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The Role of Glial 

Nitric Oxide in Neurotoxicity 
and Central Nervous System Diseases 

Kathleen M. K. Boje 

1. IMMUNE REGULATORY FUNCTION OF GLIAL CELLS 

Neuroglia ("nerve glue") were first identified in the late 1800s, and were so 
named because these cells surrounded neurons. Today it is recognized that these 
cells are not simply "packing material" for neurons, but serve in many important 
capacities. Glia facilitate neuronal migration during development, assist in the 
maintenance of the neuronal milieu for normal neurotransmission, produce 
neurotrophic factors, participate in immunological responses within the central 
nervous system (CNS), and surround the brain microvasculature to constitute the 
blood-brain barrier (1-3). Glia differ from their neuronal counterparts in that glia 
compose 20-500Jo of the total brain volume, possess nonsynapsing cellular exten­
sions, and retain the ability to replicate. Glia can be classified into three broad 
categories: astrocytes (both fibrous and protoplasmic), microglia, and oligoden­
droglia. Each of these types can be subdivided into finer distinctions, depending 
on morphological and functional specifications (1,2,4). 

Historically, it was believed that the CNS was immunologically isolated from 
the systemic immune system. This antiquated notion was inferred from observa­
tions that the brain lacked a lymphatic drainage system, and that systemic lym­
phocytes were usually excluded from the CNS by the blood-brain and blood­
cerebrospinal fluid (CSF) barriers (5-7). Contemporary research has revised our 
understanding of the immune response within the brain. Under certain inflamma­
tory conditions, the blood-brain barrier is less restrictive to the migration of acti­
vated monocytes, T- and B-lymphocyte cells, natural killer cells, and granulocytes 
(8). Moreover, in vitro and in vivo studies have clearly established that astrocytes 
and microglia can initiate an immune response within the CNS (1,5,9,10). Although 
both cell types are sharing overlapping immunological functions, there are impor­
tant functional distinctions (5). 
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Astrocytes are immunologically activated following challenge by drugs, injuries, 
diseases, and infectious pathogens (10). Activated astrocytes respond to inflam­
matory mediators in a typical pleiotropic fashion: namely, activation of early re­
sponse genes, expression of various adhesion proteins, and elaboration of various 
cytokines, eicosanoids, proteases, and cytotoxic molecules (e.g., reactive nitrogen 
and oxygen intermediates) (10). Astrocytes can transform into a state known as 
"reactive astrocytes," whereby astrocytic swelling, hypertrophy, hyperplasia, and 
gliosis occur during the progression of CNS disease (1,11). On in vitro exposure to 
interferon-')' (lPN-')'), lipopolysaccharides (LPS), or various viruses, astrocytes are 
induced to express major histocompatibility complex (MHC) class II antigens, 
thereby functioning as antigen-presenting cells (2, 6). Companion in vivo studies 
confirm the in vitro results, but with the cautionary note that astrocytes in situ do 
not respond to these inflammatory mediators as robustly as previously thought (10). 

Microglia are often referred to as the "resident macrophages" of the brain, as 
they share a lineage to circulating monocytes and macrophages. Similar to astro­
cytes, microglia normally exist in a quiescent, resting state. CNS injury or disease 
elicits microglial transformation to an immunologically responsive state. Acti­
vated microglia can rapidly proliferate, migrate to the site of injury, express MHC 
class II antigens, phagocytose pathogens or damaged tissue, and elaborate cyto­
kines and cytotoxic agents (5, 7). Microglia typically possess tumor cytotoxicity 
and antigen-presenting abilities, which are superior to astrocytes (7,10). 

2. GLIAL CELL SYNTHESIS OF NITRIC OXIDE (NO) 

Many exciting research issues have emerged in the quest to understand the roles 
of activated astrocytes and microglia in neurodegenerative diseases. An excep­
tionally prominent finding was the discovery that neurotoxic quantities of NO are 
produced by activated astrocytes and microglia as part of their repertoire of 
immunologic responses (12-16). Therefore, the era of NO neurotoxicity was 
heralded into "The Decade of the Brain" (a.k.a., the 1990s). 

NO serves as nature's versatile biological emissary, either modulating essential 
physiological functions or promoting pathological disturbances. NO plays many 
roles in the cardiovascular, pulmonary, gastrointestinal, immune, renal, endo­
crinological, or CNS/peripheral nervous system (17,18). Understanding the diver­
sified functions of NO will guide the development of new therapeutic drugs aimed 
at managing or curing various diseases. 

The primary focus of this chapter is restricted to a discussion of the role of glial­
derived NO in CNS neurological afflictions. The scientific literature is richly en­
dowed with contemporary reviews of NO: the reader is urged to consult various 
comprehensive analyses for an expanded appreciation (17-22). 

2.1. Characteristics of Glial Nitric Oxide Synthase (NOS) 

2.1.1. Biochemical Characteristics 
Many tissues and cells express one or more isoforms of NOS. To date, there are 

three distinct isozymes: NOS I, originally identified as a constituitive isozyme pre­
sent in neurons; NOS II, an inducible isoform expressed in murine macrophages; 
and NOS III, a distinct constituitive isozyme localized to endothelial cells (19). 
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Table 1 
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Modulation of CNS NOS I Expression by Various Agents or Pathologies 

Enhanced expression 
In vivo 

Brain lesion 
(mechanical, chemical or thermal) 

Cerebral ischemia 
transient focal 

Xhronic salt loading 

Estradiol 
Gonadectomy 
Nerve injury 

(transection, ligation or avulsion) 
Pregnancy 
Testosterone 

In vitro 
Dexamethasone 

Diminished expression 
In vivo 
In vitro 

NO 

Specie/tissue/cell type 

Rodent cerebellar Purkinje cells, 
brainstem precerebellar neurons (184) 

Rodent neurons (185), cerebral endothelia 
(186), rodent supraoptic nucleus, 
paraventricular nucleus (187) 

Guinea pig cerebellum (188) 
Rodent anterior pituitary gland (189) 

Rodent dorsal root ganglia (189) 
Guinea pig cerebellum (188) 
Guinea pig cerebellum (188) 

Rodent cerebellar astrocytes (190) 

No published data 

Bovine cerebellar homogenates (50) 

The original NOS literature identified each isoform by its expression characteris­
tics (tissue source, constituitive or inducible). Unfortunately, this simplistic 
nomenclature created substantial ambiguity by understating the subtle complexi­
ties of the NOS isoforms. For example, the neuronal isoform is present in skeletal 
muscle (23), neurons express both neuronal and endothelial forms (24), endothe­
lial cells express both constitutive and induced forms (25), and the expression of 
the constituitive isoforms can be upregulated (see Table 1). To reduce this con­
fusion, this chapter will use nomenclature proposed by Forstermann et al. (19) 
and endorsed by Nathan and Xie (22). 

Glia express two forms of NOS, similar to those found in other cell types: NOS 
I, a constituitive form (26-30) and NOS II, an inducible form (13-16,31). Synthe­
sis of NO by both isoforms consumes L-arginine, molecular 02, and NADPH, and 
requires flavin adenine dinucleotide, flavin mononucleotide, and tetrahydrobiop­
terin in a five-electron oxidation of the guanidino moiety of arginine (14,19,22). 
Depending on the cell type, NOS I is distributed in the soluble or particulate frac­
tions (23,32-36). In general, NOS II is a cytosolic enzyme (37,38), although micro­
glial NOS II is localized to the cytosolic and particulate fractions (39). 

The biosynthesis of NO is highly regulated (40). The activity of NOS I is con­
trolled by calcium and calmodulin, whereby cellular exposure to certain agents 
will elicit an increased intracellular Ca2+ and provoke transient NOS I activation. 
Kinase-mediated phosphorylation of NOS I provides additional mechanisms of 
regulatory control (41,42). This contrasts sharply to the gene-mediated regulation 
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of NOS II, whereby de novo protein synthesis occurs following cellular exposure 
to a variety of imrnunostimulatory agents. Once expressed, NOS II biosynthesizes 
prodigious quantities of NO for hours to days. Although NOS II is tightly associ­
ated with calmodulin, NOS II is unlike NOS I in that its catalytic activity is indepen­
dent of elevated intracellular Ca2+ (43). It is for this reason that NOS II activity is 
universally regarded as "Ca2+ -independent." 

2.1.2. Molecular Biological Characteristics 
Both NOS I and NOS II were first cloned from rodent cerebella and macro­

phages, respectively (41,42), and from astrocytes as well (44). The protein sequence 
homology between NOS I and II is - SOO!o, confirming that expression is governed 
by distinct genes. Cloned rodent astrocyte NOS II is > 92% homologous to mouse 
macrophage NOS II (44). NOS II appears to be conserved across species, as 
rodent macrophages, rodent smooth muscles, rodent hepatocytes, and human 
hepatocytes share an - 80-90% protein sequence homology. Of note is that a 
recent report suggests the existence of multiple NOS II subtypes (45). 

Molecular cloning studies identified an unexpected, yet limited sequence homol­
ogy between the Cterminus of NOS and NADPH cytochrome P450 (cP450) re­
ductase (a member of a supergene family responsible for the biotransformation of 
drugs and xenobiotics) (41). Furthermore, NOS possessed the unique UV-visible 
spectral signature of cP450, a characteristic of the heme chromophore contained 
in both enzyme systems. Although this information intimates that NOS and cP450 
are of the same supergene family, the current perspective is that these enzymes are 
distantly related. The limited homology between these enzymes merely suggests 
that NOS evolved with the incorporation of the cP450 heme chromophore for 
efficient catalysis ( 46). 

2.1.3. Modulation of NOS Expression 
A plethora of agents or diseases modulate NOS expression through transcrip­

tional or posttranscriptional mechanisms (Tables 1 and 2). Although many com­
pounds activate the appropriate signal transduction machinery for de novo NOS, 
numerous other agents inhibit NOS transcription or translation, diminish NOS 
mRNA stability, or enhance NOS protein degradation (19). Also of interest are those 
pharmacologic agents that can inhibit NOS activity (20). A number of L-arginine 
analogs (e.g., aminoguanidine, NG-monomethylarginine, NG-nitroarginine) irre­
versibly inhibit NOS by a suicide substrate mechanism (47-49). Of note, NO itself 
impairs NOS activity by product inhibition (50) or reduced activation of the 
nuclear transcriptional factor, NFxB (51). 

2.2. NOS II Within the CNS 

NO biosynthesis evolved as a primitive immunologic response against invading 
pathogens. Immunological production of NO is a nonspecific host defense mecha­
nism that indiscriminately attacks both host and pathogen targets. However, the 
mechanisms and extent to which NO mediates CNS toxicity depend on the cell 
type, the biochemical status of the cellular microenvironment, and the molecular 
target (18,52-54). 
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2.2.1. Cell Targets of NO Toxicity 
Neurons (12,55), oligodendrocytes (56), choroid epithelium of the blood-CSF 

barrier (57), and endothelial cells of the blood-brain barrier (58,59) are suscepti­
ble to NO toxicity evoked by inflammatory mediators. Microglia and astrocytes, 
the sources of NOS II activity, are themselves surprisingly more resilient to NO 
cytotoxicity for reasons not fully understood (60,61). 

2.2.2. Biochemical Mechanism(s) of NO Toxicity 
It is presently thought that endogenous NO is biosynthesized as a free radical 

with one unpaired electron, i.e., NO•. In this form, NO• possesses sufficient 
hydrophobicity to diffuse across biological membranes either to modulate signal 
transduction pathways or disable invading pathogens (54, 62). NO• is chemically 
reactive toward molecular oxygen (02) or superoxide anion (02•- ), depending on 
the concentrations of NO, oxygen tension, and superoxide dismutase (SOD) activity 
of the local milieu (54). Alternatively, the oxidative-reductive status of the cellular 
microenvironment may facilitate a one-electron redox reaction of NO•, producing 
either nitrosonium ion (NO+) or nitroxyl anion (NO-) (62-64). All three forms of 
NO (NO•, NO+, and NO-) can biochemically react with transition metals, free 
sulfhydryl residues, or the nucleophilic centers of deoxyribonucleic acids and 
tyrosine residues either through direct NO• attack or by NO group transfer involv­
ing NO+ or NO- (62-65). 

The major mechanism of NO toxicity is through the reaction of NO• with 02•­
to form ONOO- (peroxynitrite anion). Under conditions of normal cellular func­
tion, the intracellular concentrations of NO• and 02•- are relatively low. 02•- is 
effectively scavenged by SOD, and NO is constituitively produced at concentra­
tions sufficient for modulation of second-messenger pathways. However, during 
an inflammatory response, microglia elaborate prodigious quantities of both NO• 
and 02•- (66-68), such that NO effectively competes with SOD for reaction with 
02•- (53,54,69). This results in a major fraction of NO•, which is transmuted into 
cytotoxic levels of ONOO- (53,54,69, 70). ONOO- is sufficiently stable to diffuse 
across several cell membranes to effect toxicity through a variety of mechanisms 
(see Section 2.2.3.). ONOO- can be "detoxified" through protonation to peroxy­
nitrous acid and subsequent decomposition to the relatively less toxic species, 
hydroxyl radical (HO•) and nitrogen dioxide (N02), or to nitrate via nitric acid 
(e.g. ONOOH- HN03 .. NOr + H+) (53,54,69). 

2.2.3. Molecular Targets of NO Toxicity 
The extent of NO• toxicity is highly dependent on the number of insults sus­

tained by critical molecular target(s). NO depresses mitochondrial respiration by 
nitrosylation of the iron-sulfate centers of several key enzymes, e.g., mitochondrial 
aconitase, NADH:ubiquinone oxidoreductase, and succinate:ubiquinone oxido­
reductase (71-74). This subsequently promotes an intracellular mobilization and 
loss of iron. Nitrosylation of thiol residues stimulates auto-ADP ribosylation of 
the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lead­
ing to a loss of functional activity (75). NO can impair protein synthesis (76), DNA 
synthesis (77), and elicit DNA mutagenesis through nitrosative deamination (78). 



336 Boje 

Table 2 
Modulation of CNS NOS II Expression by Various Agents or Pathologies 

Enhanced expression 
In vivo 

Borrelia burgdorferi spirochetes 
Borna disease virus 
Cerebral ischemia 

Transient global 
Transient focal 

CMV 
Excitotoxic lesions 
EAE 

IL-2 
IL-12 
LPS 

Lymphocytic choriomeningitis virus 

Neurotropic coronavirus 
(JHM hepatitis strain) 

Nerve injury 
(trauma, transection, ligation, or 

avulsion) 
Rabies virus 

In vitro 
{3 amyloid protein + IFN--y 
Glutamate 
IL-1{3 

+ IFN--y 

IFN --y + TNF.a 
LPS 

+ TFNa 
+ IFN--y 

+ IFN--y + TNFa 
Mycoplasma 
Pneumococcal cell wall components 
Protein kinase C activators 
Phorbol 12-myristate 13-acetate 

(PMA) + IFN--y 

Specie/tissue/ cell type 

Rodent mixed glia (191) 
Rodent brain (179) 

Rodent hippocampal astrocytes (153) 
Rodent striatal astrocytes, microglia/ 

monocytes, endothelia (154) 
Human retinal glia (164) 
Rodent astrocytes and microglia (152) 
Rodent spinal cord-infiltrating 

macrophages (155), rodent brain (179) 
Human (101) 
Rodent astrocytes and microglia (182) 
Rodent meninges and choroid epithelia 

(57,168) 
Rodent meninges and choroid epithelia 

(169) 
Rodent spinal cord astrocytes (181,192) 

Rodent astrocytes (151,193) 

Rodent brain microglia and infiltrating 
macrophages (157,179) 

Rodent microglia (134,135) 
Rodent astrocytes (116) 
Human fetal astrocytes (194) 
Human fetal astrocytes (194), rodent 

astrocytes (195,196) 
Human fetal astrocytes (194) 
Rodent cerebellar neurons (197) 

astrocytes and microglia (14,117) 
Human fetal microglial cells (115) 
Rodent cerebral endothelia (59,146) 

microglia and meningeal fibroblasts 
(56,57) 

Rodent retinal MUller glia (198) 
Mixed rodent glia (199) 
Rodent astrocytes (200) 

Rodent microglia (56) 
Rodent astrocytes (201) 

(continued) 
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Table 2 (Continued) 

SlOO~ (glial-derived growth factor) 
TNFa 

Diminished expression 
In vivo 
In vitro 

~-adrenergic agonists 
(norepinephrine, isoproterenol, 
dibutyryl cyclic AMP) 

Angiotensin II 
ATP 
Basic fibroblast growth factor 

(b-FGF) 
2,4-Diamino-6-hydroxypyrimidine 

(inhibitor of tetrahydrobioptern 
synthesis) 

Dexamethasone 

Ethanol 
Glutamate 
IL-4 

IL-10 

NO 

Transforming growth factor ~1 
(TGF-~1) 

Tyrosine kinase inhibitors 
(genistein, tyrphostin-25) 

Specie/tissue/ cell type 

Rodent astrocytes (202) 
Meningeal fibroblasts (117) 

No published data 

Rodent astrocytes (203) 
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Rodent astrocytes (but not microglia) (204) 
Rodent astrocytes (205) 

Human fetal microglia (206) 
Fibroblasts, endothelial cells, 

macrophages (207) 

Rodent astrocytes (199,201) and 
meningeal fibroblasts ( 117) 

c6 glioma cells (208) 
Rodent astrocytes (205) 
Human fetal astrocytes (194), 

rodent astrocytes (209), 
rodent macrophages (210) 

Human fetal astrocytes (194) 
rodent astrocytes (209), 
rodent macrophages (211) 

Human fetal microglia (51), 
rodent astrocytes (212) 

Human fetal astrocytes (194), rodent 
astrocytes (195), rodent microglia (56), 
rodent peritoneal macrophages (213,214) 

Rodent astrocytes (201,215) 

Additionally, NO-mediated DNA damage also involves nitrosylation of poly(ADP­
ribose) synthetase (PARS), thereby increasing PARS activity with a consequent 
decrease in cellular energy stores in compromised neurons (79). 

Compared to NO• or 02•-, ONOO- is a much more potent oxidant, possessing 
substantially greater reactivity toward critical cellular components (80-82). ONOO­
is far more lethal to neurons than to astrocytes, in part because of the limited neu­
ronal supply of glutathione, a thiol that affords limited protection against ONOO­
toxicity (71). ONOO- can wreak cellular havoc by indiscriminate oxidation of 
tissue sulfhydryls (83) or lipid peroxidation of membranes (84). SOD can catalyze 
ONOO- to form an intermediate complex (SOD-NO+) capable of nitrating tyro­
sine residues (70,85,86). Superfluous nitration of proteins may alter function 
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through conformational changes or blocked phosphorylation/ dephosphorylation 
sites. It is hypothesized that the mutations in SOD observed in patients with 
amyotrophic lateral sclerosis may contribute to an increased nitration of proteins 
(especially neurofilaments) and impaired phosphorylation (69,87). Also tantaliz­
ing is the possible antigenicity of nitrosylated or nitrated proteins in provoking 
autoimmune disease processes (54). Without a doubt, excessive amounts of NO• 
or ONOO- are cellular poisons. 

2.3. The NOS II Expression Conundrum: Rodent vs Human 
2.3.1. NOS II Expression and Activity in Humans 

The controversy surrounding the expression (or lack thereof) of NOS II in 
humans has reached an intensity of polemical proportions. With the appropriate 
stimuli, NOS II is faithfully expressed in a diversity of rodent cell types, especially 
macrophages. However, NOS II is not reliably expressed in human monocytes, 
the counterparts of rodent macrophages. In spite of this species difference, 
human NOS II expression is restricted to fewer cell types than the rodent (e.g., 
human hepatocytes [88], chondrocytes [89], mesangial cells [90], keratinocytes 
[91], pulmonary epithelial cells [92,93], endothelia [94], retinal cells [95], islets of 
Langerhans [96], and astrocytes-see Section 2.3.2.). Indirect support for NOS II 
activity in humans derives from early reports of elevated N02 and N03 (stable 
degradation products of NO) in patients with systemic sepsis (97,98), meningitis 
(99,100), or cancer patients receiving interleukin-2 (IL-2) therapy (101,102). Un­
equivocal evidence of human NOS II expression was obtained with the molecular 
cloning of NOS II from human hepatocytes (88) and chondrocytes (89) and by the 
localization of the human NOS II gene to chromosome 17 (103). 

2.3.2. Glia NOS II: Similarities and Differences in Rodent and Humans 
As is the case with human vs rodent macrophages, the expression of NOS II in 

the human CNS is just as controversial, and depends on the cell type, stimulatory 
agent, and culture conditions. NOS II is robustly induced in rodent astrocytes and 
microglia by a variety of agents (Table 2). This sustained production of glial NO is 
sufficient to cause oligodendroglia! or neuronal cell death in cocultures (12,13,56, 
104). However, human glia present a slightly different scenario. NOS II can be 
convincingly induced in human fetal astrocytes, whereas human microglia weakly 
express NOS II (if at all). The addition of HIV1 envelope proteins or inflamma­
tory cytokines (IL-1/3 or IL-1/3 plus IFN--y or TNFa) to cultured human fetal 
astrocytes vigorously induced NOS II (105-109), as measured by culture media 
concentrations of N02 and N03, NOS II mRNA, NADPH diaphorase histo­
chemistry (a relatively specific NOS protein marker [110, 111]) and pharmacologic 
inhibitors of NOS activity. Unlike rodent glia, LPS failed to evoke NOS II in 
human glia. 

The data for NOS II expression in human microglia are not nearly as persuasive 
as that for human fetal astrocytes. Primary cultures of human microglia (either 
fetal or postmortem adult) fail to respond to any known inducer of NOS II (108, 
109,112,113). A slight, but unconvincing increase in culture media N02 and N03 
was observed for fetal and adult microglia stimulated with LPS IFN--y (114). How-
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ever, a recent report detected statistically significant amounts of N02 and NOS II 
mRNA in ramified human fetal microglia on stimulation with LPS + TFNa 
(115). The discrepancy among these studies may be attributable to the use of pri­
mary microglial cultures passaged one to three times vs older, ramified microglia 
passaged 48-50 times. Unquestionably, more work is needed to understand NOS 
II expression, or lack thereof in human microglia. 

3. EVIDENCE OF DELETERIOUS NOS ACTIVITY IN CNS DISEASES 

Excessive NOS activity is implicated in many human neurological diseases and 
animal disease models. The following subsections discuss the in vitro or in vivo in­
volvement of NO toxicity in a variety of CNS diseases. 

3.1. In Vitro Studies of Glial NO Neurotoxicity 

3.1.1. NOS 11-Mediated Neuronal and Oligodendroglia[ Cell Death 
Neurons and oligodendrocytes are the primary targets of glial-derived NO (12, 

13,55,56). Several studies utilizing rodent glial-neuronal coculture systems docu­
ment the neurotoxic effects of NO derived from microglia (12,13), astrocytes 
(55,116), or meningeal fibroblasts (117) (although one study does not support 
these findings [1181). Although human microglia generally fail to express NOS II 
reliably (112) (see Section 2.3.2.), cytokine-stimulated human fetal astrocytes do 
faithfully express NOS II, with consequent cytotoxicity to fetal neurons (119). 

There is considerable debate regarding whether NO toxicity occurs by necrosis 
or apoptosis. Cortical neurons undergo apoptosis or necrosis, depending on the 
concentration and duration of NO exposure (120). Although oligodendrocytes 
(but not microglia or astrocytes) undergo a necrotic death (61), macrophages (121, 
122) and undifferentiated PC12 cells (123) die by apoptotic mechanisms on expo­
sure to NO• or ONOO-. Moreover, murine macrophages mediate apoptosis in 
target cells through the elaboration of NO (124). 

3.1.2. NOS II Enhancement of N-Methyl-D-Aspartate Neurotoxicity (NMDA) 
NMDA receptors are a subset of glutamate receptors that serve as important 

regulators of physiological CNS functions. In cell-culture studies, excessive NMDA 
receptor activation causes neuronal toxicity (125,126). In vivo, NMDA receptors 
are suspected to have a significant, deleterious role in cerebral ischemia, epilepsy, 
hypoxia, hypoglycemia, traumatic brain injury and possibly Huntington's disease 
(127,128). 

Although excessive NOS I activity is implicated as an important mediator of 
NMDA neurotoxicity (18,129), recent evidence identified a contributing role of 
NOS II in delayed neuronal death. Glutamate application to astrocytic-neuronal 
cocultures stimulated the time-dependent development of intense glial NADPH 
diaphorase staining with attendant neuronal death (116). Certain brain insults, 
e.g., ischemia and trauma, provoked both cytokine expression and overactivation 
of NMDA receptors (130). In glial-neuronal cocultures, cytokine-induced NOS II 
expression augmented the neurotoxic effects of NMDA (130,131). Furthermore, 
the extent of neuronal death was attenuated by NOS inhibitors. Postulated mech­
anisms for NOS II potentiation of NMDA toxicity involves: 
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1. The generation of ONOO"- ; 
2. Inhibition of astrocyte glutamate reuptake transporters; and 
3. Inhibition of astrocyte glutamine synthetase (130,131). 

3.1.3. NOS II and Amyloid-(3-Induced Neurotoxicity 
Although the etiology of Alzheimer's disease is unknown, it is suspected that 

amyloid-(3 plaques are somehow involved in neuronal loss. What is unclear is 
whether the plaques contribute to or are a consequence of the underlying pathol­
ogy. Although some studies have demonstrated that amyloid-(3 is directly neuro­
toxic in cell cultures (132,133), other reports identify an indirect mechanism, 
involving amyloid-(3 induction of NOS II (134,135). IFN--y and amyloid-(3 frag­
ments stimulate NOS II expression and activity in rodent microglia (134,135) or 
the neuroblastoma cell line MES 23.5 (136). However, one study does not support 
an NO neurotoxic effect initiated by amyloid-(3 (137). Companion studies utilizing 
human astrocytes are presently lacking. 

3.2. In Vivo Studies Implicating Glial NO Toxicity 

3.2.1. Permeability Alterations in the Blood-Brain Barrier 
Alterations in blood-brain barrier function are evident in multiple sclerosis 

(MS) (138,139), HIV-1 dementia (140), cerebral ischemia (141), brain tumors 
(142), and meningitis (143). Transient loss of blood-brain barrier integrity is a 
putative initiating event in Rasmussen's epilepsy (144,145). Given that excessive 
NO synthesis may be a pathological process involved in a number of these disease 
states (see following sections), it is tempting to speculate that NO might be involved 
in permeability changes of the blood-brain barrier. 

Morphologically, the blood-brain barrier consists of astrocytic processes envel­
oping cerebral endothelial capillaries. Support for the hypothesis that excessive 
production of NO mediates blood-brain barrier disruption is derived from in vitro 
studies identifying NOS II induction in human astrocytes (105,106), fibroblasts 
(117), and endothelial cells (94,146). In rats, intracisternal administration of LPS 
provoked blood-brain and blood-CSF barrier disruption, accompanied by men­
ingeal inflammation and NO synthesis (47,57,58,147). Treatment with a specific 
NOS II inhibitor, aminoguanidine, during meningeal inflammation significantly 
diminished meningeal NO production and preserved normal blood-brain and 
blood-CSF integrity (57,58). 

3.2.2. Brain Tumors 
Immunohistochemistry techniques were used to identify increased NOS I and II 

expression in human glioma specimens (148). The authors speculate that NOS 
expression may promote tumor survival. 

3.2.3. Brain Insult: Cerebral Ischemia, Excitotoxic Lesioning, and Trauma 
Increased NOS II and NOS I activity (see Section 3.1.2.) (149,150) is thought to 

contribute to neuronal death caused by brain insults. Brain lesions caused by stab 
wounds (151) or injection of the excitotoxin quinolinic acid (152) were heavily 
populated with NOS 11-reactive astrocytes and microglia. Reactive astrocytes, but 
not microglia, expressed NOS II in an in vivo rodent model of ischemic insult 
(153). In another study of focal cerebral ischemia, the time-course of NADPH-
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diaphorase staining indicated the de novo expression of NOS II in endothelia, 
astrocytes, and microglia as well (154). Aminoguanidine, a specific NOS II inhibi­
tor, significantly attenuated the infarct region caused by focal ischemia (150). 

3.2.4. Experimental Autoimmune Encephalomyelitis (EAE) 
EAE is thought to represent an animal model of MS (see Section 3.2.7.). EAE 

animals demonstrated NOS II-positive cells in perivascular regions (most likely 
infiltrating macrophages), increased NOS II mRNA (155), and elevated NO (156) 
and N02 /N03 (155,157-159). The severity of EAE in mice was related to the 
increased expression of NOS II (1 55). Administration of amino guanidine delayed 
the onset and development of the disease (160). 

3.2.5. Nervous System Complications 
of Human Immunodeficient Virus (HIV-1) Infection 

3.2.5.1. NO AND HIV-1-AssociATED DEMENTIA 

Continuing debate surrounds a potential role of NO in AIDS dementia (140, 
161,162). In vivo evidence for NOS activity is scant and is generally derived from the 
detection of increased NOS II mRNA transcripts in postmortem brains infected with 
HIV-1 (163). Using in vitro cell culture, Koka et al. established that human glia produce 
NO and NOS II mRNA in response to HIV-1 envelope proteins (107). 

3.2.5.2. NO AND RETINITIS IN HIV-1 DISEASE 

Cytomegalovirus (CMV) infection of the eye is a prevalent complication of HIV 
disease. Dighiero et al. observed that MUller glial cells of CMV-infected retinas 
were positive for NOS, as detected by NADPH-diaphorase staining and NOS 
immunohistochemistry (164). 

3.2.6. Meningitis 
Excessive NO synthesis during meningitis (47,57,165) is intimately involved in 

disturbances of cerebrovascular permeability (147), cerebral blood flow (165,166), 
and pial arteriolar dilatation (165). Many lines of evidence suggest that NO may 
contribute to these permeability alterations. Elevated CSF concentrations of N02 I 
N03 were detected in patients diagnosed with bacterial meningitis (99,100,167). 
Immunohistochemical evidence of NOS II expression was observed in the epiplexus 
cells and choroid epithelium of postnatal rats previously treated with intracister­
nal LPS (168). In a rodent model of bacterial meningitis, the synthesis of NO by 
rat meningeal and choroid plexi tissues was linked to permeability increases in the 
blood-CSF and blood-brain barriers (58,147). The administration of NOS inhibi­
tors (e.g., aminoguanidine or NG-nitroarginine) during meningeal inflammation 
significantly diminished meningeal NO production, attenuated white blood cell 
migration into the CSF, and prevented barrier disruption (57,58,165). Similarly, 
the neuropathology and clinical course of meningeal inflammation elicited by lym­
phocytic choriomeningitis virus were correlated with the expression of NOS II (169). 

3.2. 7. Multiple Sclerosis 
MS is a chronic, inflammatory demyelinating disease of unknown etiology. A 

characteristic of this autoimmune disease is the development of demyelinated pla­
ques associated with perivascular infiltrates, activated astrocytes, microglia, and 
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cytokines (IL-l, TNFa, and IFN--y) (56,170). Evidence for NO toxicity during the 
inflammatory, destructive process derives from observations of: 

1. Elevated CSF N02 and N03 (171) 
2. Circulating antibodies against S-nitrosocysteine (172); 
3. Intense staining of active lesions with NADPH-diaphorase activity (a marker of NOS 

-see Section 2.3.2.) (170,173); and 
4. Increased human NOS II mRNA in patients with active MS (173). 

Moreover, MS patients have an abnormal disruption of the blood-brain barrier 
(1 74), which could be owing to NO toxicity of the cerebral vasculature (see Section 
3.2.1.). In vitro studies with rodent astrocytes, microglia, and oligodendrocytes 
strongly implicate toxicity owing to NOS II activity (56,60). 

3.2.8. Viral, Parasitic, and Fungal CNS Infections 
Bacterial (see Section 3.2.6.), fungal, parasitic, and viral infections elicit NOS 

II expression and activity. Although excessive NO elaboration provokes neuro­
toxicity, NO also inhibit viral replication (175). NO is prolifically synthesized by 
rodent microglia and rodent or human astrocytes infected with Cryptococcus neo­
formans (106,113), Toxoplasma gondii (112,176-178), Borna viral disease (179, 
180), corona virus (1 81), rabies (1 57, 179), and vesicular stomatitis virus (1 82, 183). 

4. CONCLUSIONS AND FUTURE DIRECTIONS 

This chapter presents an overview of the role of glial-derived NO in the etiology 
of CNS diseases. Convincing evidence supports the hypothesis that NO is an im­
portant inflammatory product of animal and human neurological damage. More 
in vivo research is needed to underscore a link between neurotoxicity and NO. An 
equally important issue is the potential utility of NOS inhibitor therapy in 
humans. Pharmacologic intervention holds great promise for persons suffering 
from CNS afflictions. However, the biomedical research community and pharma­
ceutical industry must respond to the challenge of NOS inhibitor therapy: the 
need for selective, potent NOS inhibitors that effectively cross the blood-brain 
and blood-CSF barriers targeted to the diseased region. Clearly, many tantalizing 
questions persist, highlighting the need for more clinical and basic research. 
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