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Chapter 23

Modelling Emerging Viral Epidemics for Public Health 
Protection

Steve Leach and Ian Hall 

Abstract

Mathematical models when applied to infectious disease data can provide extremely useful insights into 
the possible future impacts of potential emerging epidemics and how they might be best controlled or 
mitigated. Modelling, which is like any other hypothesis-driven approach, aims to develop a better under-
standing of biological phenomena. However, diseases processes generally, and particularly those related 
to transmission, will in many cases be imperfectly understood or too complex to systematically describe, 
so models will necessarily be simplifications of the overall system. It is essential, therefore, that models are 
designed carefully and used appropriately. Key to this is identifying what specific questions a model might 
be expected to answer and what data is available to inform the model. A particular type of model might 
be fine for one particular situation but highly inappropriate for another. It is also important to appreciate 
and communicate what simplifications and assumptions have had to be made and how this might affect 
the robustness of the modelling results. It is also particularly important to understand that models 
frequently make what can be hidden assumptions about underlying processes because of the way they 
have been constructed and these assumptions also need to be carefully considered and made explicit, 
particularly for non-expert audiences. This chapter, therefore, provides a brief introduction to some of 
these aspects of epidemic modelling for those that might be less familiar with them.

Key words: Epidemic modelling, Emerging infectious diseases, Epidemiology, Transmission, 
Pandemics, Deliberate release, Policy and planning, Preparedness, Prevention and control, Public 
health interventions, Isolation/quarantine, Vaccination, Real-time modelling

The application of mathematics within the sciences has a long and 
interesting history and has been used most extensively in the 
modelling of physical and chemical systems to better understand 
their underlying processes and test hypotheses. Biological systems 
have probably seen comparatively less use of mathematical 
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modelling, due mainly to the systems under consideration being 
less subject to well-defined “governing laws” (such as often apply 
at some level in physics and chemistry) and the difficulties of 
observing biological systems in sufficiently well-controlled and 
comprehensively understood contexts. There is, nevertheless, a 
considerable literature associated with the use of mathematical 
modelling in the context of public health and infectious diseases, 
with early investigations exemplified by Bernoulli (1) (in relation 
to smallpox inoculation), Ross (2) (in relation to malaria trans-
mission), and Kermack and McKendrick (3) (in relation to epi-
demics more generally). In historically more familiar areas, 
mathematical investigations have often been related to childhood 
vaccination programmes and combating sexually transmitted 
infections (4, 5). For the sake of brevity, the extensive background 
literature related to this subject will not be covered in depth here; 
but there is a selection of excellent reviews provided in the bibli-
ography (4–10). Similarly, other modelling applications that have 
also received increasing attention recently include those that aim 
to provide ongoing advice in the face of such outbreaks; these 
often being referred to as “real-time” epidemic modelling, “now-
casting,” or “forecasting,” depending on context (11–14). Other 
more recent applications of note, however, have related to pro-
viding contingency planning advice ahead of time for potentially 
high impact outbreaks of emerging infectious diseases (for which 
we have little current or certain knowledge) arising from acts of 
bioterrorism or from more natural pandemics, e.g. smallpox, pan-
demic influenza, and SARS (15–24). Consequently, it is on some 
of these latter areas of application to contingency planning for 
emerging infections that this chapter will mainly focus. This chap-
ter is also not intended to be a comprehensive review of the litera-
ture nor a technical treatise on how to set-up or use mathematical 
models. Rather, it is intended to provide a short introduction and 
pragmatic overview to assist the familiarisation of non-specialist 
audiences engaged in public health protection. It will thus avoid 
too much technical description.

First, what is a mathematical model? Models are generally consid-
ered as a representation of a system based on our knowledge of 
what we understand to be its constituent processes and the rela-
tionships that operate between them. Ideally, such representa-
tions should be formulated in such a way that it is possible to 
generalise about the system’s behaviour in every (or most) instance 
where it is observed. A mathematical model “simply” achieves 
this representation through one or more mathematical equations. 

2. The Benefits  
of Using Models
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Necessarily, models, including mathematical ones, will be 
simplifications of the system under consideration. However, this 
situation is no different to that which pertains with the types of 
conceptual models that more generally underlie the development, 
testing, and potential predictive power of scientific hypotheses. 
Mathematical models in this context are neither intrinsically no 
better nor no worse than any other used in science, as long as they 
are equally supported by data; though they do have some very 
particular and useful properties. Mathematical models do, never-
theless, often have a vocabulary and notation that is not necessar-
ily easily accessible; and may also come with an air of precision 
that some might find difficult to accept. It is key then that the 
(simplifying) assumptions that mathematical models make are 
made explicit and understandable to more general audiences. 
This is often best achieved in a collaborative and multidisciplinary 
environment, including not only the mathematics, but also, for 
example, the epidemiology, disease and public health expertise.  
It is also often beneficial to engage with all the constituencies that 
might come to be dependent on the modelling, including those 
involved in risk management and risk communication. Indeed, 
this is well recognised in the broader sphere of risk assessment, 
and probably most well developed and articulated in the infec-
tious diseases field for food-borne infection risk assessments, as 
per relevant guidelines of the World Health Organisation (WHO), 
Food and Agriculture Organisation of the United Nations (FAO), 
the World Organisation for Animal Health (OIE), and the Codex 
Alimentarius (25, 26).

Mathematical models do have huge potential for gaining a better 
understanding of the complex biological and epidemiological sys-
tems that underlie emerging infectious disease threats and thus 
enabling better prospects for their control. Before examining 
such models in detail, however, it is worth considering what 
makes a good mathematical model, both in relation to its use and 
its limitations. Keeling and Rohani (5) identify accuracy, transpar-
ency, and flexibility as important aspects that require careful con-
sideration, which can frequently be at odds with each other. 
Accuracy suggests an ability to quantitatively reproduce observed 
epidemic data in a consistent fashion (suggesting that a model has 
predictive power), whereas transparency suggests that a model is 
well understood in terms of how its various constituent parts 
interact to generate the resulting epidemic dynamics. The tension 
here is that more complex (and often less transparent) models 
which seek to capture the increasingly detailed biology of the 
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underlying system(s) are generally more likely to better capture 
their quantitative dynamics (and thus seem more accurate). Put 
simply, the more parameters/factors that are included in a model, 
the more likely it is that there will be sufficient parameters that 
can be (independently) tuned that it is ultimately bound to more 
accurately reproduce at least one observed epidemic, whether for 
entirely the right reasons or not. They therefore become increas-
ingly more difficult to understand in terms of how the interactions 
of the various constituent parts impact on the dynamics and the 
degree to which the model is able to be generalised. Complex 
models can also pose other challenges in terms of our ability to 
parameterise them satisfactorily and in the computational power 
required to operate them. Contemporary computational capabili-
ties, however, now often make the latter less limiting than does 
our dearth of knowledge and data concerning diseases and their 
natural history and transmission, and thus their ability to be satis-
factorily parameterised.

Finally, flexibility refers to the relative ease with which models 
can be adapted to new public health problems. Simpler models 
can be inherently more flexible than more complex ones, since the 
latter are more likely to have features that are specific to a particu-
lar disease and set of circumstances, several of which may not be 
relevant to the new problem to be addressed. Possibly, more 
importantly, they may also lack key features that become crucial. 
One possibility would be to have one enormously complex model 
that contains all possibilities in terms of disease natural history (i.e. 
all the factors that impact on the progression of the disease both 
within individuals and populations, such as incubation period, 
viral titres in body fluids, infectivity, etc.), public health interven-
tions, and so forth, with the potential to turn features on and off 
as required. The problems with this approach would be: first, the 
unnecessary computational overhead that such a model would 
always be carrying for any problem that required investigation; 
second, it is unlikely that every eventuality will have been foreseen 
at the outset, ultimately requiring the model to be rewritten any-
way; third, the potential for over-reliance on “black-box”-type 
approaches where the underlying model is implicitly trusted but 
not transparent, and the tendency to be tempted to use a model 
that is far more complex than is warranted given what little might 
be known about a particular emerging infectious disease problem. 
A more reasonable approach is to have a toolbox of models of dif-
fering complexity that can be used for the question(s) at hand and 
a cadre of modelling experts to operate them. Thus, in the spirit of 
Ockham’s razor (27), a good model is the simplest one (or set) 
that is suitable to the purposes to which it is to be put, having the 
right balance of accuracy, transparency, and flexibility, and one that 
has been constructed with due reference to what is known and 
preferably measurable.
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Mathematical representations (models) of systems can take a variety 
of forms and degrees of complexity, from simply descriptive or 
explanatory ones concerning a single or a few variables to ones 
descriptive of more complex multivariable systems. The latter, 
when suitably validated, have potentially important predictive 
capabilities and frequently provide insights that are not directly 
observable or immediately intuitive (23). They also make it pos-
sible to undertake experiments (in silico) such as the optimisation 
of public health interventions that would otherwise be impossible 
for reasons of, for example, expense, practicality (e.g. no contem-
porary outbreak/data/evidence) or ethics (e.g. one cannot gen-
erally deliberately infect individuals or communities).

At one end of the scale of complexity, popular statistical approaches 
to data analysis and interpretation could be considered as model-
ling. They provide a more systematic and useful description of a 
series of observations than simply scanning of a long list of num-
bers that demonstrates that a parameter in question (e.g. height 
of mature individuals) varies. If the statistical approach is a para-
metric one, then there will also be some underlying assumption 
about the form the data takes. For example, the fitting of a nor-
mal, lognormal, or Gamma probability distribution (i.e. ones that 
have defined parameters such as mean, variance, etc.; hence para-
metric), might imply that there are underlying processes that pro-
duce such a distributional form. With care, for many biological 
processes, it is often a reasonable assumption that there is an 
expected distribution to which the data could conceivably con-
form. In the case of the normal distribution the assumption is 
that whatever is being measured is subject to multi-factorial (but 
additive) influences; for example, many genetic loci and environ-
mental influences acting in concert, each with their own “distri-
bution” in relation to their action on what is being measured. 
Together these interactions produce a joint distribution that is 
closely approximated by a normal distribution by virtue of the 
central limit theorem. However, phenomena in nature often pro-
duce distributions that are right skewed and with zero probability 
of values of zero or less. Such systems are generally more closely 
represented by log normal distributions, where the underlying 
assumption is that the many factors contribute multiplicatively 
rather than additively. Further detail on probability distributions 
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and their applications are outside of the scope of this chapter and 
can be found elsewhere (28, 29). However, the more complex 
models that will be discussed later are often built around multiple 
components that are parameterised as probability distributions. 
For example, the curves in Fig. 5 and the solid line in Fig. 6 illus-
trate the types of skewed distribution that are often used to better 
describe the observed lengths of, for example, the incubation or 
symptomatic periods of infectious diseases, particularly when 
these have been sampled from a large enough number of infected 
individuals in a population to arrive at a sufficiently robust result. 
Thus, the length of any one individual’s incubation period will 
differ from those of others with some durations (those closer to 
the average) more frequently observed than others. Clearly, incu-
bation periods of less than zero would be meaningless and use of 
the lognormal avoids these. Further, the lognormal, and other 
potentially skewed distributions such as the Gamma, capture well 
the distribution of the duration of the positive values, probably 
because incubation periods depend on a wealth of multi-factorial 
influences (not always well understood) acting multiplicatively, such 
as the differing pre-existing genetic backgrounds and immuno-
logical susceptibilities of individuals to particular viruses, their age 
and underlying fitness in terms of any pre-existing co-morbidities, 
and their nutritional and socio-economic conditions; and any 
variations in the pathogenicity of the particular virus or microor-
ganism, the dose of virus received by an individual and the route 
of infection. Incubation periods can vary enormously between 
different infectious agents both in terms of average incubation 
period and the degree to which this varies between individuals; 
for example, the mean (and variances) for influenza, SARS coro-
navirus (SARS CoV), and smallpox have been estimated to be 
about 1.3 days (0.5 days2), 4.6 days (15.9 days2), and 11.6 days 
(3.34  days2), respectively. Appropriately parameterising such 
aspects can be hugely important to modelling the dynamics (e.g. 
the rate and extent of spread) of particular infections and the 
potential impact that different public health control options 
might have. The extent to which they can be accurately reflected 
in more complex models can be extremely important and will be 
discussed later.

If the observed data is a series of measurements that varies 
systematically over time (i.e. a time series) or varies systematically 
with some other factor that has also been measured (e.g. infec-
tiousness with respect to virus levels in body fluids), then we can 
also use regression analysis to statistically interpret such relation-
ships. With regression, the model that is quite often imposed is a 
linear one (Y = aX + b), where Y is the observed data and X the 
(independent) variable; with a and b the slope and intercept 
parameters, respectively. A simple example concerns crude analysis 
of the smallpox outbreaks that resulted from importations into 
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Europe from abroad between 1959 and 1973, when the disease 
had otherwise been eradicated from that continent. With these 
importations, and the outbreaks that quite frequently resulted, 
the greater the delay in their initial notification to the health ser-
vices, the greater the likely number of cases at the end of an out-
break (30). Whilst this is entirely logical and to be expected, the 
clear mathematical relationship that was observed between these 
two variables was striking. Although for illustration here a linear 
regression model (Fig. 1, solid line) has been fitted, it is worth 
pointing out that the data on the y-axis has actually been expressed 
as log10 of the observations. This is because the relationship 
between the untransformed variables is in fact an exponential one, 
with the log transform simply linearising this for ease of explor-
atory data analysis. The reason for this relationship is that the 
longer an outbreak is allowed to progress unimpeded (with there 
being delays in public health response) the more time it will have 
had to grow exponentially. Indeed, epidemics often show early 
exponential growth (see later). Because this relationship was so 
striking it was possible to derive a reasonable estimate of the 
transmissibility of smallpox based on an equivalent regression 
model (31) (Fig. 1).

There are also analytically tractable response forms other than 
linear and exponential that might be appropriate (e.g. quadratic, 
logistic); right through to full non-linear regression. The fitting 
process that underpins regression relies on assumptions about the 
probability distribution of the measurement error (e.g. that the 
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Fig. 1. Fitting a linear regression model to infectious disease data showing the strong 
relationship between the extent to which smallpox outbreaks expanded as delays in the 
public health response increased. Regression model: y = 0.0397x + 0.5519, where y is 
the average size of outbreaks and x is the delay.
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deviation of the observed data from the modelled prediction is 
explained by the normal distribution introduced above). Fuller 
explanation of regression models is outside the scope of this chap-
ter and more detail can be found elsewhere (32). However, 
another familiar example of a relationship (model) that is highly 
non-linear which often has great utility in virology and bacteriol-
ogy is that between the dose of infectious agent received by an 
individual (often an experimental animal) and their subsequent 
probability of infection or death. Usually the probability of 
becoming infected increases as the dose increases, with the non-
linear trend to some extent linearised by expressing the probabil-
ity of infection or death as a probit transformation (33) plotted 
against the log of the dose. On the basis of such analyses two key 
parameters are determined that can be extremely useful when 
developing more complex models. The first is the infectious dose 
(ID50) or lethal dose (LD50) that gives a 50% probability that an 
individual might get infected or die, respectively. The second is 
the extent to which this changes on the probit scale with every 
log increase in the dose of organisms administered (i.e. the slope). 
The infectious dose (50%) varies considerably for different micro-
organisms and can be important to parameterise appropriately 
when considering epidemic models. That for Bacillus anthracis 
spores, for example, might be of the order of 104 spores, whilst 
that for Francisella tularensis or smallpox virus has been estimated 
to be of the order of 10 cells/virions or so.

Moving on to more complex infectious disease models, there 
is an extensive ecological and epidemiological modelling litera-
ture that underpins this subject (see reviews in bibliography and 
references therein). The simplest models of practical utility for 
emerging infectious diseases are possibly best immediately under-
stood through their schematic descriptions; as the so-called SIR 
(Fig. 2a), or SIS models (4, 5).

To better understand these, first imagine simply a disease that 
infects a person for 1 day only and in that time they infected two 
other people. This means that if we start on day 1 with one case, 
on day 2 we will have two more; and on day 3 four, day 4 eight, 
etc., until on day 31 we have more than one billion cases. This 
process can be represented mathematically by Eq. 1.

	 b g b g +
+ = + - = + - 1

1 0[1 ]n
n n n nI I I I I 	 (1)

Note that in the simple example given above (g) gamma (the 
reciprocal of the number of days between infection of a case and their 
recovery [assuming they are equally infectious throughout] which 
may be inferred from the generation time or the serial interval 
data [defined later]) = 1 and (b) beta (number of people infected 
by each case per day) = 2; and I is the number infected, and n denotes 
the day of the outbreak. Whilst clearly this approach provides only 
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a toy model, this process of exponential growth is often observed 
(to a first approximation) in real-world epidemic data at the start 
of outbreaks, as in the smallpox example above. However, com-
mon sense tells us that epidemics will not spread that quickly and 
unchecked through the entire world’s population. One reason for 
this is human contact behaviour. In the scenario above, for exam-
ple, one of the four cases occurring on day 3 would have had a 
chance of meeting the same person as one of the other cases (i.e. 
shared contacts in social groups). Further, in a population of lim-
ited size the steadily increasing number of infectious cases would 
dictate that quite soon some will tend to meet other infected cases 
(or previously infected and immune individuals) rather than sus-
ceptible individuals. Consequently, the number of new contacts 
that result in new infections at each generation must depend both 
on a contact rate and a probability that the contacts will be with 
individuals still susceptible to infection.

This phenomenon can be captured by simply dividing a closed 
population into two compartments; S, meaning that proportion of 
the population that is (s)usceptible to infection and I, that part that 
is (i)nfected and (i)nfectious (note that no distinction is made 
between these two). This process may be represented by the 
differential Eq. 2 (note in this instance cases are assumed to become 
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Fig. 2. Three different schematic representations of disease transmission models, from more a simplistic one (a) to a 
more complex one involving more disease states (b) to one involving a range of public health interventions, in this case 
for smallpox (c), (see text).
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susceptible again after infection wanes) and solved explicitly as in 
Eq. 3, taking a logistic form, where t is time and I0 the number 
infected at time 0, and I(t) the number infected at time t.

	
d

( ) [1 ( )] ( ) ( )
d

I t I t I t I t
t

b g= - - 	 (2)

	
[ ]

0

0 0

( )
( )

[ ]exp ( )
I

I t
I I t

b g
b b g b b g

-
=

+ - - - -
	 (3)

Whilst mathematically tractable such a model is still a fairly limited 
representation for most diseases, particularly for those diseases 
where cases become immune to further infection, at least for a 
time (or die), for example, influenza, smallpox, and SARS CoV. 
To account for this the schema can be extended by dividing the 
population into three compartments or classes: with S, and I, as 
defined above and R, that part that is (r)emoved (i.e. immune or 
dead). The distinction between immunity and death is generally 
of no importance to the dynamics of the model unless consid-
ered over a time period much longer than the timescale of the 
disease or a single epidemic. If longer timescales are important to 
the problem under investigation (as with assessing vaccination 
programmes for vaccine-preventable childhood diseases such as 
measles and mumps) then disease mortality has to be factored 
into the schema, along with deaths from all causes and also new 
births, the latter providing new susceptibles through the relevant 
birth rate (4). Factoring such things as mortality and hospitalisa-
tion into models can clearly also be important from other per-
spectives, for example, when estimating the impacts on society 
and health-care systems. Clearly, the severity of diseases such as 
smallpox with a case fatality ratio estimated to be in the range of 
30% would result in rather different set of consequences com-
pared to a disease such as pandemic influenza with its usually 
much lower estimates for the case fatality ratio (only up to about 
2.4% in the main wave of the 1918/9 pandemic and much lower 
in the 1957 and 1968 ones).

Such simple SIR models have been used to great effect and can 
be expressed most simply as a series of differential Eq. 4 that describe 
the time-dependent transition of proportions of the population 
through these stages (e.g. from I to R at rate gamma in Eq. 4, 
where beta and gamma have same definitions as in Eqs. 1 and 2).

	

d
( ) ( ) ( )

d
d

( ) ( ) ( ) ( )
d
d

( ) ( )
d

S t S t I t
t

I t S t I t I t
t

R t I t
t

b

b g

g

= -

= -

=

	 (4)
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Such models are also dependent on that part of the population 
that is infectious being able to transmit infection (dotted line, 
Fig. 2a) to that part that is susceptible at some probability or rate 
(e.g. between I and S with transmission rate beta in Eq. 4, beta 
being a composite of the number of contacts made per day and 
the probability that transmission occurs given that a contact is 
susceptible). As noted above, this rate will change over time as it 
depends both on the number of infected individuals and the num-
ber of susceptible individuals, as well as the more “intrinsic” trans-
missibility of the infection. The latter is often described by a 
“fundamental” parameter of many epidemic models, usually 
referred to as the basic reproductive number or ratio, designated 
R0, defined in Eq. 5,

	 = -
b
g0 01R I 	 (5)

The simplest understanding of this parameter is the average 
number of secondary cases caused by each primary case within an 
entirely susceptible population (and in the absence of public 
health interventions). The effective reproductive ratio, RE (Eq. 6), 
on the other hand, has a similar description except that the level 
of susceptibility to infection within the population and the effects 
of public health intervention are taken fully into account. Thus, 
RE changes over time as the relative proportions of the infectious 
and susceptible population change over the course of the epidemic 
(Fig. 3),
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	 0E

S
R SR

b
g

= = 	 (6)

Even though the SIR Eq. 4 is not amenable to explicit temporal 
resolution, they are amenable to approximation in certain phases of 
the epidemic (e.g. the early exponential growth discussed above) 
and numerical solution. Some of the further mathematical analysis 
that is possible on this Eq. 4 can provide fundamental insights into 
aspects of the expected severity and prospects for control of epi-
demics. The key parameter here is R0 (Eq. 5), which can be shown 
to be the parameter that defines the stability of the system (i.e. 
whether the disease is likely to become a major public health prob-
lem or not); since if it is greater than 1, the introduction of cases of 
disease into a population will likely cause an epidemic, whereas if it 
is less than one, the introductions will fade-out. Thus, from this 
parameter one can estimate the proportion of a population (or the 
population number if this proportion is converted by reference to 
the population size) that might need to be immunised to control 
an infection (V, i.e. that proportion that is required to bring RE 
below 1 – Eq. 7, Fig. 4), and also, one may derive (4), the likely 
final size of an uncontrolled epidemic in a closed population (Eq. 8, 
Fig. 4), where R∞ is the final attack size.

	 0

0

1R
V

R
-

= 	 (7)

	 0 01 exp .R S R R
¥¥- = - 	 (8)

All of this assumes that the various approximations to real life that 
the model employs (some of which will be covered later) still 
allow meaningful interpretation of the model output in relation 
to the real setting in question. Sufficiently often these approxima-
tions do not completely compromise the results and allow useful 
observations to be made. A simple corollary of the relationship in 
Fig. 4 regarding final attack size is that in the range of R0 between 
1 and 2, one can relatively robustly infer R0 from final attack size, 
and vice versa. This range of R0 between 1 and 2 is relevant to the 
case of past pandemics of influenza, such that useful comparisons 
can sometimes be made between these two measures. For R0 
greater than 2, however, the discrimination between final attack 
sizes for different R0 becomes much less and often within the 
bounds of the error in the data that might be available to inde-
pendently determine final attack size or R0. Therefore, for dis-
eases such as smallpox (R0 in the range 3–6), SARS CoV (R0 
about 3–4) and measles (with one of the highest estimated R0’s 
for an infectious disease, variously reported to be in the range 12 
to in excess of 20), the inference of R0 from final attack size would 
likely be much less clear. It is probably worth mentioning in pass-
ing that the estimates of R0 given above vary, even for a single 
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disease, because they will depend on time, place, and context of 
the study where R0 was inferred. R0 will be influenced, for exam-
ple, depending as it does on contact rates (see above) by factors 
such as overcrowding and socio-economic conditions. Even for 
diseases with lower R0 such as pandemic influenza, assessments 
are actually made more complicated by the fact that a good pro-
portion of cases won’t seek medical attention and others may well 
become infected and to some degree infectious whilst remaining 
asymptomatic. These individuals do not therefore get counted 
among the clinical cases (and so the final attack size may not actu-
ally be directly observed), though they might be observed through 
changes in their immune status if this was to be measured by sero-
logical surveys; or, more fundamentally, as a consequence of care-
ful interpretation of the underlying epidemic dynamics (34). It is 
thought, for example, that maybe only about 60% of individuals 
infected with influenza actually develop reportable clinical symp-
toms, whilst by comparison cases of smallpox and SARS CoV are 
rarely, if ever considered, to remain completely asymptomatic fol-
lowing infection, which makes the epidemiology somewhat easier 
to interpret in these latter cases.

For the many problems that are not amenable to such explicit 
treatment one must turn to the numerical solution of these equa-
tions. As before, one must define the initial conditions (i.e. what 
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proportion of individuals are infected, immune or susceptible at 
the point of introduction of the infectious agent) and we also 
require a so-called equation of state, S + I + R = 1. Typically, for a 
new or emerging infectious disease initial conditions are given such 
that no people are immune (R at time 0 = 0) and only a small pro-
portion are infected; though other situations can be readily investi-
gated by adjusting the proportions for S, I, and R accordingly. 
Numerical schemes essentially make the continuous differential 
equations (like Eqs. 2 and 4) discrete with respect to time so that 
they become difference equations, the precise form dependent on 
the accuracy of the solution demanded. Difference equations intro-
duce a time step h and the accuracy of the numerical solution to the 
exact one is inversely dependent on this time step. The choice of 
numerical scheme is dependent on the form of the equations being 
approximated and the available computational resources. Essentially, 
however, the initial conditions will be substituted into the equa-
tions (at time 0) and the results calculated for the first time step. 
These results are then fed back into the equations as the starting 
conditions for the next time step and so on until the results for suf-
ficient time steps have been calculated to describe the required 
course of the epidemic. Further discussion of such methods (e.g. 
Euler, Runge-Kutta, etc.) can be found elsewhere (35).

The mathematical formulation of the SIR schema, based on the 
series of differential equations described above, makes a number 
of implicit assumptions that need to be appreciated. The first is 
the often criticised one of homogeneous mixing such that an 
infected individual has an equal probability of infecting any one 
susceptible individual in the population as any other. As will be 
discussed later, this simplification can be addressed by introduc-
ing population heterogeneities, such as the probabilities of differ-
ent age classes mixing with one another or the different 
geographical limits that might reasonably apply to population 
mixing over longer distances.

Differential equation sets are also deterministic (“clock-
work”), that is, each time the model is run from the same starting 
conditions and with the same parameters it will produce exactly 
the same results across each and every time step for the entire 
“epidemic.” They are also continuous which means that they will 
allow fractional people to be counted among the cases. Real epi-
demics, however, are prone to stochasticity, based on individual 
events that occur probabilistically, which if neglected can present 
a major issue, particularly at the start and end of epidemics. For 
example, although the average number of secondary cases caused 
by each primary case (i.e. R0) might be observed to be around 2, 
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say, for pandemic influenza, for any one individual case this might 
vary from 0 to some rather larger number than 2 depending on 
circumstances (e.g. the number of contacts the particular case 
might make with others, the concentration of virus a specific indi-
vidual sheds and for how long). Thus for diseases with a R0 closer 
to 1, say between 1 and 3 for diseases such as pandemic influenza, 
pneumonic plague or SARS CoV, a one off introduction of a sin-
gle case of disease into a population would have a much greater 
chance of causing no further cases and not starting/contributing 
to an epidemic than for diseases where the R0 is much larger, such 
as measles, where there would be a much greater probability of 
one imported case causing at least one further infection. Diseases 
with low R0 therefore have a greater chance of experiencing what 
is termed stochastic fade-out and this can be extremely important 
to capture appropriately in models depending on what is being 
investigated. Similarly, as will be discussed in greater detail later, 
whilst there might be some concept of an average infectious 
period (i.e. length of time in I), the duration of such disease states 
will also vary between cases. Individual-level variability in features 
such as infectious and/or incubation period has already been dis-
cussed previously and where relevant can often be best captured 
by modelling them with lognormal or Gamma distributions. 
Differential equation-based models can be formulated within sto-
chastic frameworks to take such individual-level variability into 
account, along with allowing for the concept of whole, discrete 
individuals rather than fractional ones to be enabled. The ways in 
which such formulations can be achieved (5) are beyond the scope 
of this chapter, but it is worth pointing out that the resulting 
models will usually have to be run large numbers of times (often 
100–1000 s depending on the number and range of uncertainty 
on parameters that has to be stochastically varied) to generate a 
whole family of epidemics in order to ensure that a representative 
selection is collected. These then need to be statistically analysed 
to better understand the problem being investigated. All of this 
often increases the computational cost of such models.

It may be sufficient for the purposes of a model to simply employ 
the concept of an average generation time or serial interval; the 
latter being the observed time between onset of specific symptoms 
in one case and the onset of the same symptoms in the subsequent 
cases caused by that case; whilst the former is the time between the 
infection of a primary case and the infection of each of its second-
ary cases (36, 37). In the models discussed so far observational 
data that are related to these intervals are often used as a surrogate 
for the period of time spent in the I class, whilst at the same time 
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naively assuming people are equally infectious throughout this 
period. This relatively unrealistic assumption of uniform infec-
tiousness over time can, however, be solved reasonably well by 
introducing more infectious compartments into the model schema, 
each of which can be attributed different infectiousness, I1, I2, I3, 
and so forth. Thus for influenza it might be appropriate to have an 
I1 class to cover the first 24 h following symptom onset that is 
more infectious with individuals then passing into subsequent I2, 
I3, etc. classes of defined duration that are progressively less infec-
tious. Influenza infectiousness is thought to peak very abruptly 
and then decline somewhat more slowly (19, 38).

The simple SIR model structure (Fig. 2a), whether deterministic 
or stochastic, can be made more realistic in other ways. For exam-
ple, as discussed previously, individuals do not necessarily prog-
ress from being susceptible to being infectious (and symptomatic) 
without some intervening latent period. Accepting this poten-
tially alters the observed dynamics of epidemic models in ways 
that may or may not be important to the specific questions being 
asked (5, 36, 39). For diseases such as smallpox, for example 
(Fig. 2b), it might be important to consider five separate disease 
classes and extend the differential equation set accordingly (34); 
though there are many ways in which the following aspects of the 
disease natural history might be reasonably represented with 
fewer or even greater numbers of classes; for example, to better 
capture the time varying infectiousness discussed above (5). Thus, 
there could be a period between infection and the first non-
specific symptoms (often referred to as the (E)xposed class), then 
the period with non-specific symptoms (the (P)rodromal period), 
followed by the (I)nfectious and (R)ecovered classes. It can be 
important to capture the natural history in this way for diseases 
such as smallpox, which have both prodromal and infectious peri-
ods, since in the case of smallpox both are infectious (signified by 
the two dotted lines in the Fig. 2b) but with the latter much more 
so than the former, according to our knowledge and analysis of 
previous smallpox outbreaks (30, 40).

The specific timings of events at an individual level can be highly 
critical, especially the relative infectiousness through the infec-
tious period, which is rarely, if ever, uniform. This can be 
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important; for example, in relation to modelling public health 
interventions, which if applied early and before the peak infec-
tiousness of each case will clearly have more impact on the control 
of the onward spread of an infection than if applied later. In which 
case it is important to better understand and appropriately cap-
ture the disease natural history in models (Figs. 5 and 6). Thus, 
when modelling pandemic influenza, it is thought that if antiviral 
drugs (such as the neuraminidase inhibitors) are to have much 
impact on the onward transmission of disease (through minimis-
ing viral replication and viral loads in the secretions, as opposed 
to simply ameliorating the course of infection and reducing the 
probability of hospitalisation and death (41) the drugs probably 
need to be administered within (a challenging) 12–24 h of symp-
tom onset because of the extremely short infectious period of 
influenza and the rapid rise and fall of viral titres and infectious-
ness (19, 22). Whilst serial interval times are often more easily 

Fig. 5. Timelines of infection for two different viral diseases, given roughly to scale.
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Fig. 6. Two different distributions with the same mean that models sometimes use for 
representing the duration of the infectious period, one exponential (dashed line) the 
other lognormal (solid line).
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observed than some other intervals in the disease process, they 
are in themselves convolutions of the other intervals (periods), or 
parts of them. For example, as discussed previously, there is usu-
ally a period between the initial acquiring of infection by a case to 
the onset of symptoms (incubation period) and to the onset of 
infectiousness (latent period), which may or may not be cotermi-
nous periods and will vary between persons and the disease 
(Fig. 5). This distinction between incubation and latent period 
can be extremely important since diseases that become infectious 
before the onset of symptoms can make them much harder, or 
impossible, to control through the traditional means of isolating 
cases and quarantining contacts. Thus, diseases that can be asymp-
tomatic at points during infection or relatively mild overall, or 
chronic or recurring such as influenza, HIV, or tuberculosis can 
theoretically be much harder to control by these means than dis-
eases such as SARS CoV or smallpox (18). In this respect, the 
eradication of SARS CoV from the human population was highly 
dependent on (and blessed by), amongst other things, the fact 
that cases were generally not significantly infectious before show-
ing symptoms and had a reasonably long incubation and infec-
tious periods. Incubation/latent periods can often be followed by 
other defined periods that are relevant to the disease natural  
history, including: a symptomatic period, during some part of 
which cases are usually their most infectious (infectious period) – 
though, infectiousness is likely to vary over time, often rising 
rapidly to a peak and tailing off more gradually. For some infections 
there may also be a prodromal period (involving non-specific dis-
ease symptoms) between the incubation and symptomatic periods 
that might also be infectious (Fig. 5).

At its simplest, the parts of these periods that contribute to, 
for example, the serial interval are the incubation period of a sec-
ondary case and some part of the infectious period of the primary 
case. The latter being the time until a relevant contact has been 
made between persons such as to permit the transmission of infec-
tion, which will also depend on other factors, such as variation in 
contact rates with the rest of the population. Deconvoluting gen-
eration time distributions into their constituent distributions (or 
attempting the inference of the other distributions) can prove 
problematic to achieve in a statistically rigorous sense. Details of 
this are outside of the scope of this overview but such problems 
and their implications for epidemic models are important given 
what has been discussed already concerning modelling the pros-
pects of ameliorating or controlling (or not) outbreaks of diseases 
such pandemic influenza, SARS CoV, and smallpox. Technical 
reflections on this subject have been discussed in depth elsewhere 
(36, 39).

Thus, although it might seem trivial to try to obtain the dis-
tributions of the different periods by direct observation, actual 
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measurement of some of these processes and their distributions 
can be problematic. For example, quite often the point in time 
when infection occurs (necessary for the estimation of generation 
interval and incubation period) is usually not observed in popula-
tion-based studies for perfectly understandable and pragmatic 
reasons, except in those rarer situations where one person can 
reliably be known to have had only one contact with a single case 
and at a single point in time. Even then the precision of such 
observations is often limited to being differentiated to the nearest 
whole day. This will obviously matter more for diseases that have 
shorter generation/serial interval times: for example, a day can be 
a relatively long time in the course of influenza compared to 
smallpox (Fig. 5). Depending on the natural history of the dis-
ease, and possibly the prevalence of the disease in the rest of the 
community, such observations can be more or less feasible. For 
diseases such as smallpox or SARS CoV that possibly have a better 
marked clinical course in relation to infectiousness it is easier to 
define the timing of contacts with cases in relation to disease 
symptoms, as long as the disease is not so prevalent in the rest of 
the community that it is difficult to identify infected contacts 
uniquely with respect to the case that was responsible for them. 
Smallpox was also a disease for which contact tracing and quaran-
tine was an important part of controlling outbreaks and so obser-
vations of the timings of contacts were more routinely made and, 
happily, sometimes recorded for posterity (30). Useful observa-
tional data can be more difficult to obtain for other diseases where 
the course might be either more rapid (influenza) and/or less 
well defined (influenza, measles, rubella) with respect to the infec-
tiousness of cases in relation to their symptoms, and especially 
when the number of infections more widely in the community 
might also be quite high (such as for influenza) so as to poten-
tially “mask” unique infection events. This problem can some-
times be overcome to some extent; for example, in the case of 
influenza this has been achieved by rigorous statistical analysis of 
studies undertaken in defined contexts, such as households where 
the time between subsequent infections can be more easily 
inferred (11), or volunteer challenge studies (38) where the time 
of infection is known.

The differential equation sets described above also hold an implicit 
assumption that the residence times in the I class, although hav-
ing the correct mean duration, are exponentially distributed (they 
exhibit so-called Markovian dynamics because the result at a given 
point in time depends only on the state at the previous time as no 
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other history is encapsulated in the model) as opposed to something 
more realistic (e.g. lognormal or Gamma). As can be seen from 
Fig. 6, this means that although the average residence time in I is 
correct from both distributions (i.e. same mean for exponential 
and lognormal), an appreciable proportion of the residence times 
for the exponential will be unrealistically short (left hand end of 
distribution – dashed), and another proportion will be unrealisti-
cally long (right hand tail of distribution – dashed).

The consequences of adopting such simplifying assumptions 
may matter to a greater or lesser extent but is essentially a math-
ematical convenience to improve the tractability and computa-
tional ease of the problem. This assumption can, however, at a 
computational cost, be revised in a number of ways that allows 
the utilisation of more reasonable distributions. The different 
means of achieving this are largely beyond the scope of this chap-
ter (5, 42). However, one simple approach is to adjust the schema 
described earlier and to arbitrarily break the I class down into 
more than one compartment (and therefore introducing another 
equation and term for each class). The use of several sequential 
equations and classes rather than one, with each class having an 
implicit exponential distribution for residence time, will overall 
combine to approximate a Gamma distribution (more like that in 
Fig. 6, solid line) that will also be closer in form to the distribu-
tion observed in the data.

The transmission process can also itself be implemented mathe-
matically in more than one way, for example, as a probability or 
rate determined by the mean estimate of the quantity R0 or, as 
with the residence times in each of the disease classes mentioned 
above, as a more realistic distribution based on prior observations. 
This is sometimes represented as an “offspring distribution” (10), 
and often given as a distribution that closely follows observed 
transmission events. This approach usually better represents the 
variability that is observed in the transmission process. This is 
because, depending on the mathematical implementation, simple 
usage of the concept of average transmission, R0, and, for exam-
ple, implementing this as the mean of a Poisson process, can 
underestimate the potential impacts of low probability but high 
transmission events (“super-spreaders” or “super-spreading 
events”), and also the high probability but low transmission 
events. That is, a more reasonable distribution to use would prob-
ably have more dispersion than the Poisson that frequently gets 
used in mathematical formulations. This is explored in Fig.  7, 
which relates to observational data on pneumonic plague (31), 
which is transmissible person to person at relatively low average 
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probability (R0 = c. 1.3). However the data (vertical bars), which 
are the frequencies (y-axis) with which infected individuals have 
been observed to infect one, two, three, and so on susceptible 
individuals (x-axis) can be seen to be better reproduced by a more 
dispersed geometric distribution given by f(x) = p(1 − p)x, where x 
is the number of secondary cases per primary case, f(x) is the fre-
quency, and p = 0.43 (solid line) than a Poisson with an equivalent 
mean (dotted line). It can be seen from Fig.  7 that there is a 
greater probability than would be predicted from the Poisson of 
no transmission occurring from an infected case, and a greater 
probability of 4 or more secondary cases occurring from a pri-
mary case.

The former observation means that if a Poisson was used in a 
model then there would be a somewhat smaller probability of an 
epidemic dying out if there were only a very few initial cases, and 
the latter observation would mean that there would be a smaller 
probability in the model of generating larger outbreaks purely by 
chance (31).

The model structures discussed so far are useful in deriving a bet-
ter understanding of some aspects of “free-fall” epidemic dynam-
ics, but have not really been discussed so far in relation to assessing 
the potential impacts of public health interventions, except in 
other than fairly simple ways. For example, as described already, 
in relation to calculating the proportion of the whole population 
that might need to be vaccinated in order to stop transmission 

12. Introducing 
More Realistic 
Descriptions  
of Public Health 
Controls

0 1 2 43 5 6 7 8 9 10

F
re

qu
en

cy

0

0.1

0.2

0.3

0.4

0.5

Number of secondary cases arising
from individually observed cases

Fig. 7. Offspring distribution for pneumonic plague. Data are the vertical bars; the geo-
metric distribution (solid line) is a better fit to the data than the Poisson (dashed line).



456 Leach and Hall

and eradicate a disease. As can be seen simplistically from Fig. 4, 
the higher the estimate of R0 for a particular infectious disease the 
higher the proportion of the population that needs to be vacci-
nated to create sufficient “herd immunity” to prevent transmis-
sion; that is to bring RE below one. For a pandemic of influenza 
with an R0 value of 1.6, for example, this could be as little as 
around 37% of the population (43), but for smallpox with an R0 
value in the range of 3–6 this might need to be 67–80% or more, 
respectively (15). As stated previously R0 can of course depend on 
local conditions and can vary geographically; often being higher 
if transmission is promoted by overcrowding and lower socio-
economic conditions. A similar approach could also be simplisti-
cally extended to the concept of isolation or quarantine, to 
estimate what proportion of infected cases and contacts of cases 
have to be found and completely isolated before they themselves 
become infectious. This number is similar to the critical vaccina-
tion coverage if a simplistic view of case finding, contact tracing 
and efficient quarantine is assumed (5). Model realism, and there-
fore complexity, can, however, be extended to investigate public 
health interventions more directly by allowing other states within 
the model schema and equations. For example, Fig. 2c shows an 
extension of the earlier SEPIR structure for smallpox to allow for 
a whole range of public health interventions, such as mass vacci-
nation of some proportion of the population, case finding/
reporting, contact tracing, targeted vaccination, and so forth. 
The equations exemplified earlier would of course have to be 
extended to cover these other compartments. All of these pro-
cesses of course have to be understood and parameterised accord-
ingly; one example being what proportion of the contacts of cases 
might reasonably be expected to be found and at what point in 
the course of their disease. This might be based on previously 
recorded experiences with the disease or with a disease of similar 
natural history. For diseases such as smallpox, pneumonic plague, 
SARS CoV, and bacterial meningitis, for example, the finding of 
potentially infected contacts can be relatively efficient and can 
often be in excess of 80%, reflecting the relative ease of finding 
the majority of those who have had sufficient contact with a case 
to facilitate disease transmission. Those predominantly getting 
infected tending to be those in (or visiting between) households 
and those in health-care facilities (see later for a discussion of 
transmission of pneumonic plague in different settings and con-
texts). Alternatively, or more likely additionally, robust analysis to 
parameter uncertainty (sensitivity analysis) would be undertaken. 
Hence, the parameters related to public health controls, as well as 
those related to disease natural history, would be systematically 
varied within ranges considered to be plausible, ensuring appro-
priate sensitivity and/or scenario analysis was performed [e.g. as 
in the case of the smallpox studies referred to earlier (20, 23)].
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Returning to the assumption of homogeneous mixing referred to 
earlier; this is clearly not an entirely reasonable one, and for some 
purposes may considerably invalidate the use of a model depend-
ing on its application. If sufficient is known concerning the con-
tact patterns of groups of individuals, or at least the contexts in 
which transmission occurs relative to one another, then such fea-
tures can usefully be incorporated. This can be achieved either 
through splitting the population into a number of specific groups 
that share particular defined features (metapopulation models) or 
indeed into the more computationally demanding concept of 
individuals, each of which will have some generalised set of (mea-
surable) features that are to some extent different to other indi-
viduals, but in combination with all of the other individuals in the 
model together reflect the characteristics of the population as a 
whole. These latter models can be implemented as either what are 
sometimes known as individual-based microsimulation models or 
network models (5, 19, 20, 22). Metapopulation models intro-
duce heterogeneity into the mixing patterns of the population by 
identifying specific groups of individuals, within which there is 
still homogeneous mixing, but where between them there is not. 
Network and individual-based microsimulation models, necessarily 
generalise about individuals in some rational way, attributing 
features to each individual appropriately, and then allowing for 
heterogeneity of mixing at an individual-based level in respect of 
those features (5).

Metapopulation approaches are often much more computa-
tionally tractable, the extent to which this is true being dependent 
on the size of the population being simulated and the number of 
patches into which the population is subdivided. Such models 
may also have fewer parameters and therefore be easier to more 
reliably parameterise and understand. Different types of metapo-
pulation approach have been used to good effect. Metapopulations 
can, for example, be developed on the basis of breaking the popu-
lation down into different age classes, different economic, social, 
or functional contexts and/or by geography.

Age-structured models at their simplest essentially take the SIR 
(or more complex compartmental)-type approaches but have a 
series of parallel schema (and sets of equations) running for each 
age group in the model (Fig.  8, for a simplistic two age class 
model), with transmission terms (dashed lines) not just operating 
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within a particular age group, but also between different age 
groups at potentially different rates.

Parameterising such age-structured models requires some 
knowledge of the facility with which individuals in each age group 
infect others in that age group and in each of the others and this 
will depend to an extent on aspects of the natural history of the 
disease (e.g. the mode of transmission and the degree of intimacy 
of contact required; the severity of illness and the degree to which 
infectious individuals continue to be able to mix). With caveats, 
such transmission matrices can be estimated by attempting to fit 
models to infectious disease data where this has been stratified by 
age group or by reference to data that has been recorded on the 
relative extent to which different age classes mix with one another 
and with themselves, and ideally taking into account the intimacy 
of the contact (e.g. face-to-face conversation of some duration or 
some level of physical contact). These matrices have been used for 
some time in relation to developing a better understanding of the 
dynamics of, for example, childhood vaccine-preventable diseases 
and informing on optimal vaccination strategies. The derivation 
and use of such WAIFW (who acquires infection from whom) and 
similar matrices is beyond the scope of this broad overview but a 
good introduction can be found in Anderson and May (4), along 
with more contemporary analyses based on more recent multi-
centre European studies (37, 44–46). Essentially mixing among 
age groups is highly assortative, that is those closer in age tending 
to mix more frequently with one another than with those in other 
age groups (but with children also mixing with parental and 
sometimes grandparental age classes), but with the frequency of 
contact between children generally being higher than mixing 
within any other individual age group. This potential dispropor-
tionate mixing and potential transmission of disease can have 
important consequences which are often important to capture in 
a model. For example, the initial rise in cases during an emerging 
uncontrolled epidemic might be seen first as a rise in the number 
of cases in children ahead of the rise in other age groups. Further, 
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Fig. 8. Simplistic schematic for an age-structured model with two age classes (one grey, 
the other black).
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such assortative mixing can have important consequences in 
relation to potential public health controls such as which age 
groups to prioritise for vaccination or the value of closing schools 
in order to try to limit the disproportionate contribution of chil-
dren to overall disease transmission. For pandemic influenza it is 
thought such effects are likely to be important, since, for seasonal 
influenza at least, children do seem to be particularly implicated 
in transmission (47–49). For smallpox and SARS CoV on the 
other hand this is much less certain. In the case of smallpox it 
would seem from the limited historical observations available on 
populations that had not experienced smallpox for some consid-
erable time (and so no older members of the community were 
already immune) that the age distribution of cases matched that 
of the population itself (21, 30). Even when age-dependent assor-
tative mixing is relevant it is important to remember that public 
health measures such as school closure, for example, would not 
necessarily reduce the contact rate of that particular age group to 
zero unless draconian measures were also introduced to prevent 
them mixing in other contexts out of school. They would be likely 
to continue to mix to some extent in other contexts such as play-
ing together outside and in other households, and also mix more 
frequently than before with other age groups such as their par-
ents, household members, and relatives. Such effects are much 
more difficult to parameterise reliably or to compensate for, but 
are likely to be important and should not be neglected. Such 
effects and parameter assignments can in some instances be clari-
fied to an extent by referring back to data from natural experi-
ments and fitting age-stratified rates of influenza-like illness over 
time during an ongoing epidemic, such as happens, for example, 
around school holiday periods (47).

Depending on what is known about the disease and the purpose 
of a model, the extent or facility with which disease transmission 
might occur might also be usefully characterised and subdivided 
by some social or functional context (e.g. household, workplace, 
school, hospital). Such contexts have and can be incorporated 
into a variety of types of model of differing degrees of complex-
ity, including metapopulation and individual-based microsimula-
tion ones (19, 20, 22). For ease, however, they will be considered 
here more simply in terms of metapopulation models. Taking 
pneumonic plague again as an example it is clear from historical 
data that not all contexts and inter-personal relationships were 
equal in terms of the extent to which transmission was observed 
to occur (Fig. 9).
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The most frequent context for transmission was within a 
household (either with another member of, or visitor to, an 
infected household) or within a medical care facility. Hence, by 
far the most frequently infected individuals in this case (31) were 
family relatives and friends followed by health-care workers 
(together accounting for about 95% of transmission events). This 
observation in itself probably accounts for the fact that outbreaks 
of pneumonic plague (with a low overall reproductive potential) 
were readily brought under control since the infectious contacts 
of cases were relatively easily identified and quarantined such that 
RE was rapidly reduced to below 1. Further, for smallpox, in the 
latter parts of the eradication era in Europe and other more devel-
oped parts of the world, transmission within the hospital context 
accounted for a significant proportion of all transmission (about 
50%) before the disease was correctly identified and subjected to 
appropriate local infection controls (15, 30). Such contexts as 
described above clearly have parameters that relate directly to 
observations and data, and as such can be specifically incorpo-
rated into models with each context being represented by a sepa-
rate metapopulation within the overall model structure, in much 
the same way as has been described already for age-structured 
models. In this way the relative frequencies of transmission seen 
in the data are then replicated by the model in the correct con-
texts. The contexts of home, workplace, school, etc. have also 
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Fig. 9. The contexts in which the transmission of pneumonic plague was observed to occur.
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been employed in a more sophisticated way within individual-based 
microsimulation models, where individuals in the model have 
attributed to them particular home, work, and school locations/
interactions (20, 22).

Another degree of complexity that can be introduced into meta-
population models is the concept of separating the overall popu-
lation into different geographical (or spatially determined) units. 
This can be done on the basis of relevant administrative areas such 
as those utilised during the collection of census information. The 
resulting metapopulation model in principle is not unlike that 
shown diagrammatically for simpler age-structured models in 
Fig. 8. In this case, however, each geographically distinct entity 
might have its own SIR (or more complex) structure, but with 
the connections (dotted lines in the figure) and probabilities of 
infection between geographic units parameterised by the extent 
to which proportions of the populations move between them. 
These connections may be viewed as largely analogous to the 
WAIFW matrices described earlier in relation to age-structured 
models, though with a typically much larger matrix that links each 
geographic unit with all of the others, and may have dependence 
on the time of day (to allow for commuting behaviour). Models 
that reasonably capture space in this way can be crucial when it 
comes to investigating interventions that have to be given a spa-
tial context, such as vaccinating all the individuals in some geo-
graphic region based on there being cases of disease in that region 
(23). The concept of transmission between geographic entities 
can also be usefully implemented in other ways. In individual-
based microsimulation models, for example, the matrix men-
tioned above can be converted into some more generalised 
movement kernel that describes the probability of any one indi-
vidual moving (and/or causing infection) some distance from 
their home location by virtue of applying a probability based on 
such a kernel (20, 22). This probability typically drops off very 
non-linearly with increasing distance from home.

It is clear from the discussion above that models of varying degrees 
of complexity can be constructed to tackle problems related to 
(re-)emerging infectious disease problems and their control. 
Before embarking on model development for such issues it is 
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generally useful for those engaged in public health protection to 
consider some basic practicalities. The first is that there is prob-
ably an important initial step before identifying a suitable model 
structure, either an existing one or one that is to be developed 
de novo, and that is to carefully consider the question or ques-
tions that are to be addressed in the light of what might be know-
able, observable, or preferably quantifiable features of the disease; 
that is, the measurable features (parameters and relationships) of 
the underlying processes that are involved and what it is that the 
model is intended to determine (Fig. 10).

The former assertion in particular might seem rather facile, but 
less so when it is realised that in relation to issues of policy, 
planning, and responses, those requiring the answers to the ques-
tions are often not the ones that will be doing the modelling. 
Questions that might seem at first well specified by one, or even 
all, parties may fail to take into consideration some contingent 
factor that was not initially quite so obvious. So to take a very 
simple example, a question regarding what proportion of a pop-
ulation would need some particular intervention to achieve suc-
cessful control of an outbreak may at first fail to take into account 
that it might be advisable to target a particular subset of the 
population on the basis of, for example, its geographic or demo-
graphic features. If the model has not been suitably constructed 
from the outset then the real question of how to optimise control 
policies will probably not be able to be addressed without refor-
mulating the model. Similarly, with regards model parameters, it 
is entirely feasible to develop a model that turns out to require 
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Fig. 10. Inter-relationships between policy and planning and the design of models.
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data on a feature that has never been (reliably) measured or indeed 
can never be measured (e.g. time of infection for some diseases). 
Reasonable assumptions about such parameters can sometimes be 
made, but often a safer recourse is to reformulate (simplify) the 
model, if possible from the outset, in terms of other parameters 
that are measurable and for which there are more reliable data. 
This aspect needs careful consideration and communication 
among the various stakeholders in the modelling, particularly in 
relation to the question(s) that need to be addressed. Generally, 
as long as fit for purpose, the more parsimonious a model, the 
more readily it will be parameterised and executed, and produce 
results that are transparent and better able to be understood.  
As suggested earlier it is probably best to engage iteratively with 
as comprehensive a stakeholder group as possible that includes all 
of the disciplines that are relevant from the outset (Fig. 10). It is 
also important to make clear what are the assumptions and limita-
tions of the models, and employ appropriate sensitivity and sce-
nario analyses to mitigate such problems.

Finally, it is also equally important to set in place real-time 
data collection and analysis systems so as to be able to recalibrate 
and rerun models based on real-time data as it arises during an 
outbreak. Only in this way can an outbreak of an emerging infec-
tious disease really be better understood at the time when the aim 
is to bring it under control (16).
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