Skip to main content

Évolution des résistances bactériennes en réanimation

  • Chapter
Infectiologie en réanimation

Part of the book series: Références en réanimation. Collection de la SRLF ((SRLF))

  • 1015 Accesses

Résumé

La surveillance de l’évolution des résistances bactériennes aux antibiotiques a un double objectif. Elle est d’abord indispensable pour disposer de données guidant les protocoles de traitement probabiliste des infections. Ensuite, elle s’intègre dans la politique globale de prévention des infections nosocomiales. C’est un composant incontournable des indicateurs d’activité et de qualité des services de réanimation et des référentiels d’accréditation des établissements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Désenclos JC, RAISIN Working Group (2009) RAISIN — a national programme for early warning, investigation and surveillance of healthcare-associated infection in France. Euro Surveill 14: 46

    Google Scholar 

  2. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2010 (2011) Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC. Disponible à partir de l’URL: http://ecdc.europa.eu/en/publications/Pages/Publications.aspx

  3. Aubry-Damon H, Legrand P, Brun-Buisson C, et al. (1997) Reemergence of gentamicin-susceptible strains of methicillin-resistant Staphylococcus aureus: roles of an infection control program and changes in aminoglycoside use. Clin Infect Dis 25: 647–53

    Article  PubMed  CAS  Google Scholar 

  4. Lemaître N, Sougakoff W, Masmoudi A, et al. (1998) Characterization of gentamicin-susceptible strains of methicillin-resistant Staphylococcus aureus involved in nosocomial spread. J Clin Microbiol 36: 81–5

    PubMed  Google Scholar 

  5. Jarlier V, Trystram D, Brun-Buisson C, et al. (2010) Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program. Arch Intern Med 170: 552–9

    Article  PubMed  Google Scholar 

  6. Pittet D, Hugonnet S, Harbarth S, et al. (2000) Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet 356: 1307–12

    Article  PubMed  CAS  Google Scholar 

  7. Charbonneau P, Parienti JJ, Thibon P, et al. (2006) Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients: a quasi experimental study. Clin Infect Dis 42: 778–84

    Article  PubMed  CAS  Google Scholar 

  8. Raisin (2012) Surveillance des infections nosocomiales en réanimation adulte, Réseau REA-Raisin, France, résultats 2010 Saint-Maurice: Institut de veille sanitaire, 25 p. Disponible à partir de l’URL: http://www.invs.sante.fr

  9. Gastmeier P, Schwab F, Behnke M, Geffers C (2012) Decreasing healthcare-associated infections (HAI) is an efficient method to decrease healthcare associated methicillin-resistant S. aureus (MRSA) infections Antimicrobial resistance data from the German national nosocomial surveillance system KISS. Antimicrobial Resistance and Infection Control 1: 3

    Article  PubMed  Google Scholar 

  10. Rosenthal VD, Maki DG, Jamulitrat S, et al. (2010) International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003–2008. Am J Infect Control 38: 95–104

    Article  PubMed  Google Scholar 

  11. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–41

    Article  PubMed  CAS  Google Scholar 

  12. Otter JA, French GL (2010) Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis 10: 227–39

    Article  PubMed  Google Scholar 

  13. Maugat S, de Rougemont A, Aubry-Damon H, et al. (2009) Staphylococcus aureus résistant à la méticilline, isolés dans les laboratoires d’analyses de biologie médicale du réseau Labville. Med Mal Inf 39: 311–8

    Article  CAS  Google Scholar 

  14. Robert J, Etienne J, Bertrand X, ONERBA (Observatoire National de l’Epidémiologie de la Résistance Bactérienne aux Antibiotiques) (2005) Methicillin’resistant Staphylococcus aureus producing Panton’Valentine leukocidin in a retrospective case series from 12 French hospital laboratories, 2000–2003. Clin Microbiol Infect 11: 585–7

    Google Scholar 

  15. Dauwalder O, Lina G, Durand G, et al. (2008) Epidemiology of invasive methicillin-resistant Staphylococcus aureus clones collected in France in 2006 and 2007. J Clin Microbiol 46: 3454–8

    Article  PubMed  Google Scholar 

  16. Otter JA, French GL (2011) Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J Hosp Infect 79: 189–93

    Article  PubMed  CAS  Google Scholar 

  17. Fridkin SK, Edwards JR, Courval JM, et al. (2001) The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann Intern Med 135: 175–83

    Article  PubMed  CAS  Google Scholar 

  18. Varon E, Gutmann L (2009) CNR des pneumocoques. Rapport d’activité. Disponible sur http://www.invs.sante.fr/surveillance/cnr/rapports_activite.htm

  19. Vincent JL, Rello J, Marshall J, et al. (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302: 2323–9

    Article  PubMed  CAS  Google Scholar 

  20. Verdet C, Arlet G, Mérens A, et al. (2009) Enquête ONERBA trans-réseaux 2009: « Céphalosporinases plasmidiques ». 29e Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse (RICAI). Paris 3 décembre 2009

    Google Scholar 

  21. Livermore DM, Canton R, Gniadkowski M, et al. (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59: 165–74

    Article  PubMed  CAS  Google Scholar 

  22. Woodford N, Turton JF, Livermore DM (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35: 736–55

    Article  PubMed  CAS  Google Scholar 

  23. Rosenthal VD, Bijie H, Maki DG, et al. (2012) International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009. Am J Infect Control 40: 396–407

    Article  PubMed  Google Scholar 

  24. Hidron AI, Edwards JR, Patel J, et al. (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011

    Article  PubMed  Google Scholar 

  25. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapanemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–8

    Article  PubMed  CAS  Google Scholar 

  26. Cantón R, Akóva M, Carmeli Y, et al. (2012) Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18: 413–31

    Article  PubMed  Google Scholar 

  27. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9: 228–36

    Article  PubMed  CAS  Google Scholar 

  28. Carbonne A, Thiolet JM, Fournier S, et al. (2010) Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro Surveill 15: 48

    Google Scholar 

  29. Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 11: 381–93

    Article  PubMed  CAS  Google Scholar 

  30. Kassis-Chikhani N, Saliba F, Carbonne A, et al. (2010) Extended measures for controlling an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France, 2003–2004. Euro Surveill 15: 46

    Google Scholar 

  31. Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19: 588–95

    Article  PubMed  CAS  Google Scholar 

  32. Poirel L, Potron A, Nordmann P (2012) OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597–606

    Article  PubMed  CAS  Google Scholar 

  33. Vaux S, Carbonne A, Thiolet JM, et al. (2011) Emergence of carbapenemase-producing Enterobacteriaceae in France, 2004 to 2011. Euro Surveill 16: 22

    Google Scholar 

  34. Bertrand X, Dowzicky MJ (2012) Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 34: 124–37

    Article  PubMed  CAS  Google Scholar 

  35. Doi Y, Arakawa Y (2007) 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45: 88–94

    Article  PubMed  CAS  Google Scholar 

  36. Berçot B, Poirel L, Nordmann P (2011) Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis 71: 442–5

    Article  PubMed  Google Scholar 

  37. Livermore DM, Warner M, Mushtaq S, et al. (2011) What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37: 415–9

    Article  PubMed  CAS  Google Scholar 

  38. Strateva T, Yordanov D. (2009) Pseudomonas aeruginosa — a phenomenon of bacterial resistance. J Med Microbiol 58: 1133–48

    Article  PubMed  CAS  Google Scholar 

  39. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582–610

    Article  PubMed  CAS  Google Scholar 

  40. Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14: 413–20

    Article  PubMed  CAS  Google Scholar 

  41. Hocquet D, Plésiat P, Dehecq B, et al. (2010) Nationwide investigation of extended-spectrum beta-lactamases, metallo-beta-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother 54: 3512–5

    Article  PubMed  CAS  Google Scholar 

  42. Rodriguez-Martinez JM, Poirel L, Nordmann P (2009) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53: 4783–8

    Article  PubMed  CAS  Google Scholar 

  43. Fritsche TR, Sader HS, Toleman MA, et al. (2005) Emerging metallo-beta-lactamasemediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis 41(Suppl 4): S276–8

    Article  PubMed  CAS  Google Scholar 

  44. Sader HS, Jones RN, Dowzicky MJ, Fritsche TR (2005) Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn Microbiol Infect Dis 52: 203–8

    Article  PubMed  CAS  Google Scholar 

  45. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21: 538–82

    Article  PubMed  CAS  Google Scholar 

  46. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12: 826–36

    Article  PubMed  CAS  Google Scholar 

  47. Naas T, Coignard B, Carbonne A, et al. (2006) VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 2006 12: 1214–22

    Article  PubMed  CAS  Google Scholar 

  48. Kempf M, Rolain JM (2012) Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 39: 105–14

    Article  PubMed  CAS  Google Scholar 

  49. Lepelletier D, Andremont A, Grandbastien B, National Working Group (2011) Risk of highly resistant bacteria importation from repatriates and travelers hospitalized in foreign countries: about the French recommendations to limit their spread. J Travel Med 18: 344–51

    Article  PubMed  Google Scholar 

  50. Giamarellou H, Antoniadou A, Kanellakopoulou K (2008) Acinetobacter baumannii: a universal threat to public health? Int J Antimicrob Agents 32: 106–19

    Article  PubMed  CAS  Google Scholar 

  51. Seifert H, Stefanik D, Wisplinghoff H (2006) Comparative in vitro activities of tigecycline and 11 other antimicrobial agents against 215 epidemiologically defined multidrug-resistant Acinetobacter baumannii isolates. J Antimicrob Chemother 58: 1099–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cattoir .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Cattoir, V., Leclercq, R. (2013). Évolution des résistances bactériennes en réanimation. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics