effective speedup from
the state representation is x26 instead of x238, since memory access for FSBF is not
contiguous, among other overheads. Finally, a x85 memory saving is achieved product
of the D-RL scheme, with models using less than a megabyte of memory, fitting in
most embedded systems.

6 Conclusions

In this paper, we presented a general methodology for achieving high performance and
computationally cheap RL behaviors, for complex problems in which both, training
times and computation resources are limited. In that sense, we presented the following
solutions: first, to alleviate the effects of the curse of dimensionality on the action
space, Decentralized RL was proposed, where each action dimension is controlled
individually by independent learning agents acting in parallel in a multi-agent task.
Second, the use of finite support basis functions, as alternatives to Gaussian RBF as
linear approximators, were proposed to generalize the state space and reduce consid-
erably computation time.

We considered the in-walk kick task from soccer robotics as a real-world validation
problem. The proposed solution saves about 99.94% of execution time and 98.82% of
memory consumption with respect to a centralized RL system implemented with
standard Gaussian RBF, without sacrificing performance. Furthermore, basis functions
like cosine and Epanechnikov empirically showed better performance and faster con-
vergences than the Gaussian RBF representation.

We also presented a novel state model for the ball-pushing behaviors in which the
RL agent actions are synchronized with the biped gait. This outperformed considerably
the in-walk kick in terms of accuracy and effectiveness with respect to the former
modeling for ball-pushing behaviors

Table 3. Execution times for the different approaches.

Setting Execution Time [ms] Model Size [MB]

C-RL + Gaussian RBF 304.72 70
C-RL + FSBF 11.57 70
D-RL + Gaussian RBF 4.42 0.82
D-RL + FSBF 0.17 0.82

Toward Real-Time Decentralized Reinforcement Learning 105

Finally, it is interesting to mention that the behavior that arises through model-free
RL makes intense use of the dynamics and geometry of the robot. In [20] some
examples of the learned behaviors can be observed.

Acknowledgements. We would like to thank the BHuman SPL Team for sharing their code
release, contributing the development of the Standard Platform League. This work was partially
funded by FONDECYT Project 1161500.

References

1. Böckmann, A., Laue, T.: Kick motions for the NAO robot using dynamic movement
primitives. In: Behnke, S., Sheh, R., Sarıel, S., Lee, Daniel D. (eds.) RoboCup 2016. LNCS
(LNAI), vol. 9776, pp. 33–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68792-6_3

2. Busoniu, L., Schutter, B.D., Babuska, R.: Decentralized reinforcement learning control of a
robotic manipulator. In: Ninth International Conference on Control, Automation, Robotics
and Vision, ICARCV 2006, Singapore, 5–8 December 2006, pp. 1–6 (2006)

3. Celemin, C., Ruiz-del-Solar, J.: Interactive learning of continuous actions from corrective
advice communicated by humans. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.)
RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 16–27. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-29339-4_2

4. Leottau, D.L., Vatsyayan, A., Ruiz-del-Solar, J., Babuška, R.: Decentralized reinforcement
learning applied to mobile robots. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.)
RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 368–379. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68792-6_31

5. Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup standard
platform league humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.)
RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 102–113. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32060-6_9

6. Leottau, D.L., Ruiz-del-Solar, J., MacAlpine, P., Stone, P.: A study of layered learning
strategies applied to individual behaviors in robot soccer. In: Almeida, L., Ji, J., Steinbauer,
G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 290–302. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-29339-4_24

7. Schilling, R.J., Member, S., Carroll, J.J., Al-ajlouni, A.F.: Approximation of nonlinear
systems with RBF neural networks. In: IEEE Transactions on Neural Networks (2001)

8. Leottau, D.L., Ruiz-del-Solar, J.: An accelerated approach to decentralized reinforcement
learning of the ball-dribbling behavior. In: AAAI Workshop: Knowledge, Skill, and
Behavior Transfer in Autonomous Robots (2015)

9. Leottau, L., Celemin, C., Ruiz-del-Solar, J.: Ball dribbling for humanoid biped robots: a
reinforcement learning and fuzzy control approach. In: Bianchi, R., Akin, H., Ramamoorthy,
S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 549–561. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_45

10. Müller, J., Laue, T., Röfer, T.: Kicking a ball – modeling complex dynamic motions for
humanoid robots. In: Ruiz-del-Solar, J., Chown, E., Plöger, Paul G. (eds.) RoboCup 2010.
LNCS (LNAI), vol. 6556, pp. 109–120. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20217-9_10

11. Röfer, T., et al.: B-Human team report and code release 2016 (2016). http://www.b-human.
de/downloads/publications/2016/coderelease2016.pdf

106 K. Lobos-Tsunekawa et al.

http://dx.doi.org/10.1007/978-3-319-68792-6_3
http://dx.doi.org/10.1007/978-3-319-68792-6_3
http://dx.doi.org/10.1007/978-3-319-29339-4_2
http://dx.doi.org/10.1007/978-3-319-29339-4_2
http://dx.doi.org/10.1007/978-3-319-68792-6_31
http://dx.doi.org/10.1007/978-3-319-68792-6_31
http://dx.doi.org/10.1007/978-3-642-32060-6_9
http://dx.doi.org/10.1007/978-3-319-29339-4_24
http://dx.doi.org/10.1007/978-3-319-18615-3_45
http://dx.doi.org/10.1007/978-3-642-20217-9_10
http://dx.doi.org/10.1007/978-3-642-20217-9_10
http://www.b-human.de/downloads/publications/2016/coderelease2016.pdf
http://www.b-human.de/downloads/publications/2016/coderelease2016.pdf

12. Röfer, T., et al.: B-human team report and code release 2011 (2011). http://www.b-human.
de/downloads/bhuman11_coderelease.pdf

13. Wenk, F., Röfer, T.: Online generated kick motions for the NAO balanced using inverse
dynamics. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS
(LNAI), vol. 8371, pp. 25–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44468-9_3

14. Busoniu, L., Babuska, R., Schutter, B.D., Ernst, D.: Reinforcement Learning and Dynamic
Programming Using Function Approximators, 1st edn. CRC Press Inc, Boca Raton (2010)

15. Papierok, S., Pauli, J.: Application of reinforcement learning in a real environment using an
RBF network. In: 1st International Workshop on Evolutionary and Reinforcement Learning
for Autonomous Robot Systems. ERLARS 2008 (2008)

16. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press,
Cambridge (1998)

17. Rudenko, O.G., Bezsonov, A.A., Liashenko, A.S., Sunna, R.A.: Approximation of gaussian
basis functions in the problem of adaptive control of nonlinear objects. Cybern. Syst. Anal.
47, 1–10 (2011)

18. Kober, J., Peters, J.: Reinforcement learning in robotics: a survey. In: Wiering, M.,
van Otterlo, M. (eds.) Reinforcement Learning. ALO, vol. 12, pp. 579–610. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_18

19. Gouaillier, D., et al.: Mechatronic design of NAO humanoid. In: IEEE International
Conference on Robotics and Automation, Kobe, Japan, pp. 769–774. IEEE (2009)

20. Lobos-Tsunekawa, K., Leottau, D.L., Ruiz-del-Solar, J.: Decentralized Reinforcement
Learning In-Walk Kicks using Finite Basis Functions. https://youtu.be/3fp-r3xQeAQ.
Accessed 5 June 2017

Toward Real-Time Decentralized Reinforcement Learning 107

http://www.b-human.de/downloads/bhuman11_coderelease.pdf
http://www.b-human.de/downloads/bhuman11_coderelease.pdf
http://dx.doi.org/10.1007/978-3-662-44468-9_3
http://dx.doi.org/10.1007/978-3-662-44468-9_3
http://dx.doi.org/10.1007/978-3-642-27645-3_18
https://youtu.be/3fp-r3xQeAQ

	Toward Real-Time Decentralized Reinforcement Learning Using Finite Support Basis Functions
	Abstract
	1 Introduction
	2 Decentralized Reinforcement Learning
	3 Finite Support Basis Functions
	4 Validation Problem: The in-Walk Kick in Biped Robots
	4.1 General Modeling
	4.2 Extended Ball-Pushing Modeling for Humanoid Biped Robots
	4.3 Decentralized Reinforcement Learning Modeling

	5 Results
	5.1 Experimental Set up
	5.2 State Model Comparison
	5.3 Basis Functions Comparison
	5.4 Execution Time and Memory Consumption

	6 Conclusions
	Acknowledgements
	References

