
27

A Discretionary Security Model for
Object-oriented Environments

Wilna Jansen van Rensburg and MartinS Olivier
Department of Computer Science, Rand Afrikaans University
PO Box 524, Auckland Park, Johannesburg, 2006 South Africa
Email: molivier@rkw.rau.ac.za

Abstract
This paper describes a discretionary security model, DISMOO. The model is designed for
object-oriented environments. The model itself is therefore based on object-oriented con­
cepts. The purpose of DISMOO is to provide a security model that provides a fine grain
of protection, as well as a more advanced, enhanced and flexible discretionary security
model. The security model is driven by capabilities, which is an adaptation of the tradi­
tional capability concept, used in access control mechanisms. The capability in DISMOO
has much more flexibility and functionality. The model will enable all users of the system
to protect their entities according to their own discretion.

Keywords: Security models, discretionary security, object-orientation

1 INTRODUCTION

This paper focuses on the use of discretionary security in object-oriented environments
by introducing a discretionary security model built on an object-oriented base. DISMOO
(Discretionary security model for object-oriented environments) is a capability-based dis­
cretionary security model that aims to provide a very flexible security system that can be
used by all the users of the environment to its full.

The new model will be described after a brief overview of discretionary security has
been given.

2 DISCRETIONARY SECURITY

Firstly the term discretionary security needs to be described in more detail. The meaning
of discretionary security can be summarised by the following three definitions (Longley,
Shain and Caelli, 1987):

Discretionary security: In computer security, discretionary security is measures that
are initiated by the entities themselves. It is also those aspects of a security policy that

S. K. Katsikas et al. (eds.), Information Systems Security
© IFIP International Federation for Information Processing 1996

A discretionary security model for object oriented environments 307

involve the provision of security services as a result of a request by an entity requiring
an instance of communication.

Discretionary protection: Discretionary protection is access control that identifies in­
dividual users and their need-to-know's and limits users to the information that they
are allowed to see. It is used on systems that process information with the same level
of sensitivity.

Discretionary access control: Discretionary access control is a means of restricting
access to objects based on the identity of subjects and/or groups to which they belong.
The controls are discretionary in the sense that a subject with a certain access permis­
sion is capable of passing that permission (granting permission-perhaps indirectly) on
to any other subject.

Some of the features of discretionary security from the definitions above need to be
highlighted and explained in terms of an object-oriented environment and DISMOO.

• It is highlighted that users in an environment, where discretionary protection or security
is enforced, will have a certain kind of access to certain entities. Traditionally, this would
have been a READ, WRITE, UPDATE, etc. mode of access. In an object-oriented
environment the access method used is the sending of messages. Sending of messages
usually occurs in the form of a request being forwarded (in the form of a method
identifier) to entities (usually objects). Thus, passing of messages are used instead of
the use of specific types of access methods.

• The second important factor in discretionary security is the fact that each entity is
owned by a user who grants access to this entity to other users (or revokes it from
other users). Such a user is known as the owner of the entity. In DISMOO we will
be using a hierarchy of owners, with the system security officer (SSO) as the "super"
owner of all entities.

• In DISMOO a capability is a multi-faceted object which can differ according its set­
up by the granter of the rights (owner of the entity). More than one capability for
the same object may be defined by the owner. This decision is usually according to
the owner's (user's) discretion, but the choice is mostly made according to the needs
("need-to-know") of the receiving user.

Discretionary security principles have mostly been modelled by means of an access
control matrix. An access control matrix contains names of all the users of the system,
versus the elements of the system that may be accessed, as well as the access type. Such
a matrix is usually implemented as access control lists or capabilities. An access control
list (ACL) is a list, associated with the protected entity, containing the identities of all
subjects allowed to access the entity (including the modes in which the subject may
access the entity). In contrast, capabilities are associated with the subject and specify
which entities may be accessed by the subject.

In DISMOO we will assume that the latter implementation technique is used: Access
rights (capability objects) are associated with the subjects and are required to access the
entities they protect.

DISMOO provides objects as capabilities to protect other objects, object classes, in­
stances and other entities. The purpose of the capability being an object is to make its
characteristics as flexible as possible and to enable the user to make use of methods to

308 Part Eight Authentication and Access Control

implement different access methods to the entity they are protecting. The major charac­
teristic of the capability will lie in the capability superclass, and each refinement of this
capability will be placed in either a class, subclass or an instance of the latter. The refined
capabilities will be used by the owner of an entity as keys to the protected entity, and
will be granted to different subjects on a "need-to-know" basis.

See Kim (1995) and Bertino and Martino (1991) for more information about object­
orientation and Ting, Demurjian and Hu (1992), Rabitti et al (1991) and Olivier and Von
Solms (1994) for more information about security in object-oriented systems.

3 COMPONENTS OF DISMOO

In the building of a discretionary security model, a number of characteristics have to be
decided upon as listed by Dittrich, Hartig and Pfefferle (1989). These model characteristic
questions of Dittrich et al will be used to describe the way in which DISMOO is built
and the way in which it performs all its tasks. The list of questions to be answered is as
follows:

1. What are the subjects (ie what are the active elements in the system)?
2. What are the objects (ie what are the passive elements in the system that are accessed)?
3. What are the operations (ie what kinds of accesses to objects can be distinguished by

the protection mechanism)?
4. How does the security system function?

The first question to be answered is: What are the subjects of the system?

3.1 The subject

A subject in DISMOO is any user or user group that uses entities in the system, by
sending messages to the protected entities. A subject can also be an object sending a
message to another object. All entities can thus also act as subjects.

In a discretionary security system, unique subjects will have the right to control specific
entities existing in the protected systems. These subjects are called the owners of the
entities. Subjects can only obtain the right of ownership of an object by creating an
entity or by receiving the ownership capability (key) to a protected entity in a transfer
of the particular capability from its owner. Owners of entities in DISMOO will be in
possession of the following:

• Possession of the capability (right) to use the entity.
• The capability class of the capability that protects the entity. New subclasses of this

class can be defined to customise capabilities to be given to other subjects.
• The right to distribute the capabilities to other subjects; this is done by instantiating

a new capability for the receiving subject from either the concerned capability class,
or one of its (more restrictive) subclasses.

• The owner of an entity is also in possession of the right to revoke or take back any keys
or capabilities which were handed out to other subjects.

A discretionary security model for object oriented environments

Permanent

Personnel

GetName()
Get Job()

Contract

Figure 1 The personnel database

Bursar

309

It is important to note that the onus to ensure security rests on the shoulders of the
owners of the entities, since they are responsible of securing their entities according to
their discretion.

The subject therefore consists mainly of users of the protected system as well as objects
(programs) in the protected system. The next section will descrii)e the passive entities of
the protected system. In DISMOO the passive elements are called entities, while the term
object is used in the object-oriented sense.

3.2 The entity

An entity in DISMOO is any element of the object-oriented database. Suppose, for exam­
ple that we have a company with a personnel department. The department will typically
own a personnel database, in which all details of the employees are stored. The personnel
class will typically have permanent employee, contract worker and bursar subclasses.

Suppose the database looks as depicted in figure 1. Here the DISMOO entities that may
be protected are the PERSONNEL class, the PERMANENT, CONTRACT and the BURSAR
subclasses, as well as instances of these classes. Note that we assume that classes are also
objects, which consist of behaviour (such as CREATE methods) and data. Each object
will be protected as a whole; this includes protection of its methods.

An entity will typically look as depicted in figure 2.
The next question to answer is: What are the operations (ie what kinds of accesses to

objects can be distinguished by the protection mechanism)?
Messaging, or the sending of messages to objects, is the only way in which objects react

to external sources. DISMOO controls messaging by using capabilities as a 'gateway' or
'filter' to an entity. No entity can be used without a capability as key to that entity. A
typical situation which will occur in an object-oriented situation can be seen in figure 3,
where object 01 sends object 02 a message and 02 replies with an answer. Instead of
having a direct link between objects, the capability will now act as intermediate gateway,

310 Part Eight Authentication and Access Control

Figure 2 The entity

as well as a protection mechanism during the passing of messages. In figure 4 it is clear
that a message from the sender to the target object will go through Capability! which will
route the message to the correct method in the target. If the sender were not in possession
of Capability!, it could send as many messages as it wanted to, but the message will never
be received by 02, because the method identifier in 02 is always a combination of the
pointer in the capability to 02 and the method identifier in 02; in other words, no entities
can be accessed without the proper capability.

Capabilities will now be discussed in more detail, before we discuss the operation of the
protection system in more detail.

3.3 The capability

A capability is an unforgeable identifier for the object to which it serves as key. A capability
also acts as a filter to the object that it is protecting.

Target object (02)

Method3 0
Figure 3 Sending messages in traditional environments

A discretionary security model for object oriented environments 311

Capability 1 Target object (02)

Sender (01)

Mothod3 0
Figure 4 Sending messages in DISMOO

A capability is an object; therefore it consists of two parts, namely a state (attributes)
and a behavioural part (methods). It also means that the capability is encapsulated and
therefore protected against external attacks. The fact that a capability is an object gives
the programmer of the capability much more flexibility in the structuring of the capa­
bilities which will be granted to other subjects. As mentioned earlier the owner of the
capability can now add intelligence to the protecting key. The composition of a capability
is depicted in figure 5.

In this figure, the methods in the capability object serve as 'pointers' to the correct
method in the protected entity. These capability methods refer to the method identifiers of

(GRANT())

------------......__ QlEVOKE(})

Gateway for METHOD!

Gateway for METHOD2

Gateway for METHOD3

(CREATE())

Audit area
and Inter­
nal data

Figure 5 The capability

312 Part Eight Authentication and Access Control

the called object and, when initiated, redirect the call to the receiving object or protected
entity.

If there is more than one method in the protected object with the same function,
but providing a different view, the capability will form the method identifier so that the
correct method will be called. For example, say the SALARY object has two methods for
reading a personnel member's salary, (a) METHODl capable of reading all members with
salaries below a certain limit and (b) METHOD2, for reading all members' salaries. The
owner of the entity may form one capability with a GET SALARY method that is redirected
to METHODl and another capability with a GETSALARY method that is redirected to
METHOD2. If the user sending the message is in possession of the capability that will
form the method identifier for METHODl, the user will only see salaries below the limit
specified. However, if the user was in possession of the other capability the user will be
able to see all salaries. The message sent to the protected entity will be the same for both
users, so that they do not see the difference.

A capability can only be acquired or received when an object is created or if it is granted
by an authorised subject. The method in which a capability is placed in the hands of a
subject when an object is created is as follows:

1. The right to create a subclass rests with the owner of the concerned superclass, and
can be granted by the owner of that superclass to any subject. We assume that the
root of the class hierarchy is owned by the system security officer.

2. The CREATESunCLASS method in the capability that protects a class automatically
creates a capability class for the newly created subclass and makes the sender of the
message the owner of the newly created capability class.

3. In addition to creating a new capability class, CREATESUBCLASS also instantiates a
capability object for the newly created class from the newly created capability class.

Capability classes are enhanced by building different capability subclasses and instances
out of this class to use as "need-to-know" keys. These capabilities can now be used to suit
the particular requirements of each subject that needs to use the entity. The owner of the
object is still in control, because access to the protected entity can only be granted to
other users or subjects by the owner, unless the owner has given the right to grant access
to other subject. In the latter case the owner is still in control, because he can revoke all
granted access rights.

As an example of the above situation, suppose that the owner of the personnel database,
the personnel manager, creates a new entity, the PENSION object. The following will
happen : First, the personnel manager will receive a capability to access the PENSION
object, and a capability class to create alternative capabilities to the PENSION object.
Next the personnel manager creates a capability subclass with a 'pointer' to alternative
methods for reading the salary. This pointer will now execute the alternative method
each time the capability is used. Assume that the modified capability is given to another
subject. Whenever the other subject makes use of the methods in the protected object,
only alternative methods will be executed, without that subject noticing. Finally, the
identifiers of the subject that received an access right or capability are recorded in the
audit area of the capability class of the owner (see later).

Capabilities and capability classes are kept in a protected security area where changes
can only be made by the permitted subjects and the system security officer. We also

A discretionary security model for object oriented environments 313

assume that the system is constructed such that the only type of access which will ever be
possible to an entity is via messaging. Since this is effectively controlled by capabilities,
the model covers all types of accesses that can be made to entities.

The following question for a discretionary security model concerns the operation of the
whole security mechanism.

3.4 Operation of DISMOO

This section describes the operation of different aspects of the security system, such as
how control is enforced in the creation of an object, the granting and revoking of access
rights, and the procedure in cases where the owner does not exist anymore and control
has to be taken of the capabilities of the owner subject. The discussion will follow the
sequence mentioned.

Controlling the creation of entities
Entities are those elements of the object-oriented database which need protection. The
next aim for DISMOO was to create an environment where it would not be possible to
fabricate entities that will masquerade as authentic entities. The next section describes
how the prevention of fabrication is achieved.

The first mechanism that was put into place, was the rule that no entities could be
created if the subject trying to create the entity was not in possession of a create right
or create capability. The create right or capability is given to the subject by the system
security officer or the database administrator (DBA). This has been described in an earlier
section.

The fact that the system security officer or database administrator supplies a create
capability to the subject, makes the SSO (or DBA) the super owner of the entity. This
'super' ownership gives the right to grant or revoke the right of using the object to the
super-owner. The use of this right will only be used in exceptional cases of misuse of the
entity or if the authorised owner becomes invalid. An example of a situation in which this
right needs to be used is when the owner disappears without transferring the right for
whichever reason. The system security officer has to take charge in this situation to be
able to transfer the unowned and therefore unprotected capabilities.

We will apply some of the above mentioned situations in an example, which will also
be used in the further discussion. Assume that a personnel manager asks the system
security officer or database administrator for a create capability to create a personnel
object database. The system security officer will, after the investigation, give him this
right. The CREATE capability is now created as an object class of the security system.
The personnel manager will use this capability to create the database by sending the
CREATE message. The protecting capability and capability classes have been created
during the execution of the appropriate CREATE method, and the personnel manager's
capability lists have been updated accordingly. The personnel manager will next use the
capability of the object to create subclasses or objects. Capabilities and capability classes
for such new parts of the old entity or object are now part of the owner's capability class
and therefore the capabilities start forming a hierarchy. Methods of the superclasses can
now be used in the sub-entity capabilities, because all subclasses and instances will inherit
methods and characteristics from their parent classes.

This example closes the description of creation of an entity and the control of the

314 Part Eight Authentication and Access Control

situation, from where we will go onto the discussion of control in the granting and revoking
of capabilities.

3.5 Control in granting of capabilities

One of the distinguishing characteristics of discretionary security is that a subject with
the ownership right of an entity has the right to grant or revoke the right of usage of an
entity to other subjects. The capability class of the owner of an entity contains a GRANT

function, which is used to grant a capability to other users or subjects to enable usage
of the entity, or even to grant the right to grant capabilities to an entity. In cases where
a grant right is given, the GRANT function can be changed for the appropriate subject
to which it is given in such a way that it will, for example, only grant capabilities giving
access to certain methods in the entity.

Control can be carried out in the granting of capabilities by defining the granting
function to limit granting of capabilities to certain user-roles (Ting, Demurjian and Hu,
1992) or identifiers. Granting methods can be changed to accept only granting to users
with the appropriate role-classification or identifiers.

There is an audit area in every capability class in which the identities of subjects to
which the capability has been granted. Stated differently, the audit area contains the
sequence of subjects that granted the capability to one another. An integral part of the
granting function is the updating of the audit area. The granting function will update the
audit area with the identifiers of the subjects to which capabilities have been granted.
The audit area cannot be changed in any other way, except by the granting and revoking
function. The audit area is primarily used for cascading revokes. See Jansen van Rensburg
(1995) for details.

3.6 Control in the revoking of capabilities

The revoking of capabilities can happen in the following four ways:

1. In the event or situation where a trigger is built into a capability, in which case the
capability will destruct itself. That is, the capability is not revoked in the normal way
by a message from the owner of the protected entity, but is in fact revoked by the
destroying of the capability, by the capability itself. Since the capability is an object
containing code this can be accomplished easily.

2. Revoking by the sending of a REVOKE message by the owner of the protected entity.
This REVOKE message can only be sent by the owner of the capability class of the
protected entity.

3. Revoking by sending a REVOKE message by any of the 'super' owners of an entity.
Remember that any object that has been created, has been created by permission of
the owner of the class from which it was instantiated, and every subclass that has been
created, has been created by permission of the owner of the superclass. This means
that any such owner is a 'super' owner of any entities created lower in the hierarchy,
and access rights can be revoked by the 'super' owner. In particular, the SSO, who is
the owner of the root class, can revoke any access rights in the system.

4. Cascading revoke can occur whenever the authorisation that allowed (or could have
allowed) a capability to be granted in the first place, is revoked. Note that this can

A discretionary security model for object oriented environments 315

also happen when the right to create an object or a subclass is revoked-the creator of
the object or subclass will loose all rights to objects created. The recommended action
here, if existing rights are to remain in place, but the create right not, is to grant the
creator a capability to access the created object or subclass and then revoke the right
to create new objects or classes.

The control of granting, revoking and creating capabilities can be described in much
more detail, but the detail mentioned above will suffice for this paper-see Jansen van
Rensburg (1995) for details. This covers the operation of DISMOO.

4 CONCLUSION

The use of object-orientation in a discretionary security system enabled us to introduce the
idea of an intelligent key mechanism. Capabilities, unforgeable keys to protected entities,
are controlled by the subjects or users of entities themselves. Owners of entities use these
capabilities to construct keys according the needs of the users of the entities and their
discretion as to what is really needed and what they want to give. A capability will filter
a message according to the identity of the user of the capabilities and will then send
the appropriate message to the protected entity. Capabilities can be granted and revoked
to or from other subjects by the owner of the entity, or by a subject with a give-grant
capability.

The aim of this method of using object-orientation in the building of DISMOO is to
give a finer grain of control in the security system, as well as to build a more flexible
security system. Further research possibilities include the use of mandatory security in
combination of the discretionary security.

REFERENCES

Bertino, E and Martino, L (1991) Object-oriented Database Management Systems: Concepts
and Issues, Computer, 33~41.

Dittrich, KR, Hartig, M and Pfefferle, H (1989) Discretionary Access Control in Structurally
Object-oriented Database Systems, pp 105~122 in Database Security II: Status and Prospects,
(ed CE Landwehr), Elsevier, Amsterdam.

Jansen van Rensburg, PW (1995) Diskresionre Sekerheid in Objek Georienteerde Omgewings,
MSc-verhandeling, Randse Afrikaanse Universiteit, Johannesburg.

Kim, W (ed) (1995) Modern Database Systems: The Object Model, Interoperability and Beyond,
ACM, New York.

Longley, D, Shain, M and Caelli, W (1987) Data and Computer Security: Dictionary of Stan­
dards, Concepts and Terms, Stockton Press, 1987, New York.

Olivier, MS and Von Solms, SH (1994) A Taxonomy for Secure Object-oriented Databases, ACM
Transactions on Database Systems, 19, 1, 3~46.

Rabitti, F, Bertino, E, Kim, W and Woelk, D (1991) A Model of Authorization for Next­
Generation Database Systems, ACM Transactions on Database Systems, 16, 1, 88~131.

Ting, TC, Demurjian, SA and Hu, M-Y (1992) Requirements, Capabilities and Functionalities
of User-role Based Security for an Object-oriented Design Model, pp 275~296 in Database
Security V: Status and Prospects, (eds CE Landwehr and S .Jajodia), Elsevier, Amsterdam.

316 Part Eight Authentication and Access Control

5 BIOGRAPHY

Wilna Jansen van Rensburg completed her MSc degree in Computer Science at the Rand
Afrikaans University in Johannesburg, South Africa in 1995. The work reported in this
paper formed part of her MSc dissertation.

Martin Olivier holds a Ph.D. in Computer Science and is currently a senior lecturer in
Computer Science at the Rand Afrikaans University. Current research interests include
database security, especially for object-oriented and distributed databases.

