Skip to main content

Characterization and Functional Attributes of Protein Isolates

Biochemical Applications

  • Protocol
Characterization of Proteins

Part of the book series: Biological Methods ((BM))

Abstract

In this chapter we consider the properties of proteins isolated for their native function. The focus is on the native state of the protein and the subtle way in which evolution has tailored polypeptide chains to produce highly specific secondary, tertiary, and quarternary structure. For some proteins, this characterization is complete to atomic resolution (e.g., lysozyme, hemoglobin). This is because of the major efforts and technical advances in molecular biology in recent decades. It is important to recognize that for biochemical use, however, isolated material can be equally well characterized in terms of its “activity,” i.e., the ability to perform its intended function. The latter approach does not necessarily refer to any molecular configuration or even to the presence of molecules at all. This is particularly true for pharmacology, in which functional characteristics are largely pragmatic. For example, the active macromolecule in antisera is identifiably proteinaceous, but the British Pharmacopeia characterizes scorpion venom antiserum as a serum obtained from healthy animals having not more than 17.0 wt/vol % protein, and sufficient potency to neutralize the maximum amount of venom from a single sting (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Br. Pharmacopoeia vi, 863 (1980).

    Google Scholar 

  2. R. H. Haschemeyer and A. E. V. Haschemeyer, in Proteins—A Guide to Study by Physical and Chemical Methods Wiley, New York (1973).

    Google Scholar 

  3. C. Tanford, in Physical Chemtstry of Macromolecules Wiley, New (1961).

    Google Scholar 

  4. D. B. Wetlaufer, in Advances in Protein Chemistry (C.B. Anfinsen, C B. Anfinson, M. L. Anson, K. Bailey, J. T Edsall, eds ) Academic, New York and London (1962).

    Google Scholar 

  5. W. B. Gratzer, in Poly-α-Amino Acids (G. D. Fasman, ed ) Marcel Dekker, New York (1967)

    Google Scholar 

  6. J. T. Yang, personal commumcation.

    Google Scholar 

  7. W. Moffitt, J. Chem. Phys. 25 (3), 467–478 (1956).

    Article  CAS  Google Scholar 

  8. S. Beychok, in Poly-α-Amino Acids (G. D. Fasman, ed.) Marcel Dekker, New York (1967).

    Google Scholar 

  9. E. J. Ambrose and A. Elliott, Proc. Roy. Soc. A205, 47–60 (1951).

    Google Scholar 

  10. D. C. Phillips, Proc. Natl. Acad. Sci. USA 57, 484–495 (1967).

    Article  CAS  Google Scholar 

  11. M. F. Pentz, Eur. J Biochem. 8, 455–466 (1969).

    Article  Google Scholar 

  12. T. L. James, in Nuclear Magnetic Resonance Biochemistry Academic, New York (1975).

    Google Scholar 

  13. C. C. McDonald and W. D. Phillips, J, Am. Chem. Soc. 91, 1513–1521 (1969)

    Article  CAS  Google Scholar 

  14. P. J. Lillford, in Plant Proteins (G. Norton, ed.) Butterworths (1978).

    Google Scholar 

  15. I. D. Campbell, in N.M.R. in Biology (R. A. Dwek, ed.) Academic, London (1977)

    Google Scholar 

  16. I. D. Campbell, S. Lindskog, and A. I. White, J. Mol. Biol. 98, 597–614 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. B. A. Levine and J. R. P. Williams, Proc. Roy. Soc. Lond. A345, 5–22 (1975).

    Google Scholar 

  18. K. Wuthrich, Abstracts I.U.P.A.B. 8th International Biophysics Symposium, Bristol, UK (1984)

    Google Scholar 

  19. B. W. Low, J. Am. Chem. Soc. 74, 4830–4834 (1952).

    Article  CAS  Google Scholar 

  20. J. M. Creeth, Biochem. J. 51, 10–17 (1952).

    PubMed  CAS  Google Scholar 

  21. O. Jardetsky and G. C. K. Roberts, ed., NMR in Molecular Biology Academic, New York (1981).

    Google Scholar 

  22. D. W. Urry and R. Walter, Proc. Natl. Acad. Sci. USA 68(5), 956–958 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. A. I. Richard Brewster and V. J. Hruby, Proc. Natl. Acad. Sci. USA 70(12), 1306–3809 (1973).

    Google Scholar 

  24. J. P. Meraldi, V. J. Hruby, and A. I. Richard Brewster, Proc. Natal. Acad. Sci. USA 74(4), 1373–1377 (1977).

    Article  CAS  Google Scholar 

  25. J. B. Fleischman, R. H. Pain, and R. R. Porter, Arch. Biochem. Biophys. (suppl.) 1, 114–180 (1962).

    Google Scholar 

  26. G. M. Edelman, B A. Cunningham, W. E Gall, P. D. Gottgheb, U.R.S. Rutishauser, and M. J. Waxdal, Proc. Natl. Acad. Sci. USA 63, 78–85 (1969).

    Article  PubMed  CAS  Google Scholar 

  27. R. J. Poljak, L. M. Amzel, H. P. Avey, L. N. Becka, and A. Nisonoff, Nature New Bio. 235, 137–140 (1972).

    Article  CAS  Google Scholar 

  28. S. Rudikoff, M. Potter, D. M. Segal, E. A. Padlan, and D. R. Davies, Proc. Natl. Acad. Sci. USA 69, 3689–3692 (1972).

    Article  PubMed  CAS  Google Scholar 

  29. E. A. Padlan, D. R. Davies, I. Pecht, D. Givol, and C. E. Wright, Cold Spring Harbor Symposium (1976).

    Google Scholar 

  30. R. A. Dwek, I. D. Campbell, R. E. Richards, and R. J. P. Williams, ed., NMR in Biology Academic, London (1977).

    Google Scholar 

  31. E. F. Osserman, R. E. Canfield and S. Beychok, eds., Lysozyme Academic, New York (1974).

    Google Scholar 

  32. A Fleming, Proc. Roy. Soc. Land. B93, 306–317 (1922).

    Article  Google Scholar 

  33. P Jolles,Angew Chem. 8(4), 227–294 (1960).

    Google Scholar 

  34. C. C. F. Blake, D. F. Koenig, G. A. Mair, A. C. T. North, D. C Phillrps, and V. R. Sarma, Nature 206, 757–761 (1965).

    Article  PubMed  CAS  Google Scholar 

  35. C. C. F. Blake, L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Proc. Roy. Soc. Land. B167, 378–388 (1967)

    Article  Google Scholar 

  36. J. S. Cohen, Nature (Lond.) 223, 43–46 (1969).

    Article  PubMed  CAS  Google Scholar 

  37. H. Sternlicht and D. Wilson, Biochemistry 6, 2881–2892 (1967)

    Article  PubMed  CAS  Google Scholar 

  38. G. P Hess and J. A. Rupley, Ann. Rev. Biochem. 40,1013–1044 (1971)

    Article  PubMed  CAS  Google Scholar 

  39. A. Isaacs and J. Lmdenmann, Proc. Roy. Soc. B Land. B147, 258–263 (1957).

    Article  Google Scholar 

  40. S. P. Colowick and N. O. Kaplan, eds., Methods m Enzymology vol. 78, Academic, New York (1981)

    Google Scholar 

  41. S. P. Colowick and N 0. Kaplan, eds., Methods in Enzymology vol 79, Academic, New York (1981).

    Google Scholar 

  42. W. P. Levy, M. Rubenstein, J. Shively, V. de1 Valle, C-Y. Lai, J. Moschiva, L. Brink, L. Cresber, S. Stein, and S. Prestka, Proc. Natl. Acad. Sci. USA 78(10), 6186–6190 (1981).

    Article  PubMed  CAS  Google Scholar 

  43. Economist 293, 86 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Humana Press Inc.

About this protocol

Cite this protocol

Lillford, P.J. (1988). Characterization and Functional Attributes of Protein Isolates. In: Franks, F. (eds) Characterization of Proteins. Biological Methods. Humana Press. https://doi.org/10.1007/978-1-59259-437-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-437-5_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-109-8

  • Online ISBN: 978-1-59259-437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics