Skip to main content

Advances in Genome-Wide Protein Expression Using the Wheat Germ Cell-Free System

  • Protocol
Chemical Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 310))

Abstract

In the current post-genomic era, cell-free translation platforms are gaining importance in structural as well as functional genomics. They are based on extracts prepared from Escherichia coli cells, wheat germ, or rabbit reticulocytes, and when programmed with any mRNA in the presence of energy sources and amino acids, can synthesize the respective protein in vitro. Among the cell-free systems, the wheat germ-based translation system is of special interest due to its eukaryotic nature and robustness. This chapter outlines the existing protein production platforms and their limitations, and describes the basic concept of the wheat germ-based cell-free system. It also demonstrates how the conventional wheat germ system can be improved by eliminating endogenous inhibitors, by using an expression vector specially designed for this system and polymerase chain reaction-directed protein synthesis directly from cDNAs in a bi-layer translation system. Finally, a robotic procedure for translation based on the wheat germ extract and bi-layer cell-free translation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaschke, U. K., Silberstein, J., and Muir, T. W. (2000) Protein engineering by expressed protein ligation. Methods Enzymol. 328, 478–496.

    Article  PubMed  CAS  Google Scholar 

  2. Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411–421.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, M. D., Bentley, C. M., and Dickson, A. J. (2003) Stability of protein production from recombinant mammalian cells. Biotechnol. Bioeng. 81, 631–639.

    Article  PubMed  CAS  Google Scholar 

  4. Hsu, T. A. and Betenbaugh, M. J. (1997) Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect cells. Biotechnol. Prog. 13, 96–104.

    Article  PubMed  CAS  Google Scholar 

  5. Ailor, E. and Betenbaugh, M. J. (1999) Modifying secretion and post-translational processing in insect cells. Curr. Opin. Biotechnol. 10, 142–145.

    Article  PubMed  CAS  Google Scholar 

  6. Henrich, B., Lubitz, W., and Plapp, R. (1982) Lysis of Escherichia coli by induction of cloned phi X174 genes. Mol. Gen. Genet. 185, 493–497.

    Article  PubMed  CAS  Google Scholar 

  7. Goff, S. A. and Goldberg, A. L. (1987) An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. J. Biol. Chem. 262, 4508–4515.

    PubMed  CAS  Google Scholar 

  8. Chrunyk, B. A., Evans, J., Lillquist, J., Young, P., and Wetzel, R. (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J. Biol. Chem. 268, 18,053–18,061.

    PubMed  CAS  Google Scholar 

  9. Kurland, C. G. (1982) Translational accuracy in vitro. Cell 28, 201–202.

    Article  PubMed  CAS  Google Scholar 

  10. Pavlov, M. Y. and Ehrenberg, M. (1996) Mutants of EF-Tu defective in binding aminoacyl-tRNA. Arch. Biochem. Biophys. 328, 9–16.

    Article  PubMed  CAS  Google Scholar 

  11. Littlefield, J. W., Keller, E. B., Gross, J., and Zamecnik, P. C. (1955) Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J. Biol. Chem. 217, 111–123.

    PubMed  CAS  Google Scholar 

  12. Schachtschabel, D. and Zillig, W. (1959) Investigations on the biosynthesis of proteins. I. Synthesis of radiocarbon labeled amino acids in proteins of cell-free nucleoprotein-enzyme-system of Escherichia coli. Hoppe-Seyler’s Z. Physiol. Chem. 314, 262–275.

    Article  PubMed  CAS  Google Scholar 

  13. Lamborg, M. R. and Zamecnik, P. C. (1960) Amino acid incorporation into the protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206–211.

    Article  PubMed  CAS  Google Scholar 

  14. Nirenerg, M. W. and Matthaei, J. H. (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 44, 1588–1602.

    Article  Google Scholar 

  15. Roberts, B. E. and Paterson, B. M. (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc. Natl. Acad. Sci. USA 70, 2330–2334.

    Article  PubMed  CAS  Google Scholar 

  16. Pelham, H. R. and Jackson, R. J. (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256.

    Article  PubMed  CAS  Google Scholar 

  17. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., Kamura, N., Ogasawara, T., and Endo, Y. (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514, 102–105.

    Article  PubMed  CAS  Google Scholar 

  18. Hanes, J. and Plukthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  19. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C., and Schultz, P. G. (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson, D. S., Keefe, A. D., and Szostak, J. W. (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755.

    Article  PubMed  CAS  Google Scholar 

  21. Ryabova, L. A., Desplancq, D., Spirin, A. S., and Plukthun, A. (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat. Biotechnol. 15, 79–84.

    Article  PubMed  CAS  Google Scholar 

  22. Sawasaki, T., Hasegawa, Y., Morishita, R., Seki, M., Shinozaki, K., and Endo, Y. (2004) Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. Phytochemistry 65, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  23. Barbieri, L., Battelli, M. G., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1154, 237–282.

    PubMed  CAS  Google Scholar 

  24. Ogasawara, T., Sawasaki, T., Morishita, R., Ozawa, A., Madin, K., and Endo, Y. (1999) A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. EMBO J. 18, 6522–6531.

    Article  PubMed  CAS  Google Scholar 

  25. Madin, K., Sawasaki, T., Ogasawara, T., and Endo, Y. (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564.

    Article  PubMed  CAS  Google Scholar 

  26. Sawasaki, T., Ogasawara, T., Morishita, R., and Endo, Y. (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14,652–14,657.

    Article  PubMed  CAS  Google Scholar 

  27. Endo, Y. and Sawasaki, T. (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5(1–2), 45–57.

    Article  PubMed  CAS  Google Scholar 

  28. Wool, I. G., Glück, A., and Endo, Y. (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem. Sci. 17, 266–269.

    Article  PubMed  CAS  Google Scholar 

  29. Johnston, F. B. and Stern, H. (1957) Mass isolation of viable wheat embryos. Nature 179, 160–161.

    Article  PubMed  CAS  Google Scholar 

  30. Hirao, I., Madin, K., Endo, Y., Yokoyama, S., and Ellington, A. D. (2000) RNA aptamers that bind to and inhibit the ribosome-inactivating protein, pepocin. J. Biol. Chem. 275, 4943–4948.

    Article  PubMed  CAS  Google Scholar 

  31. Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  32. Zaccomer, B., Haenni, A. L., and Macaya, G. (1995) The remarkable variety of plant RNA virus genomes. J. Gen. Virol. 76, 231–247.

    Article  PubMed  CAS  Google Scholar 

  33. Gallie, D. R. and Walbot, V. (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res. 20, 4631–4638.

    Article  PubMed  CAS  Google Scholar 

  34. Gallie, D. R. (1996) Translational control of cellular and viral mRNAs. Plant Mol. Biol. 32, 145–158.

    Article  PubMed  CAS  Google Scholar 

  35. Beelman, C. A. and Parker, R. (1995) Degradation of mRNA in eukaryotes. Cell 81, 179–183.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs, J. S., Anderson, A. R., and Parker, R. P. (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506.

    Article  Google Scholar 

  37. Gurevich, V. V. (1996) Use of bacteriophage RNA polymerase in RNA synthesis. Methods Enzymol. 275, 382–397.

    Article  PubMed  CAS  Google Scholar 

  38. Endo, Y. and Sawasaki, T. (2003) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol. Adv. 21, 695–713.

    Article  PubMed  CAS  Google Scholar 

  39. Erlich, H. A., Gelfand, D., and Sninsky, J. (1991) Recent advances in the polymerase chain reaction. Science 252, 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962.

    Article  PubMed  CAS  Google Scholar 

  41. Kawasaki, T., Gouda, M. D., Sawasaki, T., Takai, K., and Endo, Y. (2003) Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur. J. Biochem. 270, 4780–4786.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Endo, Y., Sawasaki, T. (2005). Advances in Genome-Wide Protein Expression Using the Wheat Germ Cell-Free System. In: Zanders, E.D. (eds) Chemical Genomics. Methods in Molecular Biology™, vol 310. Humana Press. https://doi.org/10.1007/978-1-59259-948-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-948-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-399-2

  • Online ISBN: 978-1-59259-948-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics