
5 
THE INTERPLAY BETWEEN COGNITIVE AND 
ORGANIZATIONAL FACTORS IN SOFTWARE 
DEVELOPMENT 

P.E. Waterson, C. W Clegg and C.M. Axtell 

Institute of Work Psychology 
University of Sheffield 
Sheffield SJO 2TN 
(Tel +44-114- 2756600 E-Mail: P.Waterson@sheffield.ac.uk) 

ABSTRACT: This paper describes a case study of large scal_e pro?lammin~ in a c~mmercial context. In 
particular we chose to study the relationship between the way m wh1ch w~rk IS orgamzed_an~ alloca~ed, the 
knowledge and expertise of project members, and the use of progr~mmg tools. Our f1~~ngs pomt to a 
dynamic interplay between these factors which partly refl_ects e~1dence of opp?rtum~ti~ and pl~ful 
behaviour, as well as the importance of patterns of collaboration which arose over ume with~ the _ProJect. 
We conclude with recommendations for the training of developers as well as the need for modifications and 
adjustments of current models of the software process and lifecycle. 

KEYWORDS: Systems development, division of cognitive labour, programming tools, knowledge and 
expertise 

1. INTRODUCTION 

Software development can be seen as a problem 
solving process which involves multiple agents, 
sometimes with competing goals and 
responsibilities (Curtis, Krasner, Shen and Iscoe, 
1987). In the process of building a large scale 
program for example, a number of individuals are 
likely to be involved. These range from 
programmers and analysts involved in designing 
and writing the program, to managers and team 
leaders responsible for the day-to-day operation of 
the project. Added to this list are the end users of 
the system who may be involved at various stages 
in its lifecycle, customers who provide the original 
requirements, as well as other parties who may be 
called upon for their specialised knowledge (eg. 
database experts). Whilst the degree of involvement 
of individuals with particular specialisms, 
knowledge and expertise may vary, the essential 
point is that software development involves a 
variety of cognitive and organizational issues, for 
example concerning the communication and 
coordination of knowledge relating to the program 
and the achievement of mutual understanding 
regarding its contents. 

Few studies exist of groups of programmers 
working together on a program, and even fewer of 
such activity taking place within an industrial or 
commercial context. The most thorough set of field 
investigations of the role that cognitive and 
organisational factors play in software development 
can be found in the work of Curtis and his 

colleagues (Curtis, Krasner and Iscoe, 1987; Walz, 
Elam and Curtis, 1993). 

Curtis et a! (1987) found that three main factors 
contributed to problems in building complex 
programs within tight deadlines. First, many 
projects were hampered by the fact that knowledge 
relating to the application was thinly spread. 
Second, the volatility of customer requirements 
meant that many changes to the program had to be 
made at very short notice. And third, 
communication and coordination breakdowns 
between the various parties frequently led to delays. 
These problems adversely affected both the 
productivity of the process of development, and the 
success of the actual product itself. Above all, 
Curtis et al stressed that the problems faced by 
software projects could not be attributed to one 
main psychological cause, but critically involved 
the combined effect and interaction between 
underlying cognitive, social and organizational 
processes. 

In order to follow up the findings from the Curtis 
et al study, and to explore further the nature of the 
dynamic interplays between individual and 
organizational levels of analysis, we present a case 
study of large scale, commercial software 
development. In particular, we chose to study in 
detail a set of questions which previous studies of 
software development have shown to be salient. 
These were: 

(1) How is work organized on projects, and what 
consequences does this have for the progress of 
software development? 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



Cognitive and organizational factors in software development 33 

(2) How is the knowledge and expertise available 
on projects distributed, and how is effective sharing 
of this knowledge achieved or hindered within 
projects? 
(3) What is the impact of software support tools 
(eg. CASE tools) on the way work is organized and 
on the distribution of knowledge and expertise? 

2. CONTEXT AND METHODS 

The study was carried out in the information 
technology department of a large financial services 
company based in the UK. The Charging project 
(as we have called it) involved approximately 100 
people from different sections of the IT and Finance 
departments. About one third of these people were 
end users of the system who were involved at 
different stages in the development of the program. 
The Charging program is designed to cope 
specifically with the management of information 
relating to corporate (ie. business) accounts. 

During our visits to the organization we conducted 
30 interviews with key personnel on the Charging 
project including the project manager, the team 
leaders, senior analysts and programmers, as well 
as other people involved directly or indirectly with 
the project (eg. senior managers, user acceptance 
testers, database and CASE experts). In addition we 
conducted a number of informal interviews with 
project members and observed the work of project 
teams when time and access allowed. Participants, 
along with the project and organization, were 
guaranteed anonymity, and are disguised in this 
paper. 

Participants were encouraged to discuss their 
problems, as well as events and challenges which 
they thought were important during the 
development of the project. Interviews usually took 
place in the work situation; this allowed us to ask 
questions relating to programming tools in the 
context of on-going work, as well as carry out 
informal observation of the work of the project. 

3. FINDINGS 

3.1. Organization of project work 
At the time we began our study approximately 30 
people were involved in working on the program. 
Three activities occupied the main work of the 
project members: (1) conversion of code from the 
existing charging system so that it matched the 
requirements of the new system -- this was carried 
out by a group of analysts and programmers; (2) 
testing of the code by user acceptance testers and 
users from the finance area seconded to the project; 
(3) dealing with e-mail queries from the external 
contractors regarding the functional specification of 
the program and questions relating to the writing of 
the program code -- these were dealt with by the 
senior analyst and his assistant. 

Figure 1 is a diagram of the management structure 
of the project. Each of the above three teams was 
allocated a team leader who was responsible to the 
overall project leader, who in tum, reported to the 
project manager. During the course of the project a 
number of other groups within the IT department 
were also involved, for example in quality 
assurance, database administration and CASE tool 
support. In addition, the project manager and 
project leader liaised with the user project manager 
located in the finance department; he was 
responsible for ensuring that the program met its 
original requirements specifications. 

Figure 1: Diagram of Management Structure of 
Charging Project 

User Project 
Manager 

External 
Consultants 

Conversion Queries Acceptance 
Testing 

Many project members admitted that they had to 
conform to strict deadlines, and found their work 
stressful. An incoming request for a change to the 
program or clarification of existing code had to be 
dealt with very quickly in order to avoid penalties. 
At other times however, the project was relatively 
relaxed, particularly when a major task (eg. code 
conversion) had been completed. In order to cope 
with these demands, the structure of the teams 
fluctuated. Thus although the essential composition 
of teams remained more or less constant, analysts 
were seconded to help out with the work of other 
teams when and where necessary. Typically a team 
leader would report to the project manager that 
more staff were needed. As a result staff would be 
drafted in from other teams. In rare instances 
personnel were drafted in from other projects in 
order to help cope with the demands of the work. It 
was also common for project members to "rally 
round" to cover fluctuations in workload. In this 
way the project was able to adapt to circumstances 
and at the same time allow project members to gain 
an understanding of the work of other teams. The 
temporary restructuring of teams also facilitated 



34 Part Two Research and Theory 

the achievement of a shared understanding of the 
program as well as ensuring that project milestones 
a11d deadlines were met. 

One of the limitations of organizational charts is 
that they are abstractions; in particular, figure I is 
not very informative with regard to the 
communication links and information flows within 
the project. Figure 2 represents the team structure 
and communication channels within the project. 

Figure 2: Structure of Teams within the 
Charging Project. 

External Organisation 

/ 
Senior Analyst 

/0"'-. 
Conversion 
Team Leader Senior Tester 

Junior 
Programmers 

Users Testers 

The Charging project fits the pattern of a 
"controlled decentralized" team structure (Mantei, 
1981); that is, programming groups are partitioned 
according to the type of role they play in the 
project. The precise allocation of roles within the 
project was the responsibility of the project 
manager who acted with the team leader responsible 
for queries to recruit members of the project from 
the "pool" of developers which existed within the 
IT department. In practice this team leader was 
senior to the others. 

Communication between the various project teams 
was on the whole limited to a few key members of 
these groups. The majority of individuals spent 
their time working on a specific aspect of the 
program. A typical member of the 
acceptance/testing team, for example, would use 
examples of inputs to the program as test 
materials, whilst a programmer working on the 
conversion team would take a module within the 
existing system and write code which would enable 
it to interface with the new system. Boundaries 
between teams were relatively impermeable for 
these project members. 

In common with the findings of other research (eg. 
Krasner, Curtis and Iscoe, 1987) a small group of 

individuals, usually the team leaders, acted as 
"boundary spanners" between the project teams. An 
example of a "boundary spanner" is the team leader 
responsible for the queries team, working between 
the external contractors and the rest of the Charging 
project. For example, he resolved an emerging 
ambiguity regarding the functional specification of 
the program. This involved consulting with other 
project members to check that this problem had not 
occurred before or was resolvable. This 
communication usually took the form of informal 
discussions between the boundary spanner and team 
members. 

Within teams a clear hierarchy of access and 
opportunity to communicate information was 
apparent Problems were generally taken to a team 
leader and only then passed upwards to 
management. Within the project, the team leaders 
were responsible for communicating the outcomes 
of work in their teams to other team leaders and 
managers. Likewise, these individuals acted as 
"gatekeepers"; part of their role was to disseminate 
information and make sure it was acted upon when 
necessary, and also to liaise with others in a similar 
role but in charge of different parts of the work. 

Smooth and successful coordination throughout the 
project was largely due to the activity of the 
boundary spanners, particularly when technical 
problems occurred (eg. a CASE tool wasn't 
working properly) or information was required 
regarding the program (eg. clarification of the 
function of a sub-procedure). No direct procedures 
governing the activity of these individuals had been 
formalised on the project; rather project members 
used a "support network" which had evolved over 
time and depended upon the sharing of expertise and 
knowledge regarding the program and other, mainly 
technical concerns. 

3.2 Distribution of shared knowledge and 
expertise 
As a number of authors have pointed out (eg. 
Boehm, 1981), the expertise and knowledge of 
project personnel is a major factor in determining 
the likelihood that a new system will meet its 
requirements. Key sources of expertise which need 
to be availabk to project members include technical 
expertise relating to the hardware and software 
aspects of the program, as well as knowledge 
relating to the nature and use of the intended 
application. 

Our interviews with members of the Charging 
Project enabled us to gain an understanding of the 
flow of information within the project as well as 
the relative location of sources of expertise and 
knowledge that project members made use of. On 
the basis of our interviews we categorised the 
expertise and knowledge of project members as 
falling into one or more of five distinct categories. 
None of the project members possessed knowledge 



Cognitive and organizational factors in software development 35 

in one category alone and, with one exception, no 
single individual had extensive knowledge in all.of 
the five categories. Rather, knowledge and experuse 
were distributed amongst the project members. 

Table 1: Types of knowledge within the project 

Type of Knowledae Components 
Computational Algorithms, data 

structures in the program 
Application Typical inputs and 

outputs of the system 
Domain Use of the system 

(eg. work activities) 
Project Management Budgets, timescales, 

project resourcing 
Software Engineering Data modelling, use of 

SE technig_ues and tools 

An important difference between these categories 
and those used by previous researchers (eg. Curtis 
et a!, 1988) is our distinction between application 
and domain knowledge. The reason for splitting 
knowledge relating to the use of the final system 
into two categories arose because some project 
members knew a good deal about the inputs to the 
program when it was being used (particularly when 
these inputs were used as testing material by the 
acceptance testing team), whilst others knew more 
about the working practices associated with the use 
of the system (eg. day to day requests made by 
finance users and working practices in general). 

Application knowledge was quite widely spread 
throughout the project; most members of the 
project teams had some experience of dealing with 
inputs and outputs from the program (eg. 
calculations of interest and database records). By 
contrast, only the users located on the acceptance 
testing team had extensive knowledge of working 
practices associated with the system (ie. domain 
knowledge); as a result these users were relied upon 
not only to check and test the program within their 
team, but also to answer questions and give advice 
with regard to the way the system was likely to be 
used. Part of the function of users on the project 
was thus to "contextualise" the knowledge of other 
project members and facilitate a mapping between 
application and domain knowledge. 

Project members also acted as a resource for one 
another with regard to other specialised knowledge 
which was located on the project. For example, 
during the course of the project a new set of CASE 
tools was introduced to cover aspects of the 
analysis, design and coding of the program. The 
majority of project members were unfamiliar with 
the use of these tools and relied upon one or two 
individuals who had experience in components of 
the tools (eg. decomposition and entity-relationship 
diagrams) and their use. Again, no formal 
procedures had been set in place for this type of 
help facility; instead project members utilised and 

built up the support network as time went by. In a 
sense, group members designed and established 
their own help systems. 

An important aspect of the coordination and 
communication of knowledge and expertise was the 
role played by individuals who acted as a boundary 
spanners. Typically the knowledge possessed by 
boundary spanners overlapped the categories 
described in table 1. Similarly, other boundary 
spanners possessed detailed expertise in one of the 
categories in table 1 along with knowledge and 
experience from other categories. Within teams 
these individuals frequently acted as educators or 
disseminators of information. In addition they spent 
some of their time gathering information from 
other teams regarding their current work and 
problems. 

The activities ofkey individuals facilitated the flow 
of information within teams as well as across the 
project as a whole. Information could take a variety 
of forms, sometimes being problem-centred (eg. an 
ambiguity in the program specification), or more 
proactive (eg. details of the progress of other 
teams). Fortnightly meetings between the project 
manager and leader and the team leaders partly 
served the function of discussing and updating the 
work of the project, but also allowed members to 
gain an understanding of the final system in terms 
of the specifics of the program, as well as its 
relationship to the practices and requirements of end 
users. 

In one important case decisions were dependent 
upon the knowledge and influence of one individual 
in particular. This role is described in previous 
research variously as that of "project guru" or 
"super-conceptualiser" (Curtis et al, 1988).Within 
the Charging project the leader of the queries team 
was consistently described as the "lynchpin" of the 
project. His main function was to deal with 
requests for clarification and updates of 
programming problems from the external 
contractors via an e-mail link. The knowledge of 
this individual was clearly vital to the work of the 
project, having worked at every stage of the 
program's development including the writing of the 
original functional specification. His influence on 
decision-making was crucial to the day-to-day 
activity of the project. Not surprisingly, this 
individual was called upon to clarify problems and 
to educate other project members in the details of 
the program. 

3.3 Use of programming tools 
A number of different types of computer systems 
were used by members of the project during the 
development of the program. These ranged from 
typical applications to be found in most offices (eg. 
word processing packages, spreadsheets), to tools 
specifically designed to deal with project 
management (eg. to monitor the progress and 



36 Part Two Research and Theory 

scheduling of project deadlines and milestones). In 
particular a set of CASE tools were introduced 
during the project; these were for use in the 
analysis, design and coding of the fmal system. 

In the Charging project, the allocation of tasks and 
responsibilities would normally take the form of 
analysts and programmers working collaboratively 
on the program and dividing up the work to be done 
between them. A number of project members, 
particularly those associated with the conversion of 
the existing system, viewed the introduction of a 
tool to handle design as problematic mainly 
because it "distorted" the tasks normally given to 
programmers and analysts. This led to confusion 
about who was working on a particular part of the 
program. A major complaint was that many tasks 
were being inefficiently carried out by a number of 
people in parallel and that this had led to needless 
repetition of work. 

An example can be seen in the processes which 
individual programmers routinely carried out when 
working on the program. As other research has 
shown (eg. Guindon, 1990) the process of design 
often involves carrying out a number of tasks in 
parallel, tasks which typically include opportunistic 
planning and reasoning about changes to a program 
which are not carried out immediately but are stored 
as partial solutions to plans and acted upon later. 
Within the project a number of individuals 
described how they made decisions when first faced 
with a program. This process sometimes involved 
deciding to split a program module down into 
smaller components which fell into common units, 
or alternatively modules which were too large to be 
handled as one unit and could be made easier to 
design if split into two of three sub-components. A 
common complaint was that by automating this 
process these decisions had been taken out of the 
control of the programmer and given to others who 
were not within the team and whose decisions could 
not be communicated within the team and the 
project (eg. CASE specialists). In other words, 
work was not only being needlessly repeated but 
also it could not be related to the activity of the 
team as a whole. 

Activities such as boundary spanning applied not 
only to routine discussions of the collective work 
of the project but also allowed an overview, or 
mental model, of the system to be developed and 
communicated. The introduction of CASE changed 
this process and disturbed the communication 
patterns which had evolved as the system was being 
developed. Together these problems could be seen 
as symptomatic of the technology-led approach to 
the implementation which the larger organization 
(Symon and Clegg, 1991) had decided to adopt. 
Most effort was being placed on re-organising the 
project around the demands of the tools, rather than 
vice versa. 

4. CONCLUSIONS AND IMPLICATIONS 

Within the project there evolved over time a clear 
division of labour regarding the tasks which had to 
be undertaken in order to build the program. The 
mechanisms by which this came about reflect on 
the one hand decisions made by management 
regarding the allocation of responsibility at the start 
of the project. Over time the spontaneous 
formation of coalitions and patterns of interaction 
restructured the project less along hierarchical lines 
and more around the skills and expertise of 
individuals. In many respects the social system 
which resulted involved a mixture of planful and 
opportunistic behaviour (Broadbent, 1993). 

One of the major successes of the project was its 
ability to reallocate and re-negotiate tasks and 
responsibilities according to cognitive demands and 
constraints. Collaboration within the project was 
the norm, and rather than being centred solely 
around the technology to be used, was determined 
by people and their skills. The precise form of what 
might be termed the "division of cognitive labour" 
(Hutchins, 1991) changed according to the type of 
tasks to be completed and the availability of 
knowledge and expertise. 

According to Hutchins' description of collaborative 
work, the project can be seen as a set of mutually 
adaptive sub-systems where the computation of 
programming tasks was definable in terms of the 
needs of the project. The term "computation" is 
used to refer to the set of tasks which have to be 
distributed amongst team members. Although the 
project had to deal as a whole with many 
uncertainties and work on the basis of incomplete 
and often poor information, it coped with these 
because it was able to restructure accordingly. 
Much of the success of these changes can be seen 
as the combined result of cognitive and 
organisational processes; boundary spanning 
allowed knowledge to be shared, whilst the presence 
of differential sources of expertise and knowledge 
made sure that problems and queries could be 
reconciled quickly. The introduction of CASE can 
be seen as altering not so much the structure and 
form of the "computations" which the project had 
to perform, but the relative distribution of these 
tasks across teams and individuals. On the face of it 
the tasks which were distributed amongst project 
members was the same -programmers converted 
code, analysts were involved in design etc, 
however, these activities were no longer as clearly 
defined as they had once been. 

One of the most common mechanisms for 
restructuring tasks and their allocation involved 
what Mintzberg (1979) refers to as "mutual 
adjustment", that is, key individuals adjust their 
patterns of interaction and communication in order 
to deal with situations which involve uncertainty 
and require support from others. For example, we 



Cognitive and organizational factors in software development 37 

found many instances of the emergence of 
collaborative practices centred around the provision 
of help and support. Despite the importance of 
these processes within the project, we found little 
evidence that they were regarded as important 
amongst managers. We suggest that more resources 
are put into the training of individuals to fit these 
roles and the provision of more formally designed 
support networks within projects. (cf. Nardi, 1993). 

A major implication of our study is that processes 
which involve the transformation and exchange of 
information are largely underplayed in traditional 
models of the software process. The implicit 
models embodied in newer tools (eg. CASE), 
assume a linear sequence of information flow 
through a project. Our experience suggests that this 
process involves feedback at every stage and is 
flexible rather than fixed. The roles which are 
assigned to people depend on their knowledge, as 
well as the demands of the on-going task. 
Depending on the nature of the task, rather than one 
sole individual, various people may be collectively 
involved. The problem with current interventions 
to re-engineer this process relates to attempts to 
reify the roles of individuals rather than recognise 
that at any one time many different, and sometimes 
unrelated, activities involving knowledge sharing 
and acquisition may be in operation (Walz, Elam 
and Curtis, 1993). 

Much the same criticisms apply to the way in 
which management views the software process as it 
occurs within teams. Here a strict division of 
labour is assumed, programmers are assumed to be 
concerned simply with coding, whilst in reality 
their roles involve the integration of information 
from a number of sources. In common with other 
work which has detailed the effects of the 
technological innovations (eg. Orlikowski, 1993; 
Bowers and Rodden, 1993), the problematic 
implementation of CASE can be seen from a 
number of viewpoints each centred around a 
"triangulation" between the needs of the individual, 
the project or larger organization, and the demands 
involved in using the tools 

Above all, we believe there is a greater need for 
case studies of the type we have described. Future 
work should address the question of how the 
assignment of project roles and responsibilities 
interact with spontaneous patterns of work 
organization, expertise and tool usage, and the 
consequences this has for overall project 
productivity. 

REFERENCES 

Boehm, B.W. (1981), Software Engineering 
Economics. Englewood Cliffs, NJ: Prentice-Hall. 

Bowers, J. and Rodden, T. (1991), Exploding the 
interface: experiences of a CSCW network. In 

Proceedings of /NTERCHI '93, New York: ACM 
Press. 

Broadbent, D.E. (1993), Planning and 
Oppportunism. The Psychologist: Bulletin of the 
British Psychological Society, 6, 54-60. 

Curtis, B., Krasner, H. and Iscoe, N. (1988), A 
field study of the software design process for large 
systems. Communications of the ACM, 31, 1268-
1287. 

Curtis, B., Krasner, H., Shen, V. and Iscoe, N. 
(1987), On building software process models under 
the lamposl Proceedings of the Ninth International 
Conference on Software Engineering, 96-103. 

Guindon, R. (1990), Knowledge exploited by 
experts during software system design. International 
Journal of Man-Machine Studies, 33, 279-304. 

Hutchins, E. (1991), Organizing work by 
adaptation. Organization Science, 2, 1, 14-39. 

Krasner, H., Curtis, B. and Iscoe, N. (1987), 
Communication breakdowns and boundary 
spanning activities on large programing projects. In 
G.M. Olson, S. Sheppard and E. Soloway (eds.), 
Empirical Studies of Programmers: Second 
Workshop, Norwood: Ablex. 

Mantei, M. (1981), The effect of programming 
team structures on programming tasks. 
Communications of the ACM, 24, 3, 106-113. 

Mintzberg, H. (1979), The structuring of 
organisations. Englewood Cliffs, NJ: Prentice-Hall. 

Nardi, B.A. (1993), A small matter of 
programming. Cambridge: MIT Press. 

Orlikowski, W. (1993), Divisions amongst the 
ranks: the social implications of CASE tools for 
system developers. Proceedings of the Tenth 
International Conference on Information Systems, 
Boston, Mass. 

Symon, G. and Clegg, C.W. (1991), Technology­
led change: A study of the implementation of 
CADCAM. Journal of Occupational Psychology, 
64, 273-290. 

Walz, D.B., E1am, J.J. and Curtis, B. (1993), 
Inside a software design team: Knowledge 
aquisition, sharing and integration. 
Communications of the ACM, 36,10, 63-77. 


