Skip to main content

Systemic Gene Transfer to Skeletal Muscle Using Reengineered AAV Vectors

  • Protocol
  • First Online:
Muscle Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 709))

Abstract

Gene therapy of musculoskeletal disorders warrants efficient gene transfer to a wide range of muscle groups. Reengineered adeno-associated viral (AAV) vectors that selectively transduce muscle tissue following systemic administration are attractive candidates for such applications. Here we provide examples of several lab-derived AAV vectors that display systemic tissue tropism in mice. Methods to evaluate the efficiency of gene transfer to skeletal muscle following intravenous or isolated limb infusion of AAV ­vectors in mice are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guglieri, M., Straub, V., Bushby, K., Lochmüller, H. (2008) Limb-girdle muscular dystrophies. Curr Opin Neurol 21, 576–584.

    Article  PubMed  CAS  Google Scholar 

  2. Deconinck, N., Dan, B. (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36, 1–7.

    Article  PubMed  Google Scholar 

  3. Farrar, M.A., Johnston, H.M., Grattan-Smith, P., Turner, A., Kiernan, M.C. (2009) Spinal muscular atrophy: molecular mechanisms. Curr Mol Med 9, 851–862.

    Article  PubMed  CAS  Google Scholar 

  4. Meriggioli, M.N., Sanders, D.B. (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8, 475–490.

    Article  PubMed  CAS  Google Scholar 

  5. Aldenhoven, M., Sakkers, R.J., Boelens, J., de Koning, T.J., Wulffraat, N.M. (2009) Musculoskeletal manifestations of lysosomal storage disorders. Ann Rheum Dis 68, 1659–1665.

    Article  PubMed  CAS  Google Scholar 

  6. Mah, C., Cresawn, K.O., Fraites, T.J. Jr, Pacak, C.A., Lewis, M.A., Zolotukhin, I., Byrne, B.J. (2005) Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther 12, 1405–1409.

    Article  PubMed  CAS  Google Scholar 

  7. Duan, D. (2008) Myodys, a full-length ­dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Curr Opin Mol Ther 10, 86–94.

    PubMed  CAS  Google Scholar 

  8. Muir, L.A., Chamberlain, J.S. (2009) Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 25, e18.

    Article  Google Scholar 

  9. Zhu, T., Zhou, L., Mori, S., Wang, Z., McTiernan, C.F., Qiao, C., Chen,C., Wang, D.W., Li, J., Xiao, X. (2005) Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112, 2650–2659.

    Article  PubMed  CAS  Google Scholar 

  10. Tang, Y., Cummins, J., Huard, J., Wang, B. (2010) AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 10, 395–408.

    Article  PubMed  CAS  Google Scholar 

  11. Pastores, G.M. (2008) Musculoskeletal complications encountered in the lysosomal storage disorders. Best Pract Res Clin Rheumatol 22, 937–947.

    Article  PubMed  CAS  Google Scholar 

  12. Mah, C., Pacak, C.A., Cresawn, K.O., Deruisseau, L.R., Germain, S., Lewis, M.A., Cloutier, D.A., Fuller, D.D., Byrne, B.J. (2007) Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotypes 1 vectors. Mol Ther 15, 501–507.

    Article  PubMed  CAS  Google Scholar 

  13. Asokan, A., Conway, J.C., Phillips, J.L., Li, C., Hegge, J., Sinnott, R., Yadav, S., DiPrimio, N., Nam, H.J., Agbandje-McKenna, M., McPhee, S., Wolff. J., Samulski, R.J. (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28, 79–82.

    Article  PubMed  CAS  Google Scholar 

  14. Choi, V.W., Asokan, A., Haberman, R.A., Samulski, R.J. (2007) Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol Chapter 16 Unit 16.25.

    Google Scholar 

  15. Grieger, J.C., Choi, V.W., Samulski, R.J. (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1, 1412–1428.

    Article  PubMed  CAS  Google Scholar 

  16. Zolotukhin, S., Potter, M., Zolotukhin, I., Sakai, Y., Loiler, S., Fraites, T.J. Jr, Chiodo, V.A., Phillipsberg, T., Muzyczka, N., Hauswirth, W.W., Flotte, T.R., Byrne, B.J., Snyder, R.O. (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28, 158–167.

    Article  PubMed  CAS  Google Scholar 

  17. Rabinowitz, J.E., Rolling, F., Li, C., Conrath, H., Xiao,W., Xiao, X., Samulski, R.J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76, 791–801.

    Article  PubMed  CAS  Google Scholar 

  18. Pañeda, A., Vanrell, L., Mauleon, I., Crettaz, J.S., Berraondo, P., Timmermans, E.J., Beattie, S.G,, Twisk, J., van Deventer, S., Prieto, J., Fontanellas, A., Rodriguez-Pena, M.S., Gonzalez-Aseguinolaza, G. (2009) Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders. Hum Gene Ther 20, 908–917.

    Article  PubMed  Google Scholar 

  19. Davidoff, A.M., Ng, C.Y., Zhou, J., Spence, Y., Nathwani, A.C. (2003) Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 102, 480–488.

    Article  PubMed  CAS  Google Scholar 

  20. Hagstrom, J.E., Hegge, J., Zhang, G., Noble, M., Budker, V., Lewis, D.L., Herweijer, H., Wolff, J.A. (2004) A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10, 386–398.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Phillips, J.L., Hegge, J., Wolff, J.A., Samulski, R.J., Asokan, A. (2011). Systemic Gene Transfer to Skeletal Muscle Using Reengineered AAV Vectors. In: Duan, D. (eds) Muscle Gene Therapy. Methods in Molecular Biology, vol 709. Humana Press. https://doi.org/10.1007/978-1-61737-982-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-982-6_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-981-9

  • Online ISBN: 978-1-61737-982-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics