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Abstract. Solenoid Valves are broadly used as electromechanical actu-
ators when robustness and strength are needed. More specifically, in the
Warthog Robotics group project WRMagic, the solenoid is used as an
impact generator to impulse a rigid body. The literature recommends
to deeply understand the plunger’s movement in response to the applied
voltage in the coil terminals for applications of this magnitude. This
paper models a solenoid system using it’s own magnetic field closed cir-
cuit and the model is implemented in Simulink for various input voltage
cases.
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1 Introduction

Solenoids are actuators comprised of a helical coil wrapped around a ferromag-
netic core. This core can either be fixed, being used mainly to generate a con-
centrated electromagnetic field, or free to move in the coil axis. This property of
creating force in the presence of electrical current is considered an electromechan-
ical energy conversion, which makes the solenoid useful for many applications
such as dialysis machines [1], MRIs [2,3], Washing Machines [4], Electrical lock-
ers [5], pressurizers [6], controlled brakes [7] in the automotive industry, Solenoid
Valves, a switch that control the flux of fluids in hydraulic systems [8], and finally
in the Smallsize [9] and MiddleSize [10] Soccer Leagues of Robocup as a “kicking
tool”.

This paper was conceived at the “Centro de Robótica Aplicada da Universi-
dade de São Paulo” (CROB), as a study of the research group Warthog Robotics,
with the goal of defining the theoretical ground to improve the WRMagic Project
(Smallsize) [11] and to develop other projects in soccer and rescue RoboCup cat-
egories [12]. The WRMagic is an autonomous football robot that uses a solenoid
as actuator to impulse a rigid object, that simulates a kick or pass on a foot-
ball game. Even though the literature on solenoids is large, studies are focused
primarily on industrial [13] and research applications. Their emphasis, there-
fore, is on limited empirical or simplified models related to Superconducting
c© Springer Nature Switzerland AG 2018
H. Akiyama et al. (Eds.): RoboCup 2017, LNAI 11175, pp. 290–301, 2018.
https://doi.org/10.1007/978-3-030-00308-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00308-1_24&domain=pdf


Modelling a Solenoid’s Valve Movement 291

applications [14–16], solenoid’s fabrication [14,17,18], physical characteristics
[17,19,20], maximum force [21], shape [16], inductance [22,23], self-capacitance
[24], hysteresis characteristics [25,26], robustness [27] and others which do not
completely fulfill our purposes. Our solenoids, therefore, are produced based,
with adaptations, on another model exposed by us on [28] and some practical
knowledge since that model is only valid for simple finite coils, not physical
solenoids.

In this research we aim to obtain a complete model of a real generic solenoid
so as to relate all variables, from materials to geometry, that influence on the
core’s movement. Such complete model will give us the ability to choose the
best solenoid configuration for different applications in our projects, as also to
develop better control algorithms for them.

This paper is organized as follow: in the introduction, some concepts will
be presented, then, using those concepts in the second section the algebraic
deduction will be exposed. After that, in the third section, the Simulink’s model
construction is explained and finally the results of said simulation are displayed
in graphs, that are on the fourth section. The last section is a conclusion based
on said accumulated data.

1.1 Solenoid Valve Functioning

It’s well known, by the application of Ampere’s law, that a union of turns when
energized by current generate a magnetic field on it’s interior, being this field
approximately parallel to the surface of turns [29]:

∮
C

B.dl = μ0.I (1)

where B is the Magnetic Field, dl is an element of the Any Closed Curve (C), μ0

is the magnetic permeability and I is the total electrical current in the surface
enclosed by the Curve.

When a ferromagnetic material is positioned at the coil axis edge, and there’s
electrical current through the coil, a magnetic field is concentrated in the interior
of the material creating a magnetic force in the coil axis and pulling the material
to the center of the coil, therefore if the magnetic force is controlled via the
electric current injection it is possible to create an actuator as in Fig. 1(a).

1.2 Solving Magnetic Circuits

Solving a magnetic circuit can be a difficult task. However Fitzgerald [30] pro-
poses the following hypothesis allow the calculation of a magnetic circuit by an
equivalent electric circuit:

– The inductance outside does not influence on the final magnitude of the field
– There is no spreading of the magnetic field in the gaps of the solenoid.
– All the magnetic field is confined in the closed magnetic circuit.
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– The magnetic permeability of the gap is practically equal to the void’s.
– The Displacement terms of the Maxwell’s equations are insignificant.
– The Magnetic inductance of the magnetic field strength (H) in the magnetic

field flux (B) is insignificant in every point of the system.
– The Magnetic inductance can be considered Homogeneous.

Based on those assumptions, the magnetic circuit can be solved by consid-
ering the system static at each time step. Therefore the dynamic characteristics
will be derived based on Newton’s law and on application of static magnetic
calculation at each instant. This makes it possible to approximate, the magnetic
circuit to an equivalent one-dimensional electric circuit that can be analyzed
using basic circuit theory. This equivalent electric circuit obeys the following
rules:

1. As said in the first hypothesis, the passage of magnetic flux (equivalent to
current) exists only in the ferromagnetic material and the gap.

2. The reluctance is substituted by analogue resistors.
3. Coils are substituted by voltage sources, being its voltage equivalent to the

number of turns times their electric Current.

2 Model Deduction

2.1 Algebraic Approach

To model the solenoid’s plunger, it will be used the concepts exposed in Sect. 1.2
and the basics of newtonian mechanics. The problem will be approached with
two basic equations: the electrical and the mechanical, that is, the equation that
rules the voltage in the coil’s terminals and the equation of force balance in the
coil axis. The first equation is represented as follows:

V =
∂λ(x,i)

∂t
+ R.i(t) (2)

being the voltage on the coil equal to the Ohm’s law R.i(t) plus the Voltage from
Len’s Law ∂λ(x,i)

∂t . And the second approach:

Fres = Fmag + Fhooke + Px − Fμ − Fvis (3)

the sum of forces on the coil axis which contains the magnetic force, Hooke’s
force, a component of weight, friction and viscosity force. Also, the magnetic
permeability will be considered constant to any given magnetic flux.

2.2 Magnetic Circuit Analysis

As the Solenoid’s Resistance is a constant and the current function is not trivial
to describe, the analysis begins with the description offlux linkage [λ]:

λ(x,i) = N.Φ (4)
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where N represents the number of turns in the coil and Φ represents the Magnetic
Flux.

The magnetic flux is a variable which depends on the magnetic circuit, formed
in this case by the coil, plunger, iron core magnetic path and gap. When trans-
formed into to a electric circuit, the magnetic circuit of the Fig. 1(a) can be
displayed as in Fig. 1(b), in which �1 and �3 are the reluctance of the effective
path traveled by the flux in the iron core and �2 is the sum of the reluctance
of the plunger and gap. Its possible to simplify the circuit in Fig. 1(b) applying
the relation of parallelism between �1 and �3 which results in �ic, the iron core
reluctance. Its also interesting for the analysis to separate �2 in the sum of �0

and �pl resulting in a new circuit, represented by Fig. 1(c).

Fig. 1. Typical representations of a solenoid valve: (a) physical component, extracted
from [31], (b) equivalent electrical circuit and (c) simplified equivalent electrical circuit

Therefore, based on the relation 5, that determines the reluctance [30]:

� =
l

μr.μ0.A
(5)

the following equations are defined:

�ic =
lic

μic.μ0.Apl
(6)

�pl =
x(t) + lpl

μpl.μ0.Apl
(7)

�0 =
l0 − x(t)

μ0.Aic
(8)

To relate the linkage flux and the reluctance its possible to pursue the path:

N.i(t) = �n.Φ

N.i(t) = (�ic + �pl + �0).Φ

N2.i(t) = (�ic + �pl + �0).Φ.N

N2.i(t) = (�ic + �pl + �0).λ
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λ(x,i) =
N2.i(t)

�ic + �pl + �0
(9)

As represented on Fig. 1(a), Apl is identical to A0. It’s possible to simplify these
formulas and sum the total reluctance:

Σ� =
lic.A0.μpl + lpl.Aic.μic + l0.Aic.μic.μpl + x(t).(Aic.μic − Aic.μic.μpl)

Aic.A0.μ0.μpl.μic
(10)

Which finally results in the linkage flux in the form of:

λ(x,i) =
Aic.A0.μ0.μpl.μic.N

2.i(t)
lic.A0.μpl + lpl.Aic.μic + l0.Aic.μic.μpl + x(t).Aic.μic.(1 − μpl)

(11)

Therefore its possible to find a formula that rules λ’s behavior in function
of the position(x), the intended model output, and current(i) that was previ-
ously added to the model in Eq. 2. Nevertheless, the Eq. 2 needs the linkage flux
derivative in time, and as λ depends on two variables both function of time, the
derivative follows the chain’s rule of the implicit derivative in Eq. 2.

V =
∂λ(x,i)

∂i(t)
.
∂i(t)

∂t
+

∂λ(x,i)

∂x(t)
.
∂x(t)

∂t
+ R.i(t) (12)

So it is needed to partially derive the Eq. 11 in x(t) and i(t).

∂λ(x,i)

∂x(t)
=

−N2.μ2
fr.μvl.μ0.A

2
fr.A0.(1 − μvl).i(t)

(lfr.A0.μvl + lvl.Afr.μfr + l0.Afr.μfr.μvl + x(t)Afr.μfr.(1 − μvl))2
(13)

∂λ(x,i)

∂i(t)
=

Afr.A0.μ0.μvl.μfr.N
2

lfr.A0.μvl + lvl.Afr.μfr + l0.Afr.μfr.μvl + x(t).Afr.μfr.(1 − μvl)
(14)

The equation above seems to be complicated, however, it is possible to sim-
plify the visualization with some new definitions of global constants.

kt1 = Afr.A0.μ0.μpl.μic.N
2 (15)

kt2 = Aic.μic.(1 − μpl) (16)

kt3 = lic.A0.μpl + lpl.Aic.μic + l0.Aic.μic.μpl (17)

Replacing the Eqs. 15, 16 and 17 in 13 and 14. Then, replacing the result of
this procedure in the Eq. 12 it’s finally viable to visualize the first differential
equation of this model:

V =
kt1.

∂i(t)

∂t

x(t).kt2 + kt3
− kt1.kt2.i(t).

∂x(t)

∂t

(x(t).kt2 + kt3)2
+ R.i(t) (18)

2.3 Mechanical System Analysis

The objective of this section is to study the equation exposed in Sect. 2.1 and
rewrite it in function of our output variables i(t) and x(t). Firstly, from the Eq. 3
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each term can be expanded in:

Fres = m.
∂2x(t)

∂2t
Fhooke = −K.x(t) Fμ = m.g.Cos(θ).μμ

Fmag =
∂W ′

(x(t),i(t))

∂x
Px = m.g.Sen(θ) F = β.

∂x(t)

∂t

In those equations its possible to visualize that the only variable that differs
from our output is W ′

(x(t),i(t))
, therefore it is needed to deepen in its study. To

accomplish that, the following relation [31], will be used.

W ′
(x(t),i(t))

=
∫ i(t)

0

λ(x(t),i(t)).di (19)

Therefore

Fmag =
∫ i(t)

0

∂λ(x(t),i(t))

∂x(t)
.di (20)

Reminding that
∂λ(x(t),i(t))

∂x(t)
is already defined by Eq. 13.

Fmag = −
kt1.kt2.i

2
(t)

2.(kt2.x(t) + kt3)2
(21)

to simplify the Differential Equation it will be used a new global constant kt4:

kt4 = m.g.Sen(θ) + m.g.Cos(θ).μμ (22)

Lastly, replacing all forces and the constant kt4 in the Eq. 3:

m.
∂2x(t)

∂2t
= −

kt1.kt2.i
2
(t)

2.(kt2.x(t) + kt3)2
− K.x(t) − kt4 − β.

∂x(t)

∂t
(23)

2.4 Final Differential Equations

With the equations achieved it’s unlikely that a algebraic solution will be found,
but a numeric solution is needed. Then, the Differential Equations must be rear-
ranged in a way that facilitates the construction of a flowchart in the Simulink
Application, of the software Matlab.

∂i(t)

∂t
= (

x(t).kt2 + kt3

kt1
)(

kt1.kt2.i(t).
∂x(t)

∂t

(x(t).kt2 + kt3)2
− R.i(t) + V ) (24)

∂2x(t)

∂2t
= (−β.

∂x(t)

∂t
− K.x(t) − kt4 −

kt1.kt2.i
2
(t)

2.(kt2.x(t) + kt3)2
).

1
m

(25)
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3 Simulation

By the Differential Eqs. 24 and 25 the flowchart in the following figures was
build. Figure 3 shows the dependencies of each output and also how the input
proprieties are transformed into the global constants defined in section 2. Fig-
ures 4(b), (c) and (d) show how the constants and variables interact to form the
Current Differential Equation. Finally the Fig. 5(a) and (b) form the Differential
Equation that rules the valve’s movement (Fig. 2).

Fig. 2. Superficial visualization of simulink

4 Results

Running the model drew in Sect. 3 for the inputs:

– A0 = 0.0005 m2

– Afr = 0.00005 m2

– L0 = 0.0010 m
– Lic = 0.5000 m

– Lpl = 0.1000 m

– N = 1000.0T urns
– M = 0.1000 kg

– K = 1.0000 N
m

– β = 10.000Nsm−1
– μatr = 0.0000u.a

– μ0 = 0.4000πμ H
m

– μfr = 1000.0 H
m

– μpl = 1000.0 H
m

– θ = 0.0000◦
– R = 0.0800Ω
– V = V(t)

Where all the geometrical values, and the number of turns, were taken from
measures of a real solenoid. The resistance was calculated based on the wires
dimensions and the magnetic permissiveness are based on the greatness of normal
ferromagnetic material such as iron. The friction coefficient is considered null
because of the position in which the solenoid is being analyzed in Fig. 1(a). V(t)

is a Decreasing ramp that varies in initial value from 10,000V to 220,00V for
each output graph, and has it’s final value at 0,0100s as 0V. This should simulate
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Fig. 3. Input constants to global constants transformation

Fig. 4. Current differential equation: (a) model and the terms of the current equation:
(b) first term, (c) second term and (d) auxiliary term for the first term
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Fig. 5. Differential position equation: (a) model and (b) auxiliary term

Fig. 6. (a) Position, (b) velocity and (c) aceleration outputs of the simulation

a quick non-ideal pulse of voltage. The Simulation outputs behave as shown in
Figs. 6(a), (b), (c), 7(a) and (b). It’s seen in those graphs that the response
to the stimulus tend to explode into instability, which was expected since the
solenoid plunger will only stop when it’s middle reaches the center of the coil
but the model assumes, in Eqs. 7 and 8, that the plunger has infinite length and
is pursuing a infinite path.
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Fig. 7. (a) Current and (b) current variation outputs of the simulation

In those graphs, for any variable, the increasing voltage inputs generated
ten outputs similar in form and characteristics, and so we must conclude that
the Simulink model can be used as a tool to anticipate any solenoid behavior.
Although it is impossible to confirm this without the proper validation, all indi-
cates that the flowchart model can be used to develop new solenoids for our
projects, if those don’t disobey any of the hypothesis in this paper and also have
a limited small path to cross.

5 Conclusion

Although the literature about this type of model is not as extensive as one would
expect, in this paper we achieved the objective to model the solenoid’s plunger
motion. Unfortunately this model can only work for the small amount of time
that takes for the plunger to achieve the final point of its direct path in the
spring direction, which means, the simulation is only valid for the time where
x(t) < L0. It is also not considered the variation of the magnetic permeability
which can lead to a unfaithfully result if the ferromagnetic material is on its
saturated state.

As future works, we plan to overcome the model constraints by changing our
approach in the magnetic circuit analysis, its intended to integrate the magnetic
field for each point in space, via Biot Savart law, to later find the function that
determines exactly how the flux behaves inside the solenoid, and then, find the
magnetic force and the coil voltage with said function. But, although our current
approach have it’s constraints, it is already a useful tool to analyze solenoids with
small, limited, position variations. Its also, in our plans to validate this, and the
next model, with data acquired from real solenoids in controlled experiments.
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