Skip to main content

TAT-Peptide Modified Liposomes: Preparation, Characterization, and Cellular Interaction

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

In general, cellular internalization of macromolecular drugs encapsulated in liposomes proceeds via endocytosis. This potentially leads to degradation of the liposome-encapsulated macromolecular content within the endosomal/lysosomal compartment. Therefore, bypassing the endocytic route by conferring a direct plasma membrane translocation property to the liposomes would be very beneficial. Cell penetrating peptides, e.g. TAT-peptide, are exploited in the drug delivery field for their capacity of plasma membrane translocation. Here, we describe the preparation of TAT-peptide modified liposomes and their cellular interaction using live cell flow cytometry and imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mastrobattista E, Koning GA, Van Bloois L, Filipe AC, Jiskoot W, Storm G (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 277:27135–27143

    Article  CAS  PubMed  Google Scholar 

  2. Simoes S, Moreira JN, Fonseca C, Duzgunes N, de Lima MC (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    Article  CAS  PubMed  Google Scholar 

  3. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  PubMed  Google Scholar 

  4. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B et al (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91:664–668

    Article  CAS  PubMed  Google Scholar 

  5. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  6. Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL (2002) Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res 19:744–754

    Article  CAS  PubMed  Google Scholar 

  7. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  8. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98:8786–8791

    Article  CAS  PubMed  Google Scholar 

  9. Tseng YL, Liu JJ, Hong RL (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol 62:864–872

    Article  CAS  PubMed  Google Scholar 

  10. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al (2003) Cell-penetrating peptides: a re-evaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  CAS  PubMed  Google Scholar 

  11. Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371

    Article  CAS  PubMed  Google Scholar 

  12. Fretz MM, Koning GA, Mastrobattista E, Jiskoot W, Storm G (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665:48–56

    Article  CAS  PubMed  Google Scholar 

  13. Koning GA, Morselt HW, Gorter A, Allen TM, Zalipsky S, Scherphof GL et al (2003) Interaction of differently designed immunoliposomes with colon cancer cells and Kupffer cells: an in vitro comparison. Pharm Res 20:1249–1257

    Article  CAS  PubMed  Google Scholar 

  14. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Storm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fretz, M.M., Storm, G. (2010). TAT-Peptide Modified Liposomes: Preparation, Characterization, and Cellular Interaction. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics