Skip to main content

High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Plant Metabolites in Brassicaceae

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 860))

Abstract

The Brassicaceae family comprises a variety of plant species that are of high economic importance as ­vegetables or industrial crops. This includes crops such as Brassica rapa (turnip, Bok Choi), B. oleracea (cabbages, broccoli, cauliflower, etc.), and B. napus (oil seed rape), and also includes the famous genetic model of plant research, Arabidopsis thaliana (thale cress). Brassicaceae plants contain a large variety of interesting secondary metabolites, including glucosinolates, hydroxycinnamic acids, and flavonoids. These metabolites are also of particular importance due to their proposed positive effects on human health. Next to these well-known groups of phytochemicals, many more metabolites are of course also present in crude extracts prepared from Brassica and Arabidopsis plant material.

High-pressure liquid chromatography coupled to mass spectrometry (HPLC-MS), especially if combined with a high mass resolution instrument such as a QTOF MS, is a powerful approach to separate, detect, and annotate metabolites present in crude aqueous-alcohol plant extracts. Using an essentially unbiased procedure that takes into account all metabolite mass signals from the raw data files, detailed information on the relative abundance of hundreds of both known and, as yet, unknown semipolar metabolites can be obtained. These comprehensive metabolomics data can then be used to, for instance, identify genetic markers regulating metabolic composition, determine effects of (a)biotic stress or specific growth conditions, or establish metabolite changes occurring upon food processing or storage.

This chapter describes in detail a procedure for preparing crude extracts and performing comprehensive HPLC-QTOF MS-based profiling of semi-polar metabolites in Brassicaceae plant material. Compounds present in the extract can be (partially or completely) annotated based on their accurate mass, their MS/MS fragments and on other specific chemical characteristics such as retention time and UV-absorbance spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jahangir, M., Kim, H.K., Choi, Y.H., and Verpoorte, R. (2009) Health-affecting compounds in Brassicaceae. Comprehensive Reviews in Food Science and Food Safety 8, 31–43.

    Article  CAS  Google Scholar 

  2. Olsen, H., Aaby, K., and Borge, G.I.A. (2009) Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 57, 2816–2825.

    Article  CAS  Google Scholar 

  3. Malíková, J., Swaczynová, J., Kolár, Z., and Strnad, M. (2008) Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 69, 418–426.

    Article  PubMed  Google Scholar 

  4. Keurentjes, J.J.B., Fu, J.Y., De Vos, R.C.H., Lommen, A., Hall, R.D., Bino, R.J., Van der Plas, L.H., Jansen, R.C., Vreugdenhil, D., and Koornneef, M. (2006). The genetics of plant metabolism. Nature Genetics 38, 842–849.

    Article  PubMed  CAS  Google Scholar 

  5. Bennett, R.N., Rosa, E.A.S., Mellon, F.A., and Kroon, P.A. (2006) Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). J. Agric. Food Chem. 54, 4005–4015.

    Article  PubMed  CAS  Google Scholar 

  6. Jeffery, E.H., Brown, A.F., Kurilich, A.C., Keck, A. S., Matusheski, N., Klein, B.P., and Juvik, J. A. (2003). Variation in content of bioactive components in broccoli. Journal of Food Composition and Analysis 16, 323–330.

    Article  CAS  Google Scholar 

  7. Kurilich, A.C., Jeffery, E.H., Juvik, J.A., Wallig, M.A., and Klein, B.P. (2002) Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. J. Agric. Food Chem. 50, 5053–5057.

    Article  PubMed  CAS  Google Scholar 

  8. http://www.meta-phor.eu.

  9. Ferreres, F., Sousa, C., Pereira, D. M., Valentao, P., Taveira, M., Martins, A., Pereira, J. A., Seabra, R. M., and Andrade, P. B (2009) Screening of antioxidant phenolic compounds produced by in vitro shoots of Brassica oleracea L. var. Costata DC. Combinatorial Chemistry & High Throughput Screening 12, 230–240.

    Article  CAS  Google Scholar 

  10. Lopez-Berenguer, C., Carvajal, M., Moreno, D.A., and Garcia-Viguera, C. (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J. Agric. Food Chem. 55, 10001–10007.

    Article  PubMed  CAS  Google Scholar 

  11. Verkerk, R. and Dekker, M. (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J. Agric. Food Chem. 52, 7318–7323.

    Article  CAS  Google Scholar 

  12. De Vos, R.C.H., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J. and Hall R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2, 778–791.

    Article  PubMed  Google Scholar 

  13. Bottcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D. and Clemens, S. (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol. 147, 2107–2120.

    Article  PubMed  Google Scholar 

  14. Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K. and Saito, K. (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J. 57, 555–577.

    Article  PubMed  CAS  Google Scholar 

  15. Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., De Groot, J., Van Beek, T. A., Vervoort, J. and De Vos, R. C. H. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 141 1205–1218.

    Article  PubMed  CAS  Google Scholar 

  16. Von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjohann, L., Schmidt, J., Scheel, D. and Clemens, S. (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134, 548–559.

    Article  Google Scholar 

  17. Rochfort, S.J., Trenerry, V.C., Imsic, M., Panozzo, J. and Jones, R. (2008) Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochemistry 69, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  18. Mellon, F.A., Bennett, R.N., Holst, B. and Williamson, G. (2002) Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: Performance and comparison with LC/MS/MS methods. Anal. Biochem. 306, 83–91.

    Article  PubMed  CAS  Google Scholar 

  19. Fait, A., Hanhineva, K., Beleggia, R., Dai, N., Rogachev, I., Nikiforova, V. J., Fernie, A. R. and Aharoni, A. (2008) Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 148, 730–750.

    Article  PubMed  CAS  Google Scholar 

  20. Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Karenlampi, S., and Aharoni, A. (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria x ananassa) flowers. Phytochemistry 69, 2463–2481.

    Article  PubMed  CAS  Google Scholar 

  21. Malitsky, S., Blum, E., Less, H., Venger, I., Elbaz, M., Morin, S., Eshed, Y., and Aharoni, A. (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 148, 2021–2049.

    Article  PubMed  CAS  Google Scholar 

  22. Bino R.J., De Vos, R.C.H., Lieberman, M., Hall, R.D., Bovy, A., Jonker, H. H., Tikunov, Y., Lommen, A., Moco, S. and Levin, I. (2005) The light-hyperresponsive high pigment-2 dg mutation of tomato: alterations in the fruit metabolome. New Phytol. 166, 427–438.

    Article  PubMed  CAS  Google Scholar 

  23. Moco, S., Capanoglu, E., Tikunov, Y., Bino, R. J., Boyacioglu, D., Hall, R. D., Vervoort, J. and De Vos, R. C. H. (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 58, 4131–4146.

    Article  PubMed  CAS  Google Scholar 

  24. Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall R.D. and De Vos R. C. H. (2008) Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 56, 964–973.

    Google Scholar 

  25. http://www.metalign.wur.nl.

  26. http://www.applied-maths.com/genemaths/genemaths.htm.

Download references

Acknowledgements

This work was financed by the EU Framework VI program project META-PHOR (2006-FOODCT-036220) and additional financing from the Centre for Biosystems Genomics and The Netherlands Metabolomics Centre, both initiatives under the auspices of the Netherlands Genomics Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ric C. H. De Vos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

De Vos, R.C.H., Schipper, B., Hall, R.D. (2011). High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Plant Metabolites in Brassicaceae . In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics