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Abstract 
The solution of new classes of application problems in the fields of continuum mechan­
ics, including the problems of three-dimensional aerodynamics and hydrodynamics, space 
physics, and environmental science often require considerable computer resources which 
are often too great even for the leading and best equipped research centers. We believe this 
problem can be solved by employing up-to-date methods based on irregular adapting grids. 
For the solution of two-dimensional elliptic problems an adaptive projection-grid method 
has been designed. The solution is sought as a piecewise-polynomial function. Overdeter­
mined system collocation equations of the differential equation and special mixed conform 
conditions are used for defining of the coefficients of these polynomials. It is sought on a 
sequence of grids adapted to the singularities of the solution and to the domain geometry, 
see also Shokin, Sleptsov (1995) and Sleptsov, Shokin (1995). 

Comprehensive grid generation method which enables the user to generate both adap­
tive and fixed grids in a unified manner on surfaces and in domains was developed. Namely 
the adaptive grid in the domain is formed as the projection of the uniform grid from a 
monitor surface. The method relies on a variational approach of generating uniform grids 
on hypersurfaces, see Liseikin (1991 ). 
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1 AN ADAPTIVE PROJECTION-GRID METHOD FOR THE 
SOLUTION OF TWO-DIMENSIONAL ELLIPTIC PROBLEMS 

1.1 Introduction 

In the solution of elliptical problems with a small parameter of higher derivatives boundary 
and/or internal layers may arise. Adaptive methods are required. In the grid methods the 
grid must be significantly condensed in the vicinity of those layers in order to get a good 
solution without consuming too much computer time. Most methods of this kind (finite­
difference or projection grid) are not when the cell deformations are great, see Aubin 
(1972), Ciarlet (1978), Strang, Fix (1973). 

1.2 Approximation equations 

Let us consider the boundary problem written in the Cartesian rectangular system of 
coordinates: 

(1) 

av(x) 
'Y(x)--a;- + 5(x)v(x) = >.(x), X= (:z:l, :z:2) E an. (2) 

Here a11 = a11(:z:1, :z:2), a12 = a12(:z:11 :z:2), ... ; sis the unit vector of the external normal. 
Let us assume that Equ. (1) is elliptical, the problem (1), (2) is uniquely solvable and its 
solution is a sufficiently smooth function. 

In order to obtain an approximated solution of the problem (1), (2) let us introduce 
in then domain triangulation 9 = {Ti}~ where Ti are triangles among which there can 
be also curvilinear triangles if they are adjacent to the boundary of the domain an. The 
approximated solution is sought in the form of a piecewise quadratic function. For its 
representation in the triangle 7i and in order to obtain the respective system of equations 
we shall introduce local coordinates (yfi), y~i)) which are obtained from the initial system 
of coordinates by means of tension, shear and turn. The approximate solution of the 
problem in the triangle Ti is sought in the form of a quadratic polynomial. 

(3) 

On each boundary aTi; between the triangles Ti and T; we shall specify the conditions of 
coincidence 

(4) 

where Si, s;, are unit vectors of external normals to the triangles7i and T;,vi and v; are the 
functions specified in the triangles and respectively. Parameter '1'/i is the empirical function 
of Pi - the perimeter of the triangle Ti and c4 of the half of its greatest side, it has a form 
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of 'f/i = min((o/Pi, (11 (2pi)/~, where constants (0 , (1, ( 2 were selected experimentally so 
as to diminish the number of iterations and increase the accuracy of calculations. After a 
great number of experiments we have taken the values (0 = 1, (1 = 4, ( 2 = 100. 

On refining the solution in triangle Ti the coefficients of the polynomial u are obtained 
from the equations of the collocation of the Equ. (1) at m points inside the closed triangle 
Ti and at then points of the first coincidence conditions (4) or boundary conditions (2) 
(if the triangle is adjacent to the domain boundary). The m equations of collocation of 
the Equ. (1) and the 3n equations of collocation ofthe first coincidence condition (4) (up 
ton equations on the each side of the triangle Ti) can be written in the following form: 

6 

E B~c;iPki = F;, j = 1, ... ,m + 3n. 
k=l 

(5) 

Since m > 1, n > 1 this system is overdetermined. Under its solution we shall understand, 
as usual, vector P.,i minimizing the functional 

m+3n 6 

~(P.,i) = E w; L:(B~c;iPki- F;)2• 

i=l k=l 

Coefficients w; were selected experimentci.lly. From the condition of the minimum of this 
functional we obtain a system of 6 linear algebraic equations 

6 m+3n m+3n 

E E w;B;,.,.B;IiPki = E w;Bl;iF;, l = 1, ... , 6. 
k=l i=l i=l 

Therefore, we have a system of 61 equations with 6/ unknowns where I is the number of 
triangles in the grid. 

1.3 Topography of the grid and iterative process 

We consider the grid as a set of planted trees. In this case the grid topography is described 
as a graph consisting of a certain set of planted trees Gardner (1988) (the similar method 
was employed in Ref. Atlas, Stephenson (1991), Oden, Demkowicz (1991) for the descrip­
tion of irregular grids). At the first stage a certain set of N root triangle meshes {Ti}:=l' 
In the course of more precise definition of the solution described later all or some meshes 
are divided and an approximated solution is calculated on the new grid. Then some of the 
cells are divided again and so on until the required accuracy is achieved or the allocated 
memory is exhausted. 

In order to solve the resulting system of linear algebraic equations the alternating 
Schwartz method is employed, see, for instance, Lebedev, Agoshkov (1983), Nepomnyat­
shikh (1986), Smelov (1982). In this method the initial approximation is specified, the 
domain is subdivided into subdomains and the solution is corrected during transition 
from one subdomain to another. In our case separate cells of the grid 9 1 were subdo­
mains. The by-pass of the grid in the first case was carried out successively- tree by tree. 
This method employs also the iteration convergence accelerating based on the method of 
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Figure 1 The mesh (a, left) and graph (b, right) of the solution of the example 1. 

error projection onto the subspace of residuals i.e. EPSR-accelerating method (Sleptsov, 
1991a, Sleptsov 1991b ). 

The calculations are carried out on the succession of grids. First a rough grid is specified. 
An approximated solution is obtained on this grid. After this the estimator is calculated 
E( :z:1, :z:2) = Ei = canst for x = ( :z:1, :z:2) E Ti where Ei is the local (defined in the triangle 
Ti) norm of the error estimate. The calculation of the estimator will be described in the 
next paragraph. Then the meshes for which the estimator value is high are further refined 
and the solution is calculated on the new grid ~I'· In this case the approximated solution 
obtained on the previous grid ~I is used as the initial approximation. 

1.4 Numerical experiments 

These experiments were carried out with two model problems in which internal as well as 
boundary layers appearing in fields with a complicated form were considered. 

Example 1. A model problem of diffusion-convection type 
t:b.u + (:z:1- a1)u.,1 + (:z:2- a2)u.,2 = 0. (6) 

This equation has the following family of exact solutions. Let rp be an angle and p, = cos rp, 
v =sin rp, p = -(p,a1 +va2), q = va1 -p,a2. Denote Y1 = p,:z:1 +v:z:2+p, Y2 = -v:z:1 +p,:z:2+q, 

G(y) = 0.5 + J,r f~lv'i e-t2 dt. 
Then, as it is easy to check, function u( :z:1, :z:2) = G(y1)G(y2) will be the solution of 

equation (6). The solution of equation (6) was discovered in a unit square n = [0, 1] X [0, 1] 
with boundary conditions u(:z:1, :z:2)lao = G(y1)G(y2). Under low values of the parameter 
E function u(:z:1, :z:2) will have internal layers. Under E = 10-4, rp = 7r /6, a1 = 0.6, a2 = 0.3 
the diagram of this function is shown in Figure 1. It actually coincides (with an accuracy 
to 1% in uniform norm) with the diagram of approximate piecewise-quadratic solution 
obtained on the grid shown in the same figure on the left. Figure 2 shows the dependence 
of the uniform and mean square norms of errors from the number of cells of grid I. The 
numbers on the upper curve in Figure 2 are the number of iterations (for certain points) 



llell 

10"1 

New resource-sparing grid methods 

+ -ll•llc 

x-II•IIL, 

10 

56 

94 

Figure 2 The dependence of the norms of the errors from numbers of cells. 
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which it is necessary to make for convergence. On such grids the error norms of the 
approximate solution considerably exceed the respective norms on adaptive grids. 

Example 2. The solution of Helmholtz equation in a field of complicated 
polygonal shape 

10 2 2)2 17 ( 2 2) 7 ( ) eD.u- u = 3(xl + :1:2 - 6 :1:1 + :1:2 + 10, Xt, :1:2 E n 

I 8u I 8u I u(x) =0, -8 =0, -8 +u =0, r1 n r2 n r. 

where area n and its boundaries ri, i = 1, 2, 3, are shown in Figure 3. External angles 
of the star are uniformly distributed along the circle of radius (0., 1.) R = 1 and its first 
vertex has coordinates (0.,1.), the internal angles are on the circle with radius r = 0.5. 

2 A NEW BASIC METHOD FOR COMPREHENSIVE GRID 
GENERATION 

2.1 Introduction 

Modern computational technologies for the numerical solution of field problems require 
for their successive application the development of Comprehensive Grid Generation Codes 
( CGGC) which will enable the users to generate grids with necessary properties in a unified 
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Figure 3 The mesh (a, left) and graph (b, right) of the solution of the example 2. 

manner for a wide class of domains using state-of-the-art techniques. The efficiency of such 
CGGC is essentially dependent on a reliable basic method which provides an uniform 
environment for the construction of grids. 

Present codes chiefly rely on the elliptic method, based on Poisson's equations with 
control functions providing adaptation. Other methods (algebraic, hyperbolic etc.) play 
an subsidiary role, namely they are applied as an initial guess for the elliptic solver or are 
used for the generation of grids in simple regions or for simple problems. However this 
basic method has at least two serious drawbacks. 

• Control functions cannot provide efficient adaptation simultaneously in several inter­
secting directions. 

• The cells of adaptive grids, obtained by the method can be overturned or degenerated 
even in domains with simple geometry, let alone in complex ones. 

These drawbacks are being overcome in our Institute by developing a new basic method. 
The method relies on a variational approach of generating uniform grids on hypersurfaces 
(Liseikin, 1991). Using this approach one can generate both adaptive or fixed grids in a 
unified mode in domains as well as on their boundaries. Namely the adaptive grid in the 
domain is formed as a projection of the uniform grid from a monitor surface. The monitor 
surface is defined as a surface of some vector (weighting) function over the domain. 

The vector function is determined by the physical solution, combination of its compo­
nents, derivatives, or other variable quantities that must suitably monitor the solution 
behavior. The monitor surface is formed by values of the vector function u( x ). The uni­
form grid on S is transformed into an adaptive grid in X by the operation of projecting. 
The uniform grid in X can be obtained by this approach when the monitor surface co­
incides with X. So the monitor surfaces can play the same role as a control functions in 
elliptic methods. But in comparison with the elliptic methods they can be determined 
more straightforwardly to provide efficient adaptation simultaneously in several intersect­
ing narrow zones. 
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2.2 Formulation of the basic method 

The method of generating uniform grids on hyper-surfaces relies on the minimization of 
a functional of grid smoothness (Liseikin, 1991, 1996a). We shall consider arbitrary n­
dimensional hyper-surfaces lying in the n + k dimensional space, though for the practical 
applications mostly important be n = 2 when generating adaptive grids on the boundaries 
and n = 3 for generating adaptive grids in domains. 

So let srn be an n-dimensional surface in Jr'+lc with a local coordinate system 
( s1 , •.. , sn) = s E R:', defined by the non degenerate transform 

( ) Sn ern _ ( 1 2 n+lc) r s : -+ v , r- r ,r , ... ,r . 

The numerical grid onto srn is defined by mapping the nodes of an uniform grid in some 
reference domain Qn with the transform 

which is the composition of r(s) and some non degenerate mapping s(q) : qn -+ sn. 
The mapping r( s( q)) defines on the surface a new coordinate system ( q\ q2 , ••• , qn) = q 
which generates the local metric tensor arq = {&'J} i, j = 1, 2, ... 'n, whose elements are 
products of the tangent vectors ri = 8rf8qi, that is 

(7) 

and local contravariant metric tensor Gqr {~}. These tensors satisfy the evident 
relation arqGqr =I. 

The functional of grid smoothness on the surface srn is defined in the following form 

In the particular case when the surface srn is a domain X (that is when adaptation is 
not required) the functional has the form: 

where 

and consequently it is the well known functional of smoothness suggested by Brackbill 
and Saltzman in 1982 for smoothing adaptive grids. 
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2.3 Geometrical interpretation 

The smoothness functional can also be described in equivalent form (Liseikin, 1993): 

where Ik, k = n -1, n- denotes the kth invariant of all orthogonal transformations of the 
tensor srq. As I~l2 is associated with the volume of ann-dimensional cell, and I!~; with 
the space of all its faces, it is evident that 

In-1 ~ 1 
T=cL;'(l,)2' 

where l, is the distance between the coordinate surfaces in q,-direction. Therefore the 
functional is an integral measure of grid clustering in all directions and consequently the 
problem of its minimization can be treated as a problem of finding a uniformly clustered 
grid or a uniform grid on the surface which turns out to be the adaptive grid after its 
projecting on the physical domain or its boundary. 

2.4 Relation to harmonic functions 

In terms of the theory of differential geometry the smoothness functional can be inter­
preted as a total energy associated with the mapping q(s): sn ~ Qn, which is inverse to 
s(q) : Qn ~ sn (Liseikin, 1993, 1996b). The function that delivers the minimum to the 
functional of energy is called harmonic. It follows from the theory that if the logic domain 
Qn is convex and diffeomorphic to sn than the harmonic function will presumably be 
one-to-one mapping. So by this method we can construct non-degenerate grids on simply 
connected domains or surfaces regardless the shape of their boundaries and therefore to 
eliminate the second drawback of the elliptic method. 

2.5 Relation to the Tensor Laplace Equations 

The function q( s) giving the minimum to the functional of smoothness satisfy the system 
of Euler-Lagrange Equations: 

i ~ 8 ( "k8q') L(q) = Li {ji g~ifk = 0. 
j,k=l s s 

If a domain X c R!' is considered as srn, then the system is equal to the system of the 
Laplace equations: 

i n 8 8q' 
!:::.q =L:-8 .(-8 .)=0, i=1, ... ,n. 

i=l x' x' 
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In our case it appears as well that the system of the Euler-Lagrange equations is equivalent 
to the system of Tensor Laplace equations. Namely (Liseikin, 1993, 1996a): 

.. 
L(qi) = gdiv(S"•(qi)) = g L Vm vmqi. 

m=l 

So here we have full analogy of relation as in the case of the functional of smoothness 
suggested by Brackbill and Saltzman for domains and the method of Crowley-Winslow 
based on the Laplace equations. 

2.6 Transformed Equations 

The inverted system of the Euler-Lagrange equations has the following form: 

This is an elliptic quasi-linear system and its right-hand side does not depend on the trans­
formation s(q), which is found by the solution of the system. The control of adaptation 
is provided by the coefficients g:, and the right-hand expression of the system. 

2. 7 Examples of adaptive grids 

To find the values of the function s(q) the system of the Euler-Lagrange equations was 
solved in the domain Q". The boundary nodes were obtained by adaptation along the arc 
of the curve. The derivatives of the equations were approximated by the central differences 
and the right hand side of the equations was considered on the (n -1)th layer. Difference 
equations were solved by the SOR iterative method. As an initial guess an algebraic grid 
was taken which was constructed by the method of interpolation of boundary nodes. 
Figures 4 (a, b) show adaptive grids in domains. Figure 5 shows a grid on the cross­
section plane obtained by calculations of a non-viscous gas flow around a cone in which the 
pressure function p( a:) was taken to form the monitor surface. Figures 6 ( a,b) demonstrate 
the adaptive grids on the saddle surface. The adaptive grid on the sides of a curvilinear 
three-dimensional domain is shown on Figure 7. The numerical implementation of the 
method was carried out by Petrenko, Liseikin (1994) and Kupin, Liseikin (1994). 
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Figure 4 Adaptive grids in domains. Left is (a) and right is (b). 

Figure 5 A grid on the cross-section plane obtained by calculations of a non-viscous gas 
flow around a cone in which the pressure function p( x) was taken to form the monitor 
surface. 
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Figure 6 The adaptive grids on the saddle surface. Left is (a), right is (b). 

Figure 7 The adaptive grid on the sides of a curvilinear three-dimensional domain. 
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