Skip to main content

Body Surface Potential Mapping

  • Reference work entry
Comprehensive Electrocardiology

1 32.1 Introduction

Body-surface potential maps (BSPMs) present the distribution of cardiac potentials on the chest surface during the cardiac cycle. They provide the spatial as well as the temporal and amplitude components of cardiac electrical activity, whereas the ECG scalar waveforms present only the time–voltage variation in a given lead point.

When an excitation wavefront spreads through atrial or ventricular heart muscle, it generates bioe1ectric currents, which distribute themselves to all conducting tissues in the body. This wavefront is a thin layer of heart muscle separating resting from excited areas. For the sake of simplicity, reference is made to the “classical” electrical model [1], according to which an excitation front is considered to be equivalent to a uniform dipole layer, where the dipole axis is everywhere orthogonal to the front; moreover, the tissue resistivity is supposed to be homogeneous. According to this model, currents arise from the anterior aspect of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plonsey, R., Bioelectric Phenomena. New York: McGraw-Hill, 1969, pp. 202.

    Google Scholar 

  2. Colli Franzone, P., L. Guerri, C. Viganotti, et al., Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ. Res., 1982;51: 330–346.

    Article  PubMed  CAS  Google Scholar 

  3. Taccardi, B., E. Macchi, R.L. Lux, et al., Effect of myocardial fiber direction on epicardial potentials. Circulation, 1994;90: 3076–3090.

    Article  PubMed  CAS  Google Scholar 

  4. Yan, G.X. and C. Antzelevitch, Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation, 1998;98: 1928–1936.

    Article  PubMed  CAS  Google Scholar 

  5. Antzelevitch, C., W. Shimitzu, G.X. Yan, et al., The M cells: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Electrophysiol., 1999;10:1124–1152.

    Article  CAS  Google Scholar 

  6. Waller, A.D., On the electromotive changes connected with the beat of the mammalian heart and of the human heart in particular. Philos. Trans. R. Soc. Lond. Ser. B, 1889;180: 169–194.

    Article  Google Scholar 

  7. Nahum, L.H., A. Mauro, H.M. Chernoff, and R.S. Sikand, Instantaneous equipotential distribution on surface of the human body for various instants in the cardiac cycle. J. Appl. Physiol., 1951;3: 454–464.

    PubMed  CAS  Google Scholar 

  8. Taccardi, B., Distribution of heart potentials on dog’s thoracic surface. Circ. Res., 1962;11: 862–869.

    Article  PubMed  CAS  Google Scholar 

  9. Taccardi, B., Distribution of heart potentials on the thoracic surface of normal human subjects. Circ. Res., 1963;12: 341–352.

    Article  PubMed  CAS  Google Scholar 

  10. Hoekema, R., G.J.H Uijen, D. Stilli, and A. van Oosterom, Lead system transformation of body surface map data. J. Electrocardiol., 1998;31: 71–82.

    Article  PubMed  CAS  Google Scholar 

  11. Abildskov, J.A., M.J. Burgess, P.M. Urie, R.L. Lux, and R.F. Wyatt, The unidentified information content of the electrocardiogram. Circ. Res., 1977;40: 3–7.

    Article  PubMed  CAS  Google Scholar 

  12. Abildskov, J.A., M.J. Burgess, R.L. Lux, R.F. Wyatt, and G.M. Vincent, The expression of normal ventricular repolarization in the body surface distribution of T potentials. Circulation, 1976;54: 901–906.

    Article  PubMed  CAS  Google Scholar 

  13. Corlan, A.D., R.S. Macleod, and L. De Ambroggi, The effect of intrathoracic heart position on ECG autocorrelation maps. J. Electrocardiol., 2005;38: 87–94.

    Article  PubMed  Google Scholar 

  14. Taccardi, B., Body surface distribution of equipotential lines during atrial depolarization and ventricular repolarization. Circ. Res., 1966;19: 865–878.

    Article  PubMed  CAS  Google Scholar 

  15. Taccardi, B., L. De Ambroggi, and C. Viganotti, Body-surface mapping of heart potentials, in The Theoretical Basis of Eleclrocardioiogy, C.V. Nelson and D.B. Geselowitz, Editors. Oxford: Clarendon, 1976, pp. 436–466.

    Google Scholar 

  16. Mirvis, D.M., Body surface distribution of electrical potential during atrial depolarization and repolarization. Circulation, 1980;62: 167–173.

    Article  PubMed  CAS  Google Scholar 

  17. Spach, M.S., R.C. Ban, R. Warrcn, D.W. Benson, A. Walston, and S.H. Edwards, Isopotential body surface mapping in subjects of all ages: emphasis on low-level potentials with analysis of the method. Circulation, 1979: 59: 805–821.

    Article  PubMed  CAS  Google Scholar 

  18. Spach, M.S., T.D. King, R.C., O.E. Barr Boaz, M.N. Morrow, and S. Hennan-Giddens, Electrical potential distribution surrounding the atria during depolarization and repolarization in the dog. Circ. Res., 1969;24: 857–873.

    Google Scholar 

  19. Eddlemon, C.O., V.J. Rucsta, L.G. Horan, and D.A. Brody, Distribution of heart potentials on the body surface in five normal young men. Am. J. Cardiol., 1968;21: 860–870.

    Article  PubMed  CAS  Google Scholar 

  20. Young, B.D., P.W. Macfarlane, and T.D.V. Lawrie, Normal thoracic surface potentials. Cardiovasc. Res., 1974;8: 187–193.

    Article  PubMed  CAS  Google Scholar 

  21. Green, L.S., R.L. Lux, C.W. Haws, R.R. Williams, S.C. Hunt, and M.J. Burgess, Effects of age, sex, and body habitus on QRS and ST- T potential maps of 1100 normal subjects. Circulation, 1985;71: 244–253.

    Article  PubMed  CAS  Google Scholar 

  22. Spach, M.S., W.P. Silberberg, J.P. Boineau, et al., Body surface isopotential maps in normal children, ages 4 to 14 years. Am. Heart. J., 1966;72: 640–652.

    Article  PubMed  CAS  Google Scholar 

  23. Liebman, J., C.W. Thomas, Y. Rudy, and R. Plonsey, Electrocardiographic body surface potential maps of the QRS of normal children. J. Electrocardiol., 1981: 14: 249–260.

    Article  Google Scholar 

  24. Tazawa, H and C. Yoshimoto, Electrocardiographic potential distribution in newborn infants from 12 hours to 8 days after birth. Am. Heart. J., 1969;78: 292–305.

    Article  PubMed  CAS  Google Scholar 

  25. Benson, D.W. Jr. and M.S. Spach, Evolution of QRS and ST-T-wave body surface potential distributions during the first year of life. Circulation, 1982;65: 1247–1258.

    Article  PubMed  Google Scholar 

  26. Durrer, D., R.Th van Dam, G.E. Freud, M.J. Janse, F.L. Meijler, and R.C. Arzbaecher, Total excitation of the isolated human heart. Circulation, 1970;41: 899–912.

    Article  PubMed  CAS  Google Scholar 

  27. Wyndham, C.R., M.K. Meeran, T. Smith, et al., Epicardial activation of the intact human heart without conduction defect. Circulation, 1979;59: 161–168.

    Article  PubMed  CAS  Google Scholar 

  28. Green, L.S., R.L. Lux, D. Stilli, C.W. Haws, and B. Taccardi, Fine details in body surface potential maps: accuracy of maps using a limited lead array and spatial and temporal data representation. J. Eleclrocardiol., 1987;20: 21–26.

    Article  CAS  Google Scholar 

  29. Hoekema, R., G.J. Uijen, and A. Van Oosterom, Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng., 2001;48: 551–559.

    Article  PubMed  CAS  Google Scholar 

  30. Kozmann G, R.L. Lux, and L.S. Green, Sources of variability in normal body surface potential maps. Circulation, 1989;79: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  31. Montague, T.J., E.R. Smith, D.A. Cameron, et al., Isointegral analysis of body surface maps: surface distribution and temporal variability in normal subjects. Circulation, 1981;63: 1166–1172.

    Article  PubMed  CAS  Google Scholar 

  32. Flaherty, J.T., S.D. Blumenschein, A.W. Alexander, et al., Influence of respiration on recording cardiac potentials. Isopotential surface-mapping and vectorcardiographic study. Am. J. Cardiol., 1967;20: 21–28.

    Article  PubMed  CAS  Google Scholar 

  33. Spach, M.S., R.C. Barr, D.W. Benson, A.H. Walston, R.B. Warren, and S.B. Edwards, Body surface low-level potentials during ventricular repolarization with analysis of the ST segment. Variability in normal subjects. Circulation, 1979;59: 822–36.

    Article  PubMed  CAS  Google Scholar 

  34. Corlan, A.D., P.W. Macfarlane, and L. De Ambroggi, Gender differences in stability of the instantaneous patterns of body surface potentials during ventricular repolarisation. Med. Biol. Eng. Comput., 2003;41: 536–542.

    Article  PubMed  CAS  Google Scholar 

  35. Abildskov, J.A., A.K. Evans, R.L. Lux, and M.J. Burgess Ventricular recovery properties and QRST deflection area in cardiac electrograms. Am. J. Physiol., 1981;239: H227–231.

    Google Scholar 

  36. Sano, T., Y. Sakamoto, M. Yamamoto, and F. Suzuki, The body surface U wave potentials, in Progress in Electrocardiology, P.W. Macfarlane, Editor. Tunbridge Wells: Pitman Medical, 1979, pp. 227–231.

    Google Scholar 

  37. L. De Ambroggi, E. Locati, T. Bertoni, E. Monza, and P.J. Schwartz, Body surface potentials during T-U interval in patients with the idiopathic long QT syndrome, in Clinical Aspects of Ventricular Repolarization, chapter 47, G.S. Butrous and P.J. Schwartz, Editors. London: Farrand Press, 1989, pp. 433–436.

    Google Scholar 

  38. L. De Ambroggi, M. Besozzi, and B. Taccardi, Aspetti qualitativi e quantitativi delle elettromappe cardiache nell’infarto miocardico anteriore e inferiore. G. Ital. Cardiol., 1974;4: 540–553.

    PubMed  Google Scholar 

  39. L. De Ambroggi, T. Bertoni, C. Rabbia, and M. Landolina, Body surface potential maps in old inferior myocardial infarction. Assessment of diagnostic criteria. J. Electrocardiol., 1986;19: 225–234.

    Article  PubMed  CAS  Google Scholar 

  40. L. De Ambroggi, T. Bertoni, M.L. Breghi, M. Marconi, and M. Mosca, Diagnostic value of body surface potential mapping in old anterior non-Q myocardial infarction. J. Electrocardiol., 1988;21: 321–329.

    Article  PubMed  Google Scholar 

  41. Flowers, N.C., L.G. Horan, and J.C. Johnson, Anterior infarctional changes occurring during mid and late ventricular activation detectable by surface mapping techniques. Circulation, 1976;54: 906–913.

    Article  PubMed  CAS  Google Scholar 

  42. Flowers, N.C., L.G. Horan, G.S. Sohi, R.C. Hand, and J.C. Johnson, New evidence for infero-posterior myocardial infarction on surface potential maps. Am. J. Cardiol., 1976;38: 576–581.

    Article  PubMed  CAS  Google Scholar 

  43. Vincent, G.M., J.A. Abildskov, M.J. Burgess, K. Millar, R.L. Lux, and R.F. Wyatt, Diagnosis of old inferior myocardial infarction by body surface isopotential mapping. Am. J. Cardiol., 1977;39: 510–515.

    Article  PubMed  CAS  Google Scholar 

  44. H. Pham-Huy, R.M. Gulrajani, F.A. Roberge, R.A. Nadeau, G.E. Mailloux, and P. Savard, A comparative evaluation of three different approaches for detecting body surface isopotential map abnormalities in patients with myocardial infarction. J. Electrocardiol., 1981;14: 43–55.

    Article  PubMed  CAS  Google Scholar 

  45. Toyama, S., K. Suzuki, M. Koyama, K. Yoshino, and K. Fujimolo, The body surface isopotential mapping of the QRS wave in myocardial infarction: comparative study of the scintigram with thallium-201. J. Electrocardiol., 1982;15: 241–247.

    Article  PubMed  CAS  Google Scholar 

  46. Ohta, T., A. Kinoshita, J. Ohsugi, et al., Correlation between body surface isopotential maps and left ventriculograms in patients with old inferoposterior myocardial infarction. Am. Heart J., 1982;104: 1262–1270.

    Article  PubMed  CAS  Google Scholar 

  47. Osugi, J. T. Ohta, J. Toyama, F. Takatsu, T. Nagaya, and K. Yamada, Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram. J. Electrocardiol., 1984;17: 55–62.

    Article  PubMed  CAS  Google Scholar 

  48. Hirai, M., T. Ohta, A. Kinoshita, J. Toyama, T. Nagaya, and K. Yamada, Body surface isopotential maps in old anterior myocardial infarction undetectable by 12-lead electrocardiograms. Am. Heart J., 1984;108: 975–982.

    Article  PubMed  CAS  Google Scholar 

  49. Kubota, I., M. Yamaki, K Ikeda, I. Yamaguchi, I. Tonooka, K. Tsuiki, and S. Yasui, Abnormalities of early depolarization in patients with remote anterior myocardial infarction and ventricular septal hypoperfusion. Diagnosis of septal MI BSM. J. Electrocardiol., 1990;23: 307–313.

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi, H., M. Hirai, A. Suzuki, et al., Correlation between various parameters derived from body surface maps and ejection fraction in patients with anterior myocardial infarction. J. Electrocardiol., 1993;26: 17–24.

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki, A., M. Hirai., H. Hayashi, et al. The ability of QRST isointegral maps to detect myocardial infarction in the presence of simulated left bundle branch block. Eur. Heart J., 1993;14: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  52. Medvegy, M., I. Preda, P. Savard, et al., A new body surface isopotential map evaluation method to detect minor potential losses in non-Q wave myocardial infarction. Circulation, 2000;101: 1115–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Medvegy, M., P. Savard, A. Pinter, et al., Simple, quantitative body surface potential map parameters in the diagnosis of remote Q wave and non-Q wave myocardial infarction. Can. J. Cardiol., 2004;20: 1109–1115.

    PubMed  Google Scholar 

  54. Corlan, A.D. and L. De Ambroggi, New quantitative methods of ventricular repolarization analysis in patients with left ventricular hypertrophy. Ital. Heart J., 2000;1: 542–548.

    PubMed  CAS  Google Scholar 

  55. Corlan, A.D., B.M. Horacek, and L. De Ambroggi, Prognostic value for ventricular tachicardia of indices of ventricular repolarization in patients with and without myocardial infarction. 32nd Congress of International Society of Electrocardiology. Folia Cardiol., 2005;12(Suppl C): 52.

    Google Scholar 

  56. Muller, J.E., P.R. Maroko, and E. Braunwald, Precordial electrocardiographic mapping. A technique to assess the efficacy of interventions designed to limit infarct size. Circulation, 1978;57: 1–18.

    Article  PubMed  CAS  Google Scholar 

  57. Maroko, P.R., P. Libby, J.W. Covell, B.E. So bel, J. Ross Jr, and E. Braunwald, Precordial S-T segment elevation mapping. An atraumatic method for assessing alterations in the extent of myocardial ischemic injury. Am. J. Cardiol., 1972;29: 223–230.

    Article  PubMed  CAS  Google Scholar 

  58. Muller, J.E., P.R. Maroko, and E. Braunwald, Evaluation of precordial electrocardiographic mapping as a means of assessing changes in myocardial ischemic injury. Circulation, 1975;52: 16–27.

    Article  PubMed  CAS  Google Scholar 

  59. Holland, R.P. and H. Brooks, TQ-ST segment mapping: critical review and analysis of current concepts. Am. J. Cardiol., 1977;40 110–129.

    Article  PubMed  CAS  Google Scholar 

  60. Surawicz, S., The disputed S-T segment mapping: is the technique ready for wide application in practice? Am. J. Cardiol., 1977;40: 137–140.

    Article  PubMed  CAS  Google Scholar 

  61. Mirvis, D.M., Body surface distributions of repolarization forces during acute myocardial infarction. I. Isopotential and isoarea mapping. Circulation, 1980: 62: 878–887.

    Article  PubMed  CAS  Google Scholar 

  62. Montague, T.J., E.R. Smith, C.A. Spencer, et al., Body surface electrocardiographic mapping in inferior myocardial infarction. Manifestation of left and right ventricular involvement. Circulation, 1983: 67: 665–673.

    Article  PubMed  CAS  Google Scholar 

  63. Menown, I.B.A., J. Allen, J. McC Anderson, and A.A.J. Adgey, Early diagnosis of right ventricular or posterior infarction associated with inferior wall left ventricular acute myocardial infarction. Am. J. Cardiol., 2000;85: 934–938.

    Article  PubMed  CAS  Google Scholar 

  64. McClelland, A.J.J., C.G. Owens, I.B. Menown, M. Lown, and A.A. Adgey, Comparison of 80-lead body surface map to physician and to 12-lead electrocardiogram in detection of acute myocardial infarction. Am. J. Cardiol., 2003;92: 252–257.

    Article  PubMed  Google Scholar 

  65. Maynard, S.J., I.B. Menown, G. Manoharan, J. Allen, J. McC Anderson, and A.A. Adgey, Body surface mapping improves early diagnosis of acute myocardial infarction in patients with chest pain and left bundle branch block. Heart, 2003;89: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  66. De Ambroggi, L., E. Macchi, B. Brusoni, and B. Taccardi, Electromaps during ventricular recovery in angina patients with normal resting ECG. Adv. Cardiol., 1977;19: 88–90.

    PubMed  Google Scholar 

  67. Stilli, D., E. Musso, E. Macchi, et al., Body surface potential mapping in ischemic patients with normal resting ECG. Can. J. Cardiol., 1986;Suppl A: 107–112A.

    Google Scholar 

  68. Kornreich, F., P. Block P, and D. Brismee, The missing waveform information in the orthogonal electrocardiogram (Frank leads). Ill. Computer diagnosis of angina pectoris from “maximal” QRS surface waveform information at rest. Circulation, 1974;49: 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  69. Spekhorst, H., A. Sippens-Groenewegen, G.K. David, M.J. Janse, and A.J. Dunning, Body surface mapping during percutaneous transluminal coronary angioplasty. QRS changes indicating regional myocardial conduction delay. Circulation, 1990;81: 840–849.

    Article  PubMed  CAS  Google Scholar 

  70. Shenasa, M., D. Hamel, J. Nasmith, et al., Body surface potential mapping of ST segment shift in patient undergoing percutaneous transluminal coronary angioplasty. J. Electrocardiol., 1993;26: 43–51.

    Article  PubMed  CAS  Google Scholar 

  71. Cahyadi, Y.H., N. Takekoshi, and S. Matsui, Clinical efficacy of PTCA and identification of restenosis: evaluation by serial body surface potential mapping. Am. Heart J., 1991;121: 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  72. Fox, K.M., A.P. Selwyn, and J.P.A. Shillingford, method for precordial surface mapping of the exercise electrocardiogram. Br. Heart J., 1978: 40: 1339–1343.

    Article  PubMed  CAS  Google Scholar 

  73. Fox, K., A. Selwyn, and J. Shillingford, Precordial electrocardiographic mapping after exercise in the diagnosis of coronary artery disease. Am. J. Cardiol., 1979;43: 541–546.

    Article  PubMed  CAS  Google Scholar 

  74. Mirvis, D.M., F.W. Keller Jr., J.W. Cox Jr., D.G. Zetlergren, R.F. Dowdie, and R.E. Ideker, Left precordial isopotential mapping during supine exercise. Circulation, 1977;56: 245–252.

    Article  PubMed  CAS  Google Scholar 

  75. Mirvis, D.M., Body surface distribution of exercise-induced QRS changes in normal subjects. Am. J. Cardiol., 1980: 46 988–996.

    Article  PubMed  CAS  Google Scholar 

  76. Miller, W.T. III, M.S. Spach, and R.B. Warren, Total body surface potential mapping during exercise: QRS- T-wave changes in normal young adults. Circulation, 1980;62: 632–645.

    Article  PubMed  Google Scholar 

  77. Simoons, M.L. and P. Block, Toward the optimal lead system and optimal criteria for exercise electrocardiography. Am. J. Cardiol., 1981;47: 1366–1374.

    Article  PubMed  CAS  Google Scholar 

  78. Wada, M., K. Kaneko, H. Teshigawara, et al., Exercise stress body surface isopotential map in patients with coronary artery disease: comparison with coronary angiographic and stress myocardial perfusion scintigraphic findings. Jpn. Circ. J., 1981;45: 1203–1207.

    Article  PubMed  CAS  Google Scholar 

  79. Yanowitz, F.G., G.M. Vincent, R.L. Lux, M. Merchant, L.S. Green, and J.A. Abildskov, Application of body surface mapping to exercise testing: S-T80 isoarea maps in patients with coronary artery disease. Am. J. Cardiol., 1982;50: 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  80. Blumenschein, S.D., M.S. Spach, J.P. Boineau, et al., Genesis of body surface potentials in varying types of right ventricular hypertrophy. Circulation, 1968;38: 917–932.

    Article  PubMed  CAS  Google Scholar 

  81. Sohi, G.S., E.W. Green, N.C. Flowers, O.F. McMartin, and R.R. Masdcn, Body surface potential maps in patients with pulmonic valvular and aortic valvular stenosis of mild to moderate severity. Circulation, 1979;59: 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  82. Holt, J.H. Jr, A.C.L. Barnard, and J.O. Kramer Jr., Multiple dipole electrocardiography: a comparison of electrically and angiographically determined left ventricu1ar masses. Circulation, 1978;57: 1129–1133.

    Article  PubMed  Google Scholar 

  83. Yamaki, M., K. Ikeda, I. Kubota, K. Nakamura, K. Hanashima, K. Tsuiki, and S. Yasui, Improved diagnostic performance on the severity of left ventricular hypertrophy with body surface mapping. Circulation, 1989;79: 312–323.

    Article  PubMed  CAS  Google Scholar 

  84. Kornreich, F., T.J. Montague, P.M. Rautahariu, M. Kavadias, M.B. Horacek, and B. Taccardi, Diagnostic body surface potential map patterns in left ventricular hypertrophy during PQRST. Am. J. Cardiol., 1989;63: 610–617.

    Article  PubMed  CAS  Google Scholar 

  85. Hirai, M., H. Hayashi, Y. Ichihara, et al., Body surface distribution of abnormally low QRST areas in patients with left ventricular hypertrophy. An index of repolarization abnormalities. Circulation, 1991;84: 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  86. Taccardi, B., L. De Ambroggi, and D. Riva, Chest maps of heart potentials in right bundle branch block. J. Electrocardiol., 1969;2: 109–116.

    Article  PubMed  CAS  Google Scholar 

  87. Sugenoya, J., S. Sugiyama, M. Wada, N. Niimi, H. Oguri, J. Toyama, and K. Yamada, Body surface potential distribution following the production of right bundle branch block in dogs: effects of breakthrough and right ventricular excitation on the body surface potentials. Circulation, 1977;55: 49–54.

    Article  PubMed  CAS  Google Scholar 

  88. Sugenoya, J., Interpretation of the body surface isopotential maps of patients with right bundle branch block. Determination of the region of the delayed activation within the right ventricle. Jpn. Heart J., 1978;19: 12–27.

    Article  PubMed  CAS  Google Scholar 

  89. Preda, I., I. Bukosza, G. Kozmann, Y.V. Shakin, A. Szèkely, and Z. Antalòczy, Surface potential distribution on the human thoracic surface in the left bundle branch block. Jpn. Heart J., 1979;20: 7–21.

    Article  PubMed  CAS  Google Scholar 

  90. Musso, E., D. Stilli, E. Macchi, et al., Body surface maps in left bundle branch block uncomplicated or complicated by myocardial infarction, left ventricular hypertrophy or myocardial ischemia. J. Electrocardiol., 1987;20: 1–20.

    Article  PubMed  CAS  Google Scholar 

  91. Sohi, G.S., N.C. Flowers, L.G. Boran, M.R. Sridharan, and J.C. Johnson, Comparison of total body surface map depolarization patterns of left bundle branch block and normal axis with left bundle branch block and left axis deviation. Circulation, 1983;67: 660–664.

    Article  PubMed  CAS  Google Scholar 

  92. Preda, I., Z. Antaloczy, I. Bukosza, G. Kozmann, and A. Szckely, New elcctrocardiological infarct criteria in the presence of left bundle branch block (surface mapping study), in Progress in Electrocardiology, P.W. Macfarlane, Editor. Tunbridge Wells: Pitman Medical, 1979, pp. 231–235.

    Google Scholar 

  93. Gallagher, J.J., A.R. Ticzon, A.G. Wallace, and J. Kasell, Activation studies fo1lowing experimental hemiblock in the dog. Circ. Res., 1974;35: 752–763.

    Article  PubMed  CAS  Google Scholar 

  94. Sohi, G.S. and N.C. Flowers, Effects of left anterior fascicular block on the depolarization process as depicted by total body surface mapping. J. Electrocardiol., 1980: 13: 143–152.

    Article  PubMed  CAS  Google Scholar 

  95. Yamada, K., J. Toyama, M. Wada, et al., Body surface isopotential mapping in Wolff-Parkinson-White syndrome. Noninvasive method to determine the location of the accessory atrioventricular pathway. Am. Heart J., 1975;90: 721–734.

    Article  PubMed  CAS  Google Scholar 

  96. De Ambroggi, L., B. Taccardi, and E. Macchi, Body-surface maps of heart potentials. Tentative localization of pre-excited areas in forty-two Wolff-Parkinson-White patients. Circulation, 1976;54: 251–263.

    Article  PubMed  CAS  Google Scholar 

  97. Spach, M.S., R.C. Ban, and C.F. Lanning, Experimental basis for QRS and T wave potentials in the WPW syndrome. The relation of epicardial to body surface potential distributions in the intact chimpanzee. Circ. Res., 1978;42: 103–118.

    Article  PubMed  CAS  Google Scholar 

  98. Iwa, T. and T. Magara, Correlation between localization of accessory conduction pathway and body surface maps in the Wolff-Parkinson. While syndrome. Jpn. Circ. J., 1981;45:1192–1198.

    Article  PubMed  CAS  Google Scholar 

  99. Benson, D.W. Jr., R. Sterba, J.J. Gallagher, A. Walston II, and M.S. Spach, Localization of the site of ventricular preexcitation with body surface maps in patients with Wolff-Parkinson-White: syndrome. Circulation, 1982;65: 1259–1268.

    Article  PubMed  Google Scholar 

  100. Kamakura, S., K. Shimomura, T. Ohe, M. Matsuhisa, and H. Yoyoshima, The role of initial minimum potential on body surface maps in predicting the site of accessory pathways in patients with Wolff-Parkinson-White syndrome. Circulation, 1986;74: 89–96.

    Article  PubMed  CAS  Google Scholar 

  101. Liebman, J., J.A. Zeno, B. Olshansky, et al., Electrocardiographic body surface potential mapping in the Wolff-Parkinson-White syndrome. Noninvasive determination of the ventricular insertion sites of accessory atrioventricular connections. Circulation, 1991;83: 886–901.

    Article  PubMed  CAS  Google Scholar 

  102. Dubuc, M., R. Nadeau, G. Tremblay, T. Kus, F. Molin, and P. Savard, Pace mapping using body surface potential maps to guide catheter ablation of accessory pathways in patients with Wolff-Parkinson-White syndrome. Circulation, 1993;87: 135–143.

    Article  PubMed  CAS  Google Scholar 

  103. Frank, E., Electric potential produced by two point current sources in a homogeneous conducting sphere. J. Appl. Physiol., 1952;23: 1225–1228.

    Article  Google Scholar 

  104. De Ambroggi, L. and B. Taccardi, Current and potential fields generated by two dipoles. Circ. Res., 1970;27: 901–911.

    Article  PubMed  Google Scholar 

  105. Knippel, M., D. Pioselli, F. Rovelli, L. Campolo, E. Panzeri, and A. Pellegrini, Tachicardie ribelli nella sindrome da preeccitazione: trattamento chirurgico di cinque casi. G. Ital. Cardiol., 1974;4: 657.

    PubMed  CAS  Google Scholar 

  106. Guiraudon G.M., G.J. Klein, S. Gulamhusein, et al., Surgery for Wolff-Parkinson-White syndrome: further experience with epicardial approach. Circulation, 1986;74: 525–529.

    Article  PubMed  CAS  Google Scholar 

  107. Sippens-Groenewegen, A., H. Spekhorst, N.M. van Hemel, et al., Body surface mapping of ectopic left and right ventricular activation. QRS spectrum in patients without structural heart disease. Circulation, 1990;82: 879–896.

    Article  CAS  Google Scholar 

  108. Sippens-Groenewegen, A., H. Spekhorst, N.M. van Hemel, et al., Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram. Circulation, 1993;88: 2290–2306.

    Article  CAS  Google Scholar 

  109. Sippens-Groenewegen, A, H. Spekhorst, N.M. van Hemel, et al., Value of body surface mapping in localizing the site of origin of ventricular tachycardia in patients with previous myocardial infarction. J. Am. Coll. Cardiol., 1994;24: 1708–1724.

    Article  CAS  Google Scholar 

  110. McClelland, A.J.J., C.G. Owens, C. Navarro, B. Smith, M.J.D. Roberts, J. Anderson, and A.A.J. Adgey, Usefulness of body surface maps to demonstrate ventricular activation patterns during left ventricular pacing and reentrant activation during ventricular tachycardia in men with coronary heart disease and left ventricular dysfunction. Am J Cardiol 2006;98: 591–596.

    Article  PubMed  Google Scholar 

  111. Lux, R.L., A.K. Evans, M.J. Burgess, R.F. Wyatt, and J.A. Abildskov, Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. Circ. Res., 1981;49: 186–196.

    Article  PubMed  CAS  Google Scholar 

  112. Bertoni, T., M.L. Breghi, M. Marconi, G. Bonifaccio, and L. De Ambroggi, Usefulness of the QRST integral maps to detect vulnerability to malignant arrhythmias in patients with old myocardial infarction, in Electrocardiology ’87, E. Schubert, Editor. Berlin: Akademie-Verlag, 1988, pp. 247–250.

    Google Scholar 

  113. Abildskow, J.A., L.S. Green, and R.L. Lux, Detection of disparate ventricular repolarization by means of the body surface electrocardiogram, inCardiac Electrophysiology and Arrhythmias, D.P. Zipes and J. Jalife, Editors. Orlando: Grune & Stratton, 1985, pp. 495–499.

    Google Scholar 

  114. Hubley-Kozey, C.L., B.L. Mitchell, M.J. Gardner, J.W. Warren, C.J. Penney, E.R. Smith, and B.M. Horacek, Spatial features in body-surface potential maps can identify patients with a history of sustained ventricular tachycardia. Circulation, 1995;92: 1825–1838.

    Article  PubMed  CAS  Google Scholar 

  115. Korhonen, P., T. Husa, T. Konttila, I. Tierala, M. Makijarvi, H. Vaananen, and L. Toivonen, Complex T-wave morphology in body surface mapping in prediction of arrhythmic events in patients with acute myocardial infarction and cardiac dysfunction. Europace 2009;11: 514–520.

    Article  PubMed  Google Scholar 

  116. Faugère, G., P. Savard, R.A. Nadeau, D. Derome, M. Shenasa, P.L. Page, and R. Guardo, Characterization of the spatial distribution of late ventricular potentials by body surface mapping in patients with ventricular tachycardia. Circulation, 1986;74: 1323–1333.

    Article  PubMed  Google Scholar 

  117. Shibata, T., I. Kubota, K. Ikeda, K. Tsuiki, and S. Yasui, Body surface mapping of high-frequency components in the terminal portion during QRS complex for the prediction of ventricular tachycardia in patients with previous myocardial infarction. Circulation, 1990;82: 2084–2092.

    Article  PubMed  CAS  Google Scholar 

  118. De Ambroggi, L., T. Bertoni, E. Locati, M. Stramba-Badiale, and P.J. Schwartz, Mapping of body surface potentials in patients with the idiopathic long QT syndrome. Circulation, 1986;74: 1334–1345.

    Article  PubMed  Google Scholar 

  119. De Ambroggi, L., M.S. Negroni, E. Monza, T. Bertoni, and P.J. Schwartz, Dispersion of ventricular repolarization in the long QT syndrome. Am. J. Cardiol., 1991;68: 614–620.

    Article  PubMed  Google Scholar 

  120. De Ambroggi, L., E. Aimè, C. Ceriotti, M. Rovida, and S. Negroni, Mapping of ventricular repolarization potentials in patients with arrhythmogenic right ventricular dysplasia: principal component analysis of the ST-T waves. Circulation, 1997;96: 4314–4318.

    Article  PubMed  Google Scholar 

  121. Peeters, H.A., A. SippensGroenewegen, B.A. Schoonderwoerd, E.F. Wever, C.A. Grimbergen, R.N. Hauer, and E.O. Rohles de Medina, Body-surface QRST integral mapping. Arrhythmogenic right ventricular dysplasia versus idiopathic right ventricular tachycardia. Circulation, 1997;95: 2668–2676.

    Article  PubMed  CAS  Google Scholar 

  122. Antzelevitch, C., P. Brugada, M. Borggrefe, et al., Brugada syndrome: report of the second consensus conference. Circulation, 2005;111: 659–670.

    Article  PubMed  Google Scholar 

  123. Bruns, H.J., L. Eckardt, C. Vahlhaus, E. Schulze-Bahr, W. Haverkamp, M. Borggrefe, G. Breithardt, and T. Wichter, Body surface potential mapping in patients with Brugada syndrome: right precordial ST segment variations and reverse changes in left precordial leads. Cardiovasc. Res., 2002;54: 58–66.

    Article  PubMed  CAS  Google Scholar 

  124. Eckardt, L., H.J. Bruns, M. Paul, P. Kirchhof, E. Schulze-Bahr, T. Wichter, G. Breithardt, M. Borggrefe, and W. Haverkamp, Body surface area of ST elevation and the presence of late potentials correlate to the inducibility of ventricular tachyarrhythmias in Brugada syndrome. J. Cardiovasc. Electrophysiol., 2002;13: 742–749.

    Article  PubMed  Google Scholar 

  125. Hisamatsu, K., K.F. Kusano, H. Morita, S. Takenaka, S. Nagase, K. Nakamura, T. Emori, H. Matsubara, and T. Ohe, Usefulness of body surface mapping to differentiate patients with Brugada syndrome from patients with asymptomatic Brugada syndrome. Acta Med. Okayama, 2004;58: 29–35.

    PubMed  Google Scholar 

  126. Lux, R.L., C.R. Smith, R.F. Wyatt, and J.A. Abildskov, Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans. Biomed. Eng., 1978;25: 270–276.

    Article  PubMed  CAS  Google Scholar 

  127. Taccardi, B., C. Viganotti, E. Macchi, and L. De Ambroggi, Relationships between the current field surrounding an isolated dog heart and the potential distribution on the surface of the body. Adv. Cardiol., 1976;16: 72–76.

    PubMed  CAS  Google Scholar 

  128. Abildskov, J.A., M.J. Burgess, K. Millar, G.M. Vincent, R.F. Wyatt, and R.L. Lux, Distribution of body surface potentials with experimentally-induced multiple cardiac generators. Adv. Cardiol., 1974;10: 69–76.

    Google Scholar 

  129. Spach, M.S., R.C. Barr, C.F. Lanning, and P.C. Tucek, Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation, 1977;55: 268–278.

    Article  PubMed  CAS  Google Scholar 

  130. Spach, M.S., R.C. Barr, and C.F. Lanning, Experimental basis for QRS and T wave potentials in the WPW syndrome. The relation of epicardial to body surface potential distributions in the intact chimpanzee. Circ. Res., 1978;42: 103–118.

    Article  PubMed  CAS  Google Scholar 

  131. Ramsey, M. III, R.C. Barr, and M.S. Spach, Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog. Circ. Res., 1977;41: 660–672.

    Article  PubMed  Google Scholar 

  132. Barr, R.C. and M.S. Spach, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res., 1978;42: 661–675.

    Article  PubMed  CAS  Google Scholar 

  133. Colli Franzone, P., L. Guerri, B. Taccardi, and C. Viganotti, A regularization method for inverse electrocardiology applied to data from an isolated dog heart experiment, in Modern Electrocardiology, Z. Antaloczy, Editor. Amsterdam: Excerpta Medica, 1978, pp. 75–80.

    Google Scholar 

  134. Oster, H.S., B. Taccardi, R.L. Lux, P.H. Ershler, and Y. Rudy, Noninvasive electrocardiographic imaging. Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation, 1997;96: 1012–1024.

    Article  PubMed  CAS  Google Scholar 

  135. Burnes, J.E., B. Taccardi, and Y. Rudy, A Noninvasive electrocardiographic imaging modality for cardiac arrhythmias. Circulation, 2000;102: 2151–2158.

    Article  Google Scholar 

  136. Burnes, J.E., B. Taccardi, P.H. Ershler, and Y. Rudy, Noninvasive electrocardiographic imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol., 2001;38: 2071–2078.

    Article  PubMed  CAS  Google Scholar 

  137. Ghanem, R.N., J.E. Burnes, A.L. Waldo, and Y. Rudy, Imaging dispersion of myocardial repolarization, II. Noninvasive reconstruction of epicardial measures. Circulation, 2001;104: 1306–1312.

    Article  PubMed  CAS  Google Scholar 

  138. Ramanatham, C., R.N. Ghanem, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmias. Nat. Med., 2004;10: 422–428.

    Article  CAS  Google Scholar 

  139. Ghanem, R.N., P. Jia, C. Ramanatham, K. Ryu, A. Markowitz, and Y. Rudy, Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm, 2005;2: 339–354.

    Article  PubMed  Google Scholar 

  140. Intini, A., R.N. Goldstein, P. Jia, C. Ramanathan, K. Ryu, B. Giannattasio, R. Gilkeson, B.S. Stambler, P. Brugada, W.G. Stevenson, Y. Rudy, and A.L. Waldo, Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2: 1250–1252.

    Article  PubMed  Google Scholar 

  141. Wang, Y., P.S. Cuculich, P.K. Woodard, B.D. Lindsay, and Y. Rudy, Focal atrial tachycardia after pulmonary vein isolation: Noninvasive mapping with electrocardiographic imaging (ECGI). Heart Rhythm 2007;4: 1081–1084.

    Article  PubMed  Google Scholar 

  142. Van Dam, P.M., T.F. Oostendorp, A.C. Linnenbank, and A. van Oosterom, Non-invasive imaging of cardiac activation and recovery. Ann Biomed Eng 2009;37: 1739–1756.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

de Ambroggi, L., Corlan, A.D. (2010). Body Surface Potential Mapping. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_32

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics