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Abstract. We propose a 2D computed tomography (CT) slice image
reconstruction method from a limited number of projection images using
Wasserstein generative adversarial networks (wGAN). Our wGAN opti-
mizes the 2D CT image reconstruction by utilizing an adversarial loss
to improve the perceived image quality as well as an L1 content loss
to enforce structural similarity to the target image. We evaluate our
wGANs using different weight factors between the two loss functions
and compare to a convolutional neural network (CNN) optimized on L1

and the Filtered Backprojection (FBP) method. The evaluation shows
that the results generated by the machine learning based approaches
are substantially better than those from the FBP method. In contrast
to the blurrier looking images generated by the CNNs trained on L1,
the wGANs results appear sharper and seem to contain more structural
information. We show that a certain amount of projection data is needed
to get a correct representation of the anatomical correspondences.
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1 Introduction

Computed tomography (CT) is a non-invasive image modality to visualize the
interior body structure, enabling fast acquisition and high image quality. To gen-
erate a three dimensional (3D) CT image, multiple 2D X-ray projection images
of the subject are acquired from different angles on the axial plane and used for
reconstruction. The Filtered Backprojection (FBP) is a well established method
for 3D CT reconstruction. However, the quality of the reconstructed image using
FBP heavily depends on the number of projection images, which correlates to
the amount of ionizing radiation exposed.
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As the risk of cancer is increased by radiation exposure, different approaches
exist to decrease the radiation dose. Two popular approaches to decrease radi-
ation dose are tube current reduction, resulting in degraded image quality, and
beam blocking, which restricts the amount of X-rays reaching the subject in a
physical way, resulting in streaking artifacts. Recent promising results for ion-
izing dose reduction were achieved by utilizing convolutional neural networks
(CNN) [3,4,13] and made deep learning also attractive for image reconstruction.

Fig. 1. Reconstruction ŷ of a target image y from a limited number of 2D projection
images xαi generated from y with different angles αi using a combination of a wGAN
loss LwGAN and an additional content loss L1. The generator G is based on the U-Net
[7], the discriminator D results in a single scalar value.

Reducing the number of X-ray image views acquired and used for CT recon-
struction is another approach to decrease the amount of radiation exposed.
Sparse-view CT reconstruction becomes important during minimally invasive
and image guided surgeries, where multiple X-ray images are acquired repeat-
edly during intervention to precisely locate the instruments, leading to an expo-
sure to ionizing radiation for both the patient and medical staff. In a recent
CNN based approach [10], residual learning is used to extract the artifacts from
the FBP image which are then subtracted from the FBP image to obtain the
clean reconstruction. In contrast to other CNN based approaches that learn the
transformation from a low quality, FBP based reconstructed CT image to a high
quality CT image, in our previous work [9], we learned a direct mapping from
3D digitally reconstructed radiographs (DRR) to the full 3D CT reconstruc-
tion using a U-Net architecture. However, the downside of this approach is that
the reconstructed images look blurry due to the used L1 loss. This observation
suggests to improve on the loss function used for training.

Generative adverserial networks (GANs), which can generate realistically
looking images, have a great potential to improve also the reconstruction qual-
ity of medical images. A GAN requires two networks to be trained: a generator,
which has the goal to create images coming from a target distribution, and a dis-
criminator, which has to distinguish between the generated and the real target
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Fig. 2. Generation of 1D projections sα from a target 2D CT slice image y for a number
of N fixed angles αi. All sα are further processed by repeating in the direction of the
respective α yielding the 2D projection images xα used as network input.

distribution. However, GANs are inherently hard to train and often suffer from
stability issues. Wasserstein GANs (wGANs) [1], which were further improved
by utilizing a gradient penalty [2], provide a way to stabilize the training. Com-
bined with a content loss such as L1, state-of-the-art results were achieved for
super resolution [5] and in medical imaging [6,8,11,12].

However, as GANs were initially proposed to generate new images from noise,
its applicability to medical applications is an open question. In this work, we
want to gain insights in the applicability of wGANs for improving the image
quality for 2D CT image slice reconstruction from a limited number of projec-
tion images. We investigate the role of an additional content loss for improved
reconstruction quality and provide insights in the amount of projection images
that are necessary for anatomically correct reconstructions.

2 Method

In our deep learning based method we utilize wGANs with gradient penalty in
combination with a content loss L1 to improve the reconstruction of 2D axial
CT slices, see Fig. 1. Our method is trained to reconstruct the target 2D CT
axial slice directly from a small number of 2D projection images generated by
extending 1D projections of the target image, see Fig. 2.

Projection Image Generation: We generated a 1D sum projection sαi
from

a target 2D axial CT slice y ∈ Y for different angles αi, i ∈ {1, . . . , N}, see Fig. 2.
The angles α are uniformly distributed in the range of 0◦ to 180◦ with a fixed
angle between them. With the same size as y, the 2D projection image xαi

is
generated by repeating sαi

in the direction of αi.

wGAN Architecture: Based on the U-Net [7], the generator G of wGAN uses
a set of 2D projection images xα to generate a 2D image ŷ ∈ Ŷ , which is as
similar as possible to y ∈ Y . Alternately receiving an image from Y and Ŷ ,
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(a) MAE (b) SSIM

Fig. 3. Mean absolute error (MAE) and structural similarity index metric (SSIM) of
our wGAN trained using L1 + LwGAN with λ = 10−3, only L1 and the FBP method
compared to the ground truth for a different number of projection images

the task of the discriminator D of wGAN is to recognize from which of these
two distributions the currently observed image is coming. The architecture of D
consists of consecutive 2D convolution layers and 2D max pooling layers, which
are followed by a fully connected layer resulting in a single scalar value.

Loss Functions: The discriminator’s loss is defined as

LD = −D(y) + D(ŷ) + ρ, (1)

where D(y) is the discriminator’s predicted probability for y coming from Y ,
D(ŷ) is the predicted probability for ŷ coming also from Y and ρ is the gradient
penalty, which is used to stabilize the training of the wGAN [2].

The generator’s loss is defined as

LG = L1 − λ · D(ŷ) = L1 + λ · LwGAN , (2)

where λ is used as a weight between the adversarial loss LwGAN = −D(ŷ) and
L1 loss, which is defined as

L1 =
1

|M |
∑

m∈M

|ŷm − ym|, (3)

where m ∈ M are corresponding pixels in ŷ and y, and M is the set of all pixels.

2.1 Experimental Setup

Our data set consists of 10 3D CT images containing information from neck
to pelvis. To decrease the training time, we downsampled the axial slices for all
images to a size of 128×128. We separated the 3D CT images into eight training
and two testing images. During training, the 2D target image is selected as a
random axial slice from a training 3D CT image that is augmented on the fly
by random translation, rotation and scaling coming from a uniform distribution.
To prevent the problem of different amounts of image data present in projection
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(a) Target (b) L1 (c) L1+λ1 ·LwGAN (d) L1+λ2 ·LwGAN

Fig. 4. The target compared to reconstruction results for eight projections generated
by L1 and L1+LwGAN with two different values for λ. λ1 = 10−3 (default), λ2 = 10−1.

images from different angles when generated from a square shaped target image,
all targets are masked by a circle. We used the same mask when the loss is
calculated. We experiment with a different number N = {1, 2, 4, 6, 8, 15, 30, 60}
of projection images used for reconstruction of 2D CT axial slice images. The
results are compared quantitatively to the FBP method by calculating the mean
absolute error (MAE) and the structural similarity index metric (SSIM). When
results are compared qualitatively, all images share the same brightness setting,
but some values are truncated to give a better contrast.

All networks were trained using a mini-batch size of 16 and 80.000 iterations,
while the discriminator was trained five times for each iteration. We used Adam
as an optimizer for all networks with a learning rate of 0.0001, β1 = 0.5 and
β2 = 0.9. We used a four level deep U-Net [7] as our generator. For both the
generator and the discriminator we used a kernel size of 3×3 and 64 intermediate
convolutional filters. As activation function, we used ReLU for the generator and
Leaky ReLU for the discriminator.

3 Results

Our results for a different number of projection images used for reconstruction of
2D CT axial slice images are presented quantitatively as MAE in Fig. 3(a) and as
SSIM in Fig. 3(b). Qualitative results using eight projection images and a differ-
ent weight factor λ are shown in Fig. 4. For a different number N ∈ {2, 15, 60}
of projection images, Fig. 5 shows the qualitative results for the FBP method
and Fig. 6 for using only L1 loss (λ = 0) and L1 + LwGAN loss (λ = 10−3).

4 Discussion and Conclusion

In this work we investigated the potential use of wGANs for sparse-view CT slice
reconstruction, which is motivated by a reduction of ionizing radiation exposure
to the patient. While a content loss L1 enforces similarity to the target image, our
U-net based CNN is optimized using a combination of the L1 and an adversarial
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Fig. 5. The target image (a) compared to reconstruction results generated by the FBP
method for two (b), 15 (c) and 60 (d) projection images.

loss LwGAN (Eq. (2)) to reconstruct more realistically looking images. In contrast
to other machine learning based approaches in which the reconstruction of a high
quality CT image is learned from the previously reconstructed low quality CT
image [3,4,13], in our approach the CNN learns the reconstruction directly from
a limited number of projection images, see Fig. 1.

When a different number of projection images is used to train our CNNs, our
quantitative results show that the learning based methods perform substantially
better than the FBP, see Fig. 3, which is to be expected, since the FBP does
not utilize any prior knowledge in contrast to the CNN based approaches. In
terms of the MAE, the CNN trained on L1-only performs slightly better than
the wGAN trained on the combination of L1 and adversarial loss (L1+LwGAN ).
This was expected, since L1 loss is optimized to minimize MAE. By comparing
the SSIM results, we can see that the CNN trained on L1-only gives better results
up to eight projection images, but from that point on the results from L1-only
and L1 + LwGAN can be considered equal. Although the quantitative results
indicate that the CNNs trained on L1-only provide a better reconstruction than
on L1 +LwGAN , they have to be considered with caution, since MAE and SSIM
do not represent the human perception of image quality well.

When training CNNs on L1-only loss using a sparse number of projection
images, the qualitative results show that the reconstructed image is blurry with-
out fine structures and clear edges, see Fig. 4(b). Using an additional adver-
sarial loss, the images contain fine structures and clear edges, see Fig. 4(c).
However, when the adversarial loss dominates in the loss function, anatomi-
cal structures without correspondence to the target image can be introduced,
see Fig. 4(d). We investigated the effect of λ by utilizing different orders of mag-
nitude λ = 10{−4,−3,−2,−1,0} and found λ = 10−3 to be the optimum. While
10−4 leads to results very similar to L1-only and seemingly without an influence
of LwGAN , the results using 10{−2,−1,0} lead to a clear reduction of structural
similarity and thus a loss of anatomical correspondence to the target.

Our results using a different number of projection images in Fig. 5 confirm
that the FBP method is not able to produce clinically meaningful images without
a proper number of projections. On the other side, our machine learning based
approach is able to reconstruct the main anatomical structures of the target
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Fig. 6. The target image (a) compared to reconstruction results generated by
L1 + LwGAN with λ = 10−3 (b, c and d) as well as by L1 (e, f and g) for two (b, e),
15 (c, f) and 60 (d, g) projection images.

image already from two projection images, see Fig. 6. While using L1-only loss
generates images that give the impression of a heavily blurred target image, the
reconstructed image by L1+LwGAN loss looks optically more realistic. However,
for both reconstructions, the anatomical structures do not always correspond to
the target due to a huge amount of missing information making them unsuitable
for use in clinical practice. In our experiments we found that 15 projection images
are sufficient for our CNN based approaches to achieve a qualitatively good
reconstruction. However, the results generated by L1 + LwGAN are sharper and
give more textural information compared to L1-only loss. The results generated
from 60 projection images provide a similar amount of fine details as the target
image. Nevertheless, the L1 +LwGAN result is still slightly sharper than L1-only
loss, especially the fine details in the lung region are visible.

We showed that the combination of an adversarial loss LwGAN and a content
loss L1 improves the visual reconstruction quality. The reconstructions using
L1 + LwGAN appear sharper and more structured compared to the CNN results
trained on L1-only. However, the tradeoff λ is crucial to reduce the amount of
newly introduced information by the wGAN and guide the reconstruction in a
direction close to the target image. While images generated by the CNNs trained
on L1-only appear blurry, the additional information present in the wGAN
results trained on L1 + LwGAN can potentially lead to misinterpretation in a
clinical relevant context if not enough data is available for reconstruction.

In conclusion, the wGANs have a potential to improve the perceived image
quality even from a huge amount of missing information, however, it is dependent
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on the application and domain, whether the kind of artifacts introduced are
tolerable, which is an open question in medical imaging. To further evaluate
anatomical correspondence, in our future work we will validate the perceived
image quality of our approach by expert radiologists and also compare to other
state-of-the-art methods based on compressed sensing.
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