
23 

The XSC tools for extended 
scientific computing 

Ulrich K ulisch 
Universitiit Karlsruhe 
Institut fur Angewandte Mathematik, Postfach 6980, 76128 Karlsruhe, 
Germany. Fax: +49-721-69 52 83. 

Abstract 
This paper summarizes work in developing tools for verified scientific computing in a 
variety of computing environments. 

Keywords 
Automatic result verification, ACRITH-XSC, C-XSC, FORTRAN-XSC, PASCAL-XSC 

1 SUMMARY 

Many applications require that rigorous mathematics can be done with a computer using 
floating-point numbers. As an example, this is essential in simulation runs (e.g., fusion 
reactors) or mathematical modeling where the user has to distinguish between compu­
tational artifacts and genuine reactions of the model. The model can only be developed 
systematically if errors entered by the computation can be excluded essentially. There 
are many other applications, which can be solved more adequately and simply, or can be 
solved at all, if an expanded arithmetic capability is available. This talk illustrated this 
by a number of examples. Automatic result verification reintegrates numerical computing 
into real mathematics. 

Numerical mathematics has devised algorithms which deliver highly accurate and au­
tomatically verified results by applying mathematical fixed-point theorems. Their im­
plementation requires suitable arithmetic support and powerful programming tools. The 
development of the XSC tools has aimed at providing these tools within the PASCAL, 
FORTRAN and C++ setting. The XSC tools are particularly suited for the development 
of numerical algorithms that deliver highly accurate and automatically verified results. 

Three XSC programming systems, PASCAL-XSC, ACRITH~XSC and C-XSC, have 
been developed and are available for diverse platforms. FORTRAN-XSC, based on Fortran 

R. F. Boisvert (ed.), Quality of Numerical Software
© IFIP International Federation for Information Processing 1997



The XSC tools for extended scientific computing 281 

90, is still under development. These systems have been designed for scientific computing 
and, in particular, to support programming of numerical algorithms with automatic result 
verification. They simplify programming in the area of scientific and technical computing 
significantly. 

In a quite natural way, these systems provide a number of concepts which are vital in a 
contemporary programming environment: a module concept, an operator concept, func­
tions and operators with general result type, overloading of functions, procedures and 
operators, dynamic arrays, subarray slices, a string concept, overloading of the assign­
ment, of read and write, and of others. Using these concepts, data types and operators 
are predefined for real and complex numbers, real and complex intervals, as well as for 
vectors and matrices over these types. All these operators provide results with maximum 
accuracy. Twenty-four standard mathematical functions are provided with their generic 
names for real and interval arguments. The computed values are of highest accuracy. By 
operator overloading, a long real arithmetic (as an array of reals) and long real interval 
arithmetic, including corresponding elementary functions, are also available. Arithmetics 
for automatic differentiation and generation of Taylor coefficients are provided as part 
of the runtime system of the XSC tools, i.e., derivatives, Taylor coefficients, gradients, 
Jacobian and Hessian matrices, or enclosures of these can be computed directly out of 
expressions by a simple type change of operands. Using the XSC tools numerical algo­
rithms come considerably closer to usual mathematical notation. Programs are easier to 
read and to write. They are easier to debug, and therefore more reliable. Many programs 
can be read like a technical report. 

Problem solving routines with automatic result verification are available for many stan­
dard problems of numerical analysis, including linear and nonlinear systems of equations, 
eigenproblems, sharp evaluation of expressions, numerical quadrature, problems for dif­
ferential and integral equations, etc. 

A vector arithmetic coprocessor for the PC has been developed in CMOS VLSI tech­
nology. It can be used on an PC with an industry standard PCI bus. In comparison with 
traditional floating-point arithmetic, the chip speeds up vector and matrix operations. It 
computes them to full accuracy or with only one final rounding. In a dot product com­
putation the products are accumulated into a long fixed-point register which is kept on 
the arithmetic unit. A special carry resolution technique is used. The chip's functionality 
is directly coupled to the operator symbols in vector and matrix expressions of the XSC 
languages. The chip is the world's first hardware implementation of the GAMM/IMACS 
Proposal for Accurate Floating-Point Vector Arithmetic. 

Books on PASCAL-XSC and C-XSC have been published by Springer-Verlag. PASCAL­
XSC is now available in German, English and Russian. A series of three volumes, Toolbox 
for Verified Scientific Computing is under preparation. Volume 1, containing programs 
and algorithms, is now available on the level of PASCAL-XSC and C-XSC. Both books 
have been published by Springer-Verlag. Volume 2 is scheduled to appear in 1996. 

REFERENCES 

Adams, E. and Kulisch U., eds. (1993) Scientific Computing with Automatic Result Ver­
ification. Academic Press, New York. 



282 Part III The Effect of New Environments on Numerical Software Quality 

Alefeld, G. and Herzberger, J. (1983) An Introduction to Interval Computations. Academic 
Press, New York. 

Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1993) Numerical Toolbox for Verified 
Computing I, Algorithms and Pascal-XSG Programs. Springer, Berlin. 

Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995) 0++ Toolbox for Verified Com­
puting I. Springer, Berlin. 

Klatte, R., Kulisch, U., Neaga, M. Ratz, D. and Ullrich, Ch. (1991) PASGAL-XSG­
Sprachbeschreibung mit Beispielen. Springer, Berlin. English translation, 1992. Russian 
translation, 1996. 

Klatte, R., Kulisch, U., Neaga, M. Ratz, D. and Ullrich, Ch. (1992) PASGAL-XSG Lan­
guage Reference with Examples. Springer, Berlin. 

Klatte, R., Kulisch, U., Lawo, Ch., Rauch, M. and Wiethoff, A. (1993) G-XSG, A C++ 
Glass Library for Extended Scientific Computing. Springer, Berlin. 

Krii.mer, W., Kulisch, U. and Lohner, R. (1996) Numerical Toolbox for Verified Computing 
II, Theory, Algorithms and Pascal-XSG Programs. Springer, Berlin. 

Kulisch, U. (1976) Grundlagen des Numerischen Rechnens. BI Wissenschaftsverlag, 
Mannheim. 

Kulisch, U. and Miranker, W. (1981) Computer Arithmetic in Theory and Practice. Aca­
demic Press, New York. 

Kulisch, U. and Miranker, W., eds. (1983) A New Approach to Scientific Computation. 
Academic Press, New York. 

GAMM-IMACS (1993) Proposal for accurate floating-Point vector arithmetic. Math. and 
Gomp. in Simul., 35(4). Also in Rundbrief der GAMM, Brief 2. 

IBM (1986) High Accuracy Arithmetic Subroutine Library (AGRITH}, General Informa­
tion Manual. 3rd edition, GC33-6163-02. 

IBM (1990) High Accuracy Arithmetic-Extended Scientific Computation {ACRITH­
XSG}, General Information. GC33-6461-0l. 

IBM (1984) System/370 RPQ, High Accuracy Arithmetic. SA22-7093-0 .. 



The XSC tools for extended scientific computing 283 

DISCUSSION 

Speaker : U. K ulisch 

N. Higham : You have described the benefits of interval ari_thmetic. It's clear that 
interval arithmetic is not widely used in the scientific computing community as a whole. 
Why do you think this is? 

U. Kulisch : Forty years of nearly exclusive use of floating-point arithmetic in scientific 
computing has formed and now dominates our thinking. Interval arithmetic requires a 
much higher level of abstraction than languages like Fortran 77, Pascal or C provide. If 
every single operation requires a procedure call, the user's attention and energy is forced 
down to the level of coding. 

The development and implementation of powerful and convenient programming envi­
ronments like PASCAL-XSC or ACRITH-XSC requires a large manpower of experienced 
and devoted scientists (about 20 man-years for each). There interval arithmetic, the el­
ementary functions for the data types real and interval, a long real and and long real 
interval arithmetic including the elementary functions, vector and matrix arithmetic, dif­
ferentiation and Taylor arithmetic both for real and interval data are provided by the 
runtime system of the compiler. All operations are called by the usual mathematical op­
erator symbols. This releases the user's attention from coding difficulties. This means, for 
instance, that enclosures of a high derivative function over an interval can be computed 
by the same notation of the expression which is used to compute a real function value. 
The compiler interprets the operators according to the type specification of the data. The 
level of programming is really essential. It opens up a new era of numerical mathematical 
thinking. 

G. Corliss : One reason why intervals are not widely used is the small number of interval 
researchers compared with workers in approximate methods. There is plenty of room for 
more workers on interval methods. 

D. Lozier : I am developing a test system for mathematical functions, particularly the 
higher transcendental functions. I want to use software with error bounds to compute the 
reference values for my test system. What is the current status with respect to algorithms 
and software for interval special functions? 

U. Kulisch : A number of higher transcendental functions have been implemented 
by Dr. F. Blomquist for real and interval data types for the decimal arithmetic of our 
PASCAL-XSC system. This system uses BCD arithmetic, so the functions can only be 
used to check for an accuracy of 13 decimal digits. More accurate elementary functions 
(14 hex digits) have been developed, implemented, and are available in the IBM pro­
gram product ACRITH-XSC by Dr. K. Braune and Dr. W. Krii.mer at Karlsruhe, even 
for complex and complex interval data formats. Dr. Blomquist is now developing and 
implementing higher transcendental functions (the error function, the gamma function, 
Dawson's integral, etc.) for the double data format of IEEE arithmetic standard 754. All 
persons mentioned can be reached via my Institute. 



284 Part III The Effect of New Environments on Numerical Software Quality 

W. V. Snyder : Do you or your colleagues have plans to extend work on interval com­
putation libraries to Fortran? 

U. Kulisch : Yes, we have already been working on an interval computation library 
for Fortran at my Institute. The group leader was Wolfgang V. Walter. Two years ago 
he became Professor at the Technische Universitiit Dresden. This has delayed the work 
a little. I hope that we will jointly finish the project and that sometime something like 
Fortran-XSC will be available. 


