Skip to main content

The Neuroscientist

  • Chapter
Textbook of Tinnitus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DCN:

Dorsal cochlear nucleus

GABA:

Gamma amino butyric acid

IC:

Inferior colliculus

LTD:

Long-term depression

LTP:

Long-term potentiation

NMDA:

N-Methyl-d-aspartate

rTMS:

Repetitive TMS

TMS:

Transcranial magnetic stimulation

References

  1. House, JW, Brackman, DE, Tinnitus: surgical treatment. In: Evered, D, Lawrenson, G (Eds), Tinnitus Ciba Found Symp 85. London: Pitman, 1982, pp 204–216

    Google Scholar 

  2. Berliner, KI, Shelton, C, Hitselberger, WE, Luxford, WM, Acoustic tumors: effect of surgical removal on tinnitus. Am J Otol, 1992;13:13–17

    PubMed  CAS  Google Scholar 

  3. Fahy, C, Nikolopoulos, TP, O’Donoghue, GM, Acoustic neuroma surgery and tinnitus. Eur Arch Otorhinolaryngol, 2002;259:299–301

    PubMed  Google Scholar 

  4. Dallos, P, Harris, D, Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol, 1978;41:365–383

    PubMed  CAS  Google Scholar 

  5. Liberman, MC, Dodds, LW, Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res, 1984;16:43–53

    Article  PubMed  CAS  Google Scholar 

  6. Liberman, MC, Kiang, NY, Acoustic trauma in cats Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl, 1978;358:1–63

    PubMed  CAS  Google Scholar 

  7. Evans, EF, Borerwe, TA, Ototoxic effects of salicylates on the responses of single cochlear nerve fibers and on cochlear potentials. Br J Audiol, 1982;16:101–108

    Article  PubMed  CAS  Google Scholar 

  8. Mulheran, M, Evans, EF, A comparison of two experimental tinnitogenic agents: the effect of salicylate and quinine on activity of cochlear nerve fibers in the guinea pig. In: Hazell, J (Ed), Proceedings of the Sixth International Tinnitus Seminar. London: The Tinnitus and Hyperacusis Center, 1999, pp 189–192

    Google Scholar 

  9. Martin, WH, Schwegler, JW, Scheibelhoffer, J, Ronis ML, Salicylate-induced changes in cat auditory nerve activity. Laryngoscope, 1993;103:600–604

    Article  PubMed  CAS  Google Scholar 

  10. Cazals, Y, Horner, KC, Huang, ZW, Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol, 1998;80:2113–2120

    PubMed  CAS  Google Scholar 

  11. Lenarz, T, Schreiner, C, Snyder, RL, Ernst, A, Neural mechanisms of tinnitus. Eur Arch Otorhinolaryngol, 1993;249:441–446

    Article  PubMed  CAS  Google Scholar 

  12. Kaltenbach, JA, Godfrey DA, Neumann, JB, McCaslin, DL, Afman, CE, Zhang, J, Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hearing Res, 1998;124:78–84

    Article  CAS  Google Scholar 

  13. Shore, SE, Koehler, S, Oldakowski, M, Hughes, LF, Syed, S, Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci, 2008;27:155–168

    Article  PubMed  CAS  Google Scholar 

  14. Finlayson, PG, Kaltenbach, JA, Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res, 2009;256:104–117

    Article  PubMed  Google Scholar 

  15. Imig, TJ, Durham, D, Effect of unilateral noise exposure on the tonotopic distribution of spontaneous activity in the cochlear nucleus and inferior colliculus in the cortically intact and decorticate rat. J Comp Neurol, 2005;490:391–413

    Article  PubMed  Google Scholar 

  16. Kaltenbach, JA, Afman, CE, Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res, 2000;140:165–172

    Article  PubMed  CAS  Google Scholar 

  17. Brozoski, TJ, Bauer, CA, Caspary, DM, Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci, 2002;22:2383–2390

    PubMed  CAS  Google Scholar 

  18. Zhang, JS, Kaltenbach, JA, Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high intensity sound. Neurosci Lett, 1998;250:197–200

    Article  PubMed  CAS  Google Scholar 

  19. Gerken, GM, Saunders, SS, Paul, RE, Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats. Hear Res, 1984;13:249–259

    Article  PubMed  CAS  Google Scholar 

  20. Ma, WL, Hidaka, H, May, BJ, Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res, 2006;212:9–21

    Article  PubMed  Google Scholar 

  21. Kwon, O, Jastreboff, MM, Hu, S, Shi, J, Jastreboff, PJ, Modification of single unit activity related to noise-induced tinnitus in rats. In: Proc of the 6th Internat Tinn Sem,1999, pp 459–462

    Google Scholar 

  22. Brozoski, TJ, Ciobanu, L, Bauer, CA, Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res, 2007;228:168–179

    Article  PubMed  Google Scholar 

  23. Bauer, CA, Turner, JG, Caspary, DM, Myers, KS, Brozoski, TJ, Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res, 2008;86:2564–2578

    Article  PubMed  CAS  Google Scholar 

  24. Salvi, RJ, Wang, J, Ding, D, Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 2000;147(1–2):261–274

    Article  PubMed  CAS  Google Scholar 

  25. Mulders, WH, Robertson, D, Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience, 2009;164:733–746

    Article  PubMed  CAS  Google Scholar 

  26. Dong, S, Mulders, WH, Rodger, J, Robertson, D, Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience, 2009;159:1164–1174

    Article  PubMed  CAS  Google Scholar 

  27. Seki, S, Eggermont, JJ, Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res, 2003;180:28–38

    Article  PubMed  Google Scholar 

  28. Komiya, H, Eggermont, JJ, Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol, 2000;120:750–756

    Article  PubMed  CAS  Google Scholar 

  29. Eggermont, JJ, Komiya, H, Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res, 2000;142:89–101

    Article  PubMed  CAS  Google Scholar 

  30. Noreña, AJ, Eggermont, JJ, Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport, 2006;17:559–563

    Article  PubMed  Google Scholar 

  31. Mahlke, C, Wallhäusser-Franke, E, Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg31 and c-fos immunocytochemistry. Hear Res, 2004;195:17–34

    Article  PubMed  CAS  Google Scholar 

  32. Heffner, HE, Harrington, IA, Tinnitus in hamsters following exposure to intense sound. Hear Res, 2002;170:83–95

    Article  PubMed  Google Scholar 

  33. Zheng, Y, Baek. JH, Smith, PF, Darlington CL Cannabinoid receptor down regulation in the ventral cochlear nucleus in a salicylate model of tinnitus. Hear Res, 2007;228:105–111

    Google Scholar 

  34. Jastreboff, PJ, Brennan, JF, Coleman, JK, Sasaki, CT, Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci, 1988;102:811–822

    Article  PubMed  CAS  Google Scholar 

  35. Kaltenbach, JA, Zacharek, MA, Zhang, JS, Frederick, S, Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett, 2004;355:121–125

    Article  PubMed  CAS  Google Scholar 

  36. Guitton, MJ, Dudai, Y, Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast, 2007;2007:80904

    Article  PubMed  CAS  Google Scholar 

  37. Turner, JG, Brozoski, TJ, Bauer, CA, Parrish, JL, Myers, K, Hughes, LF, Caspary, DM, Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci, 2006;120:188–195

    Article  PubMed  Google Scholar 

  38. Rüttiger, L, Ciuffani, J, Zenner, HP, Knipper, M, A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res, 2003;180:39–50

    Article  PubMed  Google Scholar 

  39. Tan, J, Rüttiger, L, Panford-Walsh, R, Singer, W, Schulze, H, Kilian, SB, Hadjab, S, Zimmermann, U, Köpschall, I, Rohbock, K, Knipper, M, Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg31/arc in auditory neurons following acoustic trauma. Neuroscience, 2007;145:715–726

    Article  PubMed  CAS  Google Scholar 

  40. Jastreboff, PJ, Sasaki, CT, Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. J Acoust Soc Am, 1986;80:1384–1391

    Article  PubMed  CAS  Google Scholar 

  41. Chen, G-D, Jastreboff, PJ, Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res, 1995;82:158–178

    Article  PubMed  CAS  Google Scholar 

  42. Manabe, Y, Saito, T, Saito, H, Effects of lidocaine on salicylate-induced discharges of neurons in the inferior colliculus of the guinea pig. Hear Res, 1997;103:192–198

    Article  PubMed  CAS  Google Scholar 

  43. Wallhäusser-Franke, E, Mahlke, C, Oliva, R, Braun, S, Wenz, G, Langner, G, Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res, 2003;153:649–654

    Article  PubMed  Google Scholar 

  44. Melamed, SB, Kaltenbach, JA, Church, MW, Burgio, DL, Afman, CE, Cisplatin-induced increases in spontaneous neural activity in the dorsal cochlear nucleus and associated outer hair cell loss. Audiology, 2000;39:24–29

    Article  PubMed  CAS  Google Scholar 

  45. Kaltenbach, JA, Rachel, JD, Mathog, TA, Zhang, JS, Falzarano, PR, Lewandowski, M, Cisplatin induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophys, 2002;88:699–714

    CAS  Google Scholar 

  46. Eggermont, JJ, Kenmochi, M, Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res, 1998;117:149–160

    Article  PubMed  CAS  Google Scholar 

  47. Jastreboff, PJ, Brennan, JF, Sasaki, CT, Quinine-induced tinnitus in rats. Arch Otolaryngol Head Neck Surg, 1991;117:1162–1166

    Article  PubMed  CAS  Google Scholar 

  48. Bauer, CA, Brozoski, TJ, Rojas, R, Boley, J, Wyder, M, Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg,1999;121:457–462

    Article  PubMed  CAS  Google Scholar 

  49. Lobarinas, E, Sun, W, Cushing, R, Salvi, R, A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res, 2004;190:109–114

    Article  PubMed  Google Scholar 

  50. Melcher, JR, Sigalovsky, IS, Guinan, JJ Jr, Levine, RA, Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol, 2000;83:1058–1072

    PubMed  CAS  Google Scholar 

  51. Lanting, CP, De Kleine, E, Bartels, H, Van Dijk, P, Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol, 2008;128:415–421

    Article  PubMed  CAS  Google Scholar 

  52. Lockwood, AH, Salvi, RJ, Coad, ML, Towsley, ML, Wack, DS, Murphy, BW, The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology, 1998;50:114–120

    Article  PubMed  CAS  Google Scholar 

  53. Arnold, W, Bartenstein, P, Oestreicher, E, Romer, W, Schwaiger, M, Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec, 1996;58:195–199

    Article  PubMed  CAS  Google Scholar 

  54. Andersson, G, Lyttkens, L, Hirvela, C, Furmark, T, Tillfors, M, Fredrikson, M, Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol, 2000;120:967–972

    Article  PubMed  CAS  Google Scholar 

  55. Giraud, AL, Chery-Croze, S, Fischer, G, Fischer, C, Vighetto, A, Gregoire, MC, Lavenne, F, Collet, L, A selective imaging of tinnitus. Neuroreport, 1999;10:1–5

    Article  PubMed  CAS  Google Scholar 

  56. Lockwood, AH, Wack, DS, Burkard, RF, Goad, ML, Reyes, SA, Arnold, SA, Salvi, RJ, The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 2001;56:472–480

    Article  PubMed  CAS  Google Scholar 

  57. Wang, H, Tian, J, Yin, D, Positron emission tomography of tinnitus-related brain areas. Zhonghua Er BiVan Hou Ke Za Zhi, 2000;35:420–424

    Google Scholar 

  58. Mirz, F, Gjedde, A, Ishizu, K, Pedersen, CB, Cortical networks subserving the perception of tinnitus-a PET study. Acta Otolaryngol Suppl, 2000;543:241–243

    Article  PubMed  CAS  Google Scholar 

  59. Reyes, SA, Salvi, RJ, Burkard, RF, Coad, ML, Wack, DS, Galantowicz, PJ, Lockwood, AH, Brain imaging of the effects of lidocaine on tinnitus. Hear Res, 2002;171:43–50

    Article  PubMed  CAS  Google Scholar 

  60. Kanold, PO, Young, ED, Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci, 2001;21:7848–7858

    PubMed  CAS  Google Scholar 

  61. Shore, SE, Zhou, J, Somatosensory influence on the cochlear nucleus and beyond. Hear Res, 2006;216–217:90–99

    Article  PubMed  Google Scholar 

  62. Shore, SE, Vass, Z, Wys, NL, Altschuler, RA, Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol, 2004;19:271–285

    Google Scholar 

  63. Shore, SE, Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci, 2005;21:3334–3348

    Article  PubMed  CAS  Google Scholar 

  64. Levine, RA, Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol, 1999;20:351–362

    Article  PubMed  CAS  Google Scholar 

  65. Levine, RA, Somatic tinnitus. In: Snow, JB Jr (Ed), Tinnitus: Theory and management. Hamilton, Ontario, Canada: Decker, 2004, pp 108–124

    Google Scholar 

  66. Levine, RA, Abel, M, Cheng, H, CNS somatosensory–auditory interactions elicit or modulate tinnitus. Exp Brain Res, 2003;153:643–648

    Article  PubMed  CAS  Google Scholar 

  67. Abel, MD, Levine, RA, Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio, 2004;22:181–191

    PubMed  Google Scholar 

  68. Ochi, K, Eggermont, JJ, Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res, 1996;95:63–76

    Article  PubMed  CAS  Google Scholar 

  69. Ochi, K, Eggermont, JJ, Effects of quinine on neural activity in cat primary auditory cortex. Hear Res, 1997;105:105–118

    Article  PubMed  CAS  Google Scholar 

  70. Evans, EF, Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology, 1978;17:369–420

    Article  PubMed  CAS  Google Scholar 

  71. Joris, PX, Smith, PH, The volley theory and the spherical cell puzzle. Neuroscience, 2008;154:65–76

    Article  PubMed  CAS  Google Scholar 

  72. Eggermont, JJ, Pathophysiology of tinnitus. Prog Brain Res, 2007;166:19–35

    Article  PubMed  CAS  Google Scholar 

  73. Eggermont, JJ, Roberts, LE, The neuroscience of tinnitus. Trends Neurosci, 2004;27:676–682

    Article  PubMed  CAS  Google Scholar 

  74. Vernon, JA (Ed), Tinnitus: Treatment and Relief. Boston, MA: Allyn & Bacon, 1997

    Google Scholar 

  75. Cacace, AT, Lovely, TJ, McFarland, DJ, Parnes, SM, Winter, DF, Anomalous cross-modal plasticity following posterior fossa surgery: some speculations on gaze-evoked tinnitus. Hear Res, 1994;81:22–32

    Article  PubMed  CAS  Google Scholar 

  76. Cacace, AT, Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear Res, 2003;175:112–132

    Article  PubMed  Google Scholar 

  77. Møller, MB, Møller, AR, Jannetta, PJ, Jho, HD, Vascular decompression surgery for severe tinnitus: selection criteria and results. Laryngoscope, 1993;103:421–427

    Article  PubMed  Google Scholar 

  78. Møller, AR, Møller, MB, Microvascular decompression operations. Prog Brain Res, 2007;166:397–400

    Article  PubMed  Google Scholar 

  79. Nodar, RH, Graham, JT, An investigation of frequency characteristics of tinnituis associated with Meniere’s disease. Arch Otolaryngol Head Neck Surg, 1965;82:28–31

    Article  CAS  Google Scholar 

  80. Hazell, JW, Tinnitus II: surgical management of conditions associated with tinnitus and somatosounds. J Otolaryngol, 1990;19:6–10

    PubMed  CAS  Google Scholar 

  81. Mills, RP, Cherry, JR, Subjective tinnitus in children with otological disorders. Int J Pediatr Otorhinolaryngol, 1984;7:21–27

    Article  PubMed  CAS  Google Scholar 

  82. Lonsbury-Martin, BL, Martin, GK, Otoacoustic emissions and tinnitus. In: Snow, JB Jr (Ed), Tinnitus: Theory and Management. Hamilton, Ontario, Canada: Decker, 2004, pp 69–78

    Google Scholar 

  83. Brown, MC, Ledwith, JV III, Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear Res, 1990;49:105–118

    Article  PubMed  CAS  Google Scholar 

  84. Benson, TE, Brown, MC, Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. J Assoc Res Otolaryngol, 2004;5:111–125

    PubMed  Google Scholar 

  85. Shore SE, Moore JK, Sources of input to the cochlear granule cell region in the guinea pig. Hear Res, 1998;116(1–2):33–42

    Article  PubMed  CAS  Google Scholar 

  86. Berglund AM, Brown MC, Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hear Res, 1994;75(1–2):121–130.

    Article  PubMed  CAS  Google Scholar 

  87. Godfrey, DA, Godfrey, TG, Mikesell, NL, Waller, HJ, Yao, W, Chen, K, Kaltenbach, JA, Chemistry of granular and closely related regions of the cochlear nucleus In: Syka, J (Ed), Acoustical Signal Processing in the Central Auditory System. New York: Plenum, 1997, pp 139–153

    Chapter  Google Scholar 

  88. Rubinstein, B, Tinnitus and craniomandibular disorders – is there a link? Swed Dent J Suppl, 1993;95:1–46

    PubMed  CAS  Google Scholar 

  89. Seydel, C, Reisshauer, A, Haupt, H, Klapp, BF, Mazurek, B, The role of stress in the pathogenesis of tinnitus and in the ability to cope with it. HNO, 2006;54:709–714

    Article  PubMed  CAS  Google Scholar 

  90. Schmitt, C, Patak, M, Kröner-Herwig, B, Stress and the onset of sudden hearing loss and tinnitus. Int Tinnitus J, 2000;6:41–49

    PubMed  CAS  Google Scholar 

  91. Mazurek, B, Stöver, T, Haupt, H, Klapp, BF, Adli, M, Gross, J, Szczepek, AJ, The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO, 2010;58:162–172

    Article  PubMed  CAS  Google Scholar 

  92. Wright, DD, Ryugo, DK, Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J Comp Neurol, 1996;365:159–172

    Article  PubMed  CAS  Google Scholar 

  93. Weinberg, RJ, Rustioni, AA, Cuneocochlear pathway in the rat. Neuroscience, 1987;20:209–219

    Article  PubMed  CAS  Google Scholar 

  94. Itoh, K, Kamiya, H, Mitani, A, Yasui, Y, Takada, M, Mizuno, N, Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res, 1987;400:145–150

    Article  PubMed  CAS  Google Scholar 

  95. Manis, PB, Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J Neurophysiol, 1989;61:149–161

    PubMed  CAS  Google Scholar 

  96. Suneja, SK, Potashner, SJ, Benson, CG, Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol, 1998;151:273–288

    Article  PubMed  CAS  Google Scholar 

  97. Suneja, SK, Potashner, SJ, Benson, CG, Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol, 1998;154:473–488

    Article  PubMed  CAS  Google Scholar 

  98. Potashner, SJ, Suneja, SK, Benson, CG, Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Hear Res, 2000;147:125–136

    Article  PubMed  CAS  Google Scholar 

  99. Asako, M, Holt, AG, Griffith, RD, Buras, ED, Altschuler, RA, Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res, 2005;81:102–109

    Article  PubMed  CAS  Google Scholar 

  100. Wang, H, Brozoski, TJ, Turner, JG, Ling, L, Parrish, JL, Hughes, LF, Caspary, DM, Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience, 2009;164:747–759

    Article  PubMed  CAS  Google Scholar 

  101. Abbott, SD, Hughes, L, Bauer, CA, Salvi, R, Caspary, DM, Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience, 1999;93:1375–1381

    Article  PubMed  CAS  Google Scholar 

  102. Milbrandt, JC, Holder, TM, Wilson, MC, Salvi, RJ, Caspary, DM, GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res, 2000;147:251–260

    Article  PubMed  CAS  Google Scholar 

  103. Bledsoe, SCJ, Nagase, S, Miller, JM, Altschuler, RA, Deafness induced plasticity in the mature central auditory system. Neuroreport, 1995;7:225–229

    PubMed  Google Scholar 

  104. Caspary DM, Raza A, Lawhorn Armour BA, et al. Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci, 1990;10:2363–2372

    PubMed  CAS  Google Scholar 

  105. Schaette, R, Kempter, R, Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci, 2006;23:3124–3138

    Article  PubMed  Google Scholar 

  106. Chang, H, Chen, K, Kaltenbach, JA, Zhang, J, Godfrey, DA, Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices. Hear Res, 2002;164:59–68

    Article  PubMed  Google Scholar 

  107. Kaltenbach, JA, Zhang, J, Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation. Hear Res, 2007;226:232–243

    Article  PubMed  CAS  Google Scholar 

  108. Jin, YM, Godfrey, DA, Wang, J, Kaltenbach, JA, Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus. Hear Res, 2006;216–217:168–175

    Article  PubMed  CAS  Google Scholar 

  109. Illing, RB, Kraus, KS, Meidinger, MA, Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res, 2005;206:185–199

    Article  PubMed  Google Scholar 

  110. Muly, SM, Gross, JS, Potashner, SJ, Noise trauma alters d-[3H]aspartate release and AMPA binding in chinchilla cochlear nucleus. J Neurosci Res, 2004;75:585–596

    Article  PubMed  CAS  Google Scholar 

  111. Suneja, SK, Potashner, SJ, Benson, CG, AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol, 2000;165:355–369

    Article  PubMed  CAS  Google Scholar 

  112. Rubio, ME, Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats. Hear Res, 2006;216–217:154–167

    Article  PubMed  CAS  Google Scholar 

  113. Whiting, B, Moiseff, A, Rubio, ME, Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience, 2009;163:1264–1276

    Article  PubMed  CAS  Google Scholar 

  114. Kim, J, Morest, DK, Bohne, BA, Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation. Hear Res, 1997;103:169–191

    Article  PubMed  CAS  Google Scholar 

  115. Kim, JJ, Gross, J, Potashner, SJ, Morest, DK, Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings. J Neurosci Res, 2004;77:817–828

    Article  PubMed  CAS  Google Scholar 

  116. Holt, AG, Asako, M, Duncan, RK, Lomax, CA, Juiz, JM, Altschuler, RA, Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hear Res, 2006;216–217:146–153

    Article  PubMed  CAS  Google Scholar 

  117. von Hehn, CA, Bhattacharjee, A, Kaczmarek, LK, Loss of Kv31 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice. J Neurosci, 2004;24:1936–1940

    Article  CAS  Google Scholar 

  118. Morest, DK, Kim, J, Potashner, SJ, Bohne, BA, Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation. Microsc Res Tech, 1998;41:205–216

    Article  PubMed  CAS  Google Scholar 

  119. Kimura, A, Pavlides, C, Long-term potentiation/depotentiation are accompanied by complex changes in spontaneous unit activity in the hippocampus. J Neurophysiol, 2000;84:1894–1906

    PubMed  CAS  Google Scholar 

  120. Fujino, K, Oertel, D, Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci U S A, 2003;100:265–270

    Article  PubMed  CAS  Google Scholar 

  121. Oertel, D, Young, ED, What’s a cerebellar circuit doing in the auditory system? Trends Neurosci, 2004;27:104–110

    Article  PubMed  CAS  Google Scholar 

  122. Tzounopoulos, T, Kim, Y, Oertel, D, Trussell, LO, Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci, 2004;7:719–725

    Article  PubMed  CAS  Google Scholar 

  123. Wu, SH, Ma, CL, Sivaramakrishnan S, Oliver DL, Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hear Res, 2002;168:43–54

    Article  PubMed  Google Scholar 

  124. Zhang, Y, Wu, SH, Long-term potentiation in the inferior colliculus studied in rat brain slice. Hear Res, 2000;147:92–103

    Article  PubMed  CAS  Google Scholar 

  125. Seki, K, Kudoh, M, Shibuki, K, Long-term potentiation of Ca2+ signal in the rat auditory cortex. Neurosci Res, 1999;34:187–197

    Article  PubMed  CAS  Google Scholar 

  126. Kudoh, M, Shibuki, K, Long-term potentiation in the auditory cortex of adult rats. Neurosci Lett, 1994;171:21–23

    Article  PubMed  CAS  Google Scholar 

  127. Tzounopoulos, T, Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: plasticity-induced changes that could underlie tinnitus. Am J Audiol, 2008;17:S170–S175

    Article  PubMed  Google Scholar 

  128. König, O, Schaette, R, Kempter, R, Gross, M, Course of hearing loss and occurrence of tinnitus. Hear Res, 2006;221:59–64

    Article  PubMed  Google Scholar 

  129. Schaette, R, Kempter, R, Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J Neurophysiol, 2009;101:3042–3052

    Article  PubMed  Google Scholar 

  130. Bauer, CA, Brozoski, TJ, Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope, 2006;116:675–681

    Article  PubMed  CAS  Google Scholar 

  131. Piccirillo, JF, Finnell, J, Vlahiotis, A, Chole, RA, Spitznagel, E Jr, Relief of idiopathic subjective tinnitus: is gabapentin effective? Arch Otolaryngol Head Neck Surg, 2007;133:390–397

    Article  PubMed  Google Scholar 

  132. Witsell, DL, Hannley, MT, Stinnet, S, Tucci, DL, Treatment of tinnitus with gabapentin: a pilot study. Otol Neurotol, 2007;28:11–15

    Article  PubMed  Google Scholar 

  133. Szczepaniak, WS, Møller, AR, Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: a study of evoked potentials in the rat. Neurosci Lett, 1995;196:77–80

    Article  PubMed  CAS  Google Scholar 

  134. Zhang, JS, Kaltenbach, JA, Effects of GABAB receptor activation on sound-induced hyperactivity in the DCN of hamsters in vivo. In: ARO Abs, 2000 #5020

    Google Scholar 

  135. Westerberg, BD, Roberson, JB Jr, Stach, BA, A double-blind placebo-controlled trial of baclofen in the treatment of tinnitus. Am J Otol, 1996;17:896–903

    PubMed  CAS  Google Scholar 

  136. Bahmad, FM Jr, Venosa, AR, Oliveira, CA, Benzodiazepines and GABAergics in treating severe disabling tinnitus of predominantly cochlear origin. Int Tinnitus J, 2006;12:140–144

    PubMed  CAS  Google Scholar 

  137. Gananca, MM, Caovilla, HH, Gananca, FF, Gananca, CF, Munhoz, MS, da Silva, ML, Serafini, F, Clonazepam in the pharmacological treatment of vertigo and tinnitus. Int Tinnitus J, 2002;8:50–53

    PubMed  CAS  Google Scholar 

  138. Azevedo, AA, Figueiredo, RR, Tinnitus treatment with acamprosate: double-blind study. Braz J Otorhinolaryngol, 2005;71:618–623

    PubMed  Google Scholar 

  139. Azevedo, AA, Figueiredo, RR, Treatment of tinnitus with acamprosate. Prog Brain Res, 2007;166:273–277

    Article  PubMed  CAS  Google Scholar 

  140. Ehrenberger, K, Topical administration of Caroverine in somatic tinnitus treatment: proof-of-concept study. Int Tinnitus J, 2005;11:34–37

    PubMed  CAS  Google Scholar 

  141. Budzyn, B, Kaltenbach, JA, Effects of neramexane on tinnitus-related hyperactivity in the dorsal cochlear nucleus. In: Abstract for the 3rd meeting of the Tinnitus Research Initiative, Stresa, Italy, 2009

    Google Scholar 

  142. Althaus, M, Clinical development of new drugs for the treatment of tinnitus using the example of Neramexane. In: Abstract for the 3rd meeting of the Tinnitus Research Initiative, Stresa, Italy, 2009

    Google Scholar 

  143. Pan, T, Tyler, RS, Ji, H, Coelho, C, Gehringer, AK, Gogel, SA, Changes in the tinnitus handicap questionnaire after cochlear implantation. Am J Audiol, 2009;18:144–151

    Article  PubMed  Google Scholar 

  144. Rubinstein, JT, Tyler, RS, Johnson, A, Brown, CJ, Electrical suppression of tinnitus with high-rate pulse trains. Otol Neurotol, 2003;24:478–485

    Article  PubMed  Google Scholar 

  145. Soussi, T, Otto, SR, Effects of electrical brainstem stimulation on tinnitus. Acta Otolaryngol, 1994;114:135–140

    Article  PubMed  CAS  Google Scholar 

  146. De Ridder, D, Vanneste, S, van der Loo, E, Plazier, M, Menovsky, T, van de Heyning, P, Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg, 2010;112:1289–1294

    Article  PubMed  Google Scholar 

  147. De Ridder, D, De Mulder, G, Verstraeten, E, Van der Kelen, K, Sunaert, S, Smits, M, Kovacs, S, Verlooy, J, Van de Heyning, P, Møller, AR, Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec, 2006;68:48–54

    Article  PubMed  Google Scholar 

  148. Seidman, MD, Ridder, DD, Elisevich, K, Bowyer, SM, Darrat, I, Dria, J, Stach, B, Jiang, Q, Tepley, N, Ewing, J, Seidman, M, Zhang, J, Direct electrical stimulation of Heschl’s gyrus for tinnitus treatment. Laryngoscope, 2008;118:491–500

    Article  PubMed  CAS  Google Scholar 

  149. Kleinjung, T, Steffens, T, Londero, A, Langguth, B, Transcranial magnetic stimulation (TMS) for treatment of chronic tinnitus: clinical effects. Prog Brain Res, 2007;166:359–367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The experiments conducted by the author, which contributed in part to this review, were supported by NIH grant R01 DC009097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Kaltenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaltenbach, J.A. (2011). The Neuroscientist. In: Møller, A.R., Langguth, B., De Ridder, D., Kleinjung, T. (eds) Textbook of Tinnitus. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-145-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-145-5_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-144-8

  • Online ISBN: 978-1-60761-145-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics