
36 
DOCUMENTATION AS PART OF DESIGN: 

EXPLORATORY FIELD STUDIES 

Jean-Franfois Rouet, Catherine Deleuze-Dordron and Andre Bisseret 

National Institute for Research on Informatics and Automation 
46 avenue Felix Viallet, 38031 Grenoble Cedex, France. 

Phone (+33) 76.57.47.76; Fax (+33) 76.67.46.95; e-mail rouet@isis.imag.fr 

KEY WORDS: software design, design with reuse, documentation, problem solving, 
support environments, design expertise. 

ABSTRACT: We describe a set of exploratory field studies in which we examined expert 
software designers' documentation strategies. Preliminary studies showed that there is no 
single agreed upon documentation methodology. However, content analysis of the literature 
as well as expert interviews indicted that inserted comments fulfil several explanatory 
functions. A case study of documentation as part of the testing of a prototype toolset indi­
cated that design with reuse requires a great deal of knowledge about the application domain, 
previous applications and reuse methodology in general. Moreover, documentation tools 
were extensively used during design. Content analyses and expert interviews highlighted the 
need for a close match between the design of those tools and the designers' actual strategies. 
Some implications concerning the design of support environments are suggested. 

1. INTRODUCTION 

Designers (e.g., architects, engineers or computer 
scientists) rely extensively on complex documenta­
tion systems. In software design the issue of produ­
cing quality documentation has become more and 
more critical as software engineering methodologies 
are increasingly sophisticated and demanding. In par­
ticular, current efforts to improve software design 
quality and productivity through component reuse 
highlight the importance of documentation and re­
trieval schemes (Frakes et al., 1991). 

In order to facilitate the designers' task, and to im­
prove the quality of software artefacts, design 
support environments are being proposed. Support 
environments typically include component libraries 
as well as tool kits to design, store, retrieve and edit 
software components. In these environments a pre­
cise, accurate and relevant documentation of the 
components (e.g., interface, provided functionality, 
specific properties) is a key factor of reusability 
(Lehner, 1993). However, the design of usable and 
efficient documentation tools as part of a support 
environment requires a comprehensive model of the 
design activity, which is yet to be proposed. 

From the point of view of cognitive psychology, 
software design is considered a complex problem 
solving activity (Curtis, 1991; Soloway et al., 
1982). According to the information processing 
theory (Newell & Simon, 1972), solving a problem 
involves reaching a goal (or "final state") through a 
series of intermediate steps. Software design pro­
blems are known to be "ill-structured", i.e., there 
may be several acceptable solutions for a given pro­
blem. Moreover, several strategies (i.e., definition 
and organization of intermediate steps) may lead to a 
given solution. 

Hayes-Roth and Hayes-Roth (1979) have proposed 
the notion of "opportunistic planning" to describe 
the organization of complex cognitive activities. 
According to their model, designers may initially 
follow a hierarchical framework, but they may depart 
from it en route based on characteristics of the speci­
fic problem situation (see also Guindon, 1990; 
Visser, 1987). 

Empirical studies of programming have indicated 
that software designers rarely use a strictly top-down 
strategy. Instead, they display episodes of oppor­
tunistic behavior. Although a hierarchical top-down 
approach may be applicable to simple problems, 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



214 Part Two Research and Theory 

there is evidence that experts will depart from this 
approach when difficulties arise (Guindon, 1990; 
Hoc, 1988). 

Because design is such a complex, multilayered acti­
vity, designers need to keep track of their own pro­
cesses through notes, graphical representations, 
schemas, etc. In addition to their need for "private" 
documentation, designers have to communicate their 
solutions in explicit forms, and hence they have to 
provide "public" documentation for the storage, 
maintenance, and reuse of the software. 

Even though a respectable amount of theoretical and 
empirical work has been devoted to the psychology 
of programming, the process of software documenta­
tion is still obscure. There is not yet a general co­
gnitive model that may help answer questions such 
as: What is the exact role of documentation in the 
design process? What types of information are nee­
ded, and at which phases of the design process? How 
can documentation help designers identify and reuse 
existing software components? In an attempt to 
address these questions, we undertook empirical field 
studies of the cognitive and human factors issues 
involved in designing and using "internal" do­
cumentation, i.e. documents issued as part of the de­
sign and reuse of software components. 

In the next part of this paper we summarize a series 
of preliminary field studies aimed at exploring 
documentation issues in SW engineering literature 
and in expert designers. Then we outline a case study 
of a design with reuse support environment currently 
under development. We focus on the ergonomics and 
cognitive aspects of using the environment, and we 
draw a few implications for the design of 
documentation tools in this type of environment. 

2. PRELIMINARY FIELD STUDIES 

2.1. Documentation Prescriptions in 
Software Literature 
As a first step we looked for documentation 
prescriptions in the software engineering literature 
(Deleuze-Dordron, 1993). 

We examined a series of six major software enginee­
ring manuals in order to identify principles or guide­
lines concerning what, when and how to document 
software. Information on this topic was scarce in 
most of the books studied. In only one case we 
found a tentative typology of inserted comments. 
Although most manuals gave little consideration to 

the problem of documentation, most of them in­
cluded examples of programs or algorithms with a 
large number of inserted comments. Thus, the 
production of inserted comments seems to 
correspond to implicit common sense heuristics 
rather than explicit principles. 

We also examined two sets of design guidelines, one 
from a team of scientists, the other from a software 
engineering company. Most guidelines were rather 
general (e.g., "avoid redundancy"). Moreover some 
guidelines relied on unsupported psychological 
hypotheses, e.g., "redundancy increases the reader's 
processing load". Very few were explicitly related to 
some kind of model of the design process. 

2.2. Roles and Uses of Documentation: 
Analyzing Expert Representations 
The purpose of our second exploratory study was to 
gather information on expert designers' representa­
tions and beliefs about the use of commenting in 
software design. We interviewed five expert designers 
(four computer science faculty members and one 
designer from a SW engineering company) according 
to a semi-directed interview scheme. 

Most of the experts agreed that in general programs 
are poorly documented. They often cited program 
comprehension and/or component reuse as situations 
where the need for documentation is most critical. 
However the experts acknowledged that there is so 
far no agreed upon method to devise appropriate 
comments. Instead, commenting seems to vary ac­
cording to each expert's strategies, habits and style. 
Nevertheless, four categories of information 
consistently emerged from the interviews: Purpose, 
time and position of comments, as well as 
constraints on comment production. 

Purpose of commenting. According to the 
experts, comments may convey information about 
the design process and the design product. First, 
comments may provide explanations about the 
solution or the method used to solve a problem. 
This information can be useful for the designer (it 
serves as an "external working memory") and for 
other readers. Second, object names and inserted 
comments play a major role in understanding a 
program. Names and comments should explain the 
meaning of an object or an action. They should also 
mention its exceptions, limits and context of use. 

Time of commenting. Comments may be issued 
before, during and after program design. Thus, com-



Documentation as part of design 215 

menting can be part of the reasoning itself, i.e., a 
means to plan or to make explicit intermediate steps 
of the problem-solving activity. 

Position of comments. Comments may contain 
information about the design of an application (high­
level comments) or about its implementation (low 
level comments). In addition, comments can be loca­
ted at the beginning of a source file, at the beginning 
of functional units and close to particular statements 
within units. 

Constraints on comment production. The 
experts also pointed out external (e.g., time and cost) 
and internal constraints (e.g., type of language used) 
on the production of comments. 

2.3. Discussion 
The objective of our preliminary studies was to 
examine the role and use of documentation in soft­
ware design. Our review of the literature and guide­
lines elicited several functions of commenting. The 
interviews indicated that expert designers use several 
criteria in defining what a good documentation 
should look like. Together these findings indicate 
that internal documentation plays a role as part of 
the design process itself. They may be produced 
during the design process, and may be addressed to 
the designer herself or to other readers. 

There are intriguing similarities between program 
commenting and note taking during learning activi­
ties (Kiewra, 1989). Notetaking facilitates both the 
understanding of a piece of text and the retrieval of 
information from that text. Similarly, commenting 
seems to assist the design process, in addition to 
improving the readability of a piece of software. 

3. A CASE STUDY OF DOCUMENTATION IN 
DESIGN WITH REUSE 

3.1. Presentation of the Study 
As part of the EC project ESPRIT-SCALE, we were 
involved in the empirical evaluation of a design with 
reuse support environment under development (see 
D'Alessandro et al., 1993; 1994). 

The environment includes a library of reusable com­
ponents and a set of tools to extract, adapt and do­
cument the components. The system is based on the 
HOOD methodology (Hierarchical Object Oriented 
Design, see HOOD Technical Group, 1993). The 
environment includes a tool to document 
components during the reuse process (reuse 

notebook). The reuse notebook includes several free 
text attributes aimed at storing information about the 
decision to. reuse a component and how reuse is to be 
conducted (modifications, etc.). 

At the time of the present study a first prototype was 
being tested based on a series of applications in the 
domain of hard real-time executives. A library had 
been developed based on a previous application, and 
was to be used to develop a new application. The 
testing activity involved two types of design experts: 
Application experts, whose role was to develop the 
target application, with little previous experience of 
the reuse environment; Toolset experts, who had par­
ticipated in the development of the environment and 
whose role was to assist the application experts. 

This situation was especially interesting in our 
perspective since it allowed to study the types of 
human expertise involved in design with reuse (D/R) 
as well as the production and use of documentation 
as part of this activity. Our method primarily 
consisted in collecting various types of data: 

- Observation of a D/R session including the recor­
ding of dialogs between experts and the report of cri­
tical incidents. 

- Interviews with the toolset and application experts, 
at the begining, during and after the design phase. 

- Analysis of technical documents about the envi­
ronment (tools, design guidelines, user manual) and 
outputs from the activity (e.g., internal documents). 

3.2. Results 
Only the main outcomes will be reported in the pre­
sent paper. (see Rouet & Deleuze-Dordron, 1994, for 
more details). First we present an analysis of the ex­
pertise involved in D/R; second, we focus on the use 
of documentation tools as part of the D/R activity. 

3.2.1. Types of expertise involved in D/R. 
The field testing involved two major phases. First, a 
library of reusable components (RCs) was populated 
using a source application; second, the library was 
used as part of the development of the new applica­
tion. For each phase we identified the expertise in­
volved and how the prescribed method and toolset 
were exploited by the designers. 

Populating the library. This actiVIty involved 
identifying RC candidates in the source application 
and preparing them for inclusion in the library. 



216 Part Two Research and Theory 

Based on our observations of the designers' 
activities, we found that identifying RC candidates 
requires at least three types of expertise on the part 
of the designer. 

First, the designer must be an application domain 
expert in order to understand what functionalities 
might be similar across applications, which will 
drive the search for RCs. 

Next, the designer must possess detailed knowledge 
of the source application, so as to understand the 
particular implementation of reusable functionalities. 

Finally, the designer must be an expert in reuse stra­
tegy. "Shaping" RCs involves making a number of 
decisions, e.g., choosing an optimal abstraction le­
vel. These decisions are based on various rules that 
are not totally explicit in the proposed reuse model. 
In certain cases the selection of RCs might be intui­
tive or arbitrary (see Krueger, 1989). 

Using the library. The use of the library during 
the development of the target application involved 
three main tasks: Identifying and selecting RCs pre­
viously stored in the library; (if necessary) modi­
fying the selected RCs; and including the selected 
RCs into the new application. 

Again, several types of expertise are required when 
performing those tasks: First, the designer must 
have a thorough knowledge of the application do­
main. S/he must know the requirements of the target 
application, its similarities and differences compared 
to other applications in the same domain. We found 
indications that some knowledge of the source appli­
cation may also be needed. In the present field study, 
a single application was used to populate the library. 
Furthermore, both the source and target applications 
were developed by the same experts, who were also 
involved in the extraction of RCs. Thus, in this case 
not only were the designers domain experts, but they 
also had much previous knowledge of the specific 
library components. Whether reusers with no pre­
vious knowledge of the source application would 
have managed to identify and select RCs in the pro­
posed environment is still an open issue. 

We also observed that the application experts needed 
paper documentation about the source application at 
the time of the first D/R session. This is a further 
indication of the importance of source application 
knowledge in the D/R process. Moreover, it sug-

gests that the RC library did not include all the 
needed information. 

Applying the reuse model requires a good deal of 
skill in the HOOD design method, and in the use of 
the support environment. In fact, during the first 
D/R session the application team experienced several 
types of difficulties. First, the designers needed 
assistance when trying to locate and use the toolset 
functionalities, which indicates that operating the 
toolset is not a trivial aspect of the activity. There 
were a few attempts to perform illegal or inappro­
priate operations, suggesting possible miscon­
ceptions of the "activity model" implemented in the 
toolset. Finally, the reuse notebook was hardly used 
spontaneously by designers, who tended to use paper 
notes instead. For instance one expert indicated that 
she liked to sketch graphical HOOD representations 
on paper before drawing them on the computer 
screen. 

It is important to point out that the observed session 
was the very first one, which may account for some 
of the observed difficulties, despite prior training ef­
forts. Nevertheless, the fact that a toolset expert was 
helpful to the application experts indicates that (a) 
toolset expertise plays an important role in the suc­
cessful application of the reuse model and (b) such 
expertise is not readily available to the users, even 
though they may be expert designers. 

3.2.2. Use of documentation tools. Two 
types of data were used: First, we performed a 
content analysis of the documents produced as part of 
the design; Second, we asked two experts to 
comment on a sample of those documents. 

Content analysis: The reuse notebook included 
two free text attributes aimed at documenting the 
reuse process. The first attribute ("Why included?") 
concerned each component reused as part of the 
design of a new parent component (local attribute). It 
allowed the designer to state the reasons for reusing 
the component. The second attribute ("Reuse 
planning") concerned the parent component as a 
whole (global attribute). It allowed the designer to 
state his or her plans concerning the reuse process 
within the design of the parent component. 

We found that the local attributes were seldom used. 
Most often, the designer made rather trivial state­
ments, e.g. "[the reused component] provides func­
tionalities which have to be also implemented in the 
system to design". The global attribute was used to 



Documentation as part of design 217 

store various types of information. Some statements 
reflected an actual planning activity (e.g. "before 
reusing the object x, it has to be adjusted to the new 
environment"). However, the statements concerned 
the children (reused) components as well as the pa­
rent component. Thus there seemed to be a need for 
planning information at the global AND local level. 

We also noticed that the application experts tended to 
use tools external to the reuse system to store na­
tural language information. In particular, they wrote 
statements about the actual decisions made during 
the design with reuse process. Thus, the designers 
needed a "logbook" of design decisions in addition to 
the "planning" attribute. 

Expert interviews: We conducted parallel inter­
views with an application expert and a toolset 
expert. The interview protocols involved a series of 
open-ended questions based on hard copies of docu­
mentation screens. The toolset expert provided ex­
planations for the current design of the documenta­
tion tools based on the design method implemented 
in the toolset. However, the application expert stated 
several difficulties with the toolset. For instance, she 
mentioned that the "reuse planning" attribute should 
be implemented for local as well as global objects; 
she also stressed the need for a text attribute where 
final decisions could be stored. The expert also 
justified her use of an external tool by the lack of 
such a tool in the reuse system. 

3.3. Discussion 
The case study illustrated several important characte­
ristics of the design with reuse activity. Obviously, 
reusers have to be experts in the application area. 
However, our data indicated that they also rely on 
two other types of knowledge: knowledge of pre­
vious applications used to populate the library; 
knowledge of rules and heuristics on when and how 
to reuse components. Our observation of the docu­
mentation tools showed that reusers need to store na­
tural language information about the design process 
at all levels of the application architecture. 

In addition, our study showed the importance of pro­
viding appropriate labels for free text attributes. In 
fact, the reusers could have used the provided attri­
butes to store any type of information they wished. 
However, they did not do so. Instead, they tried to 
comply with the "directions" suggested by the attri­
bute names. However, this proved to be difficult or 
sometimes impossible. As a consequence the reusers 
either misused the attributes or looked for other loca-

tions in the system in order to store those types of 
information which were not explicitly supported. 

Based on these observations, we suggested to replace 
the two reuse documentation attributes with a "local 
reuse logbook" (for each low-level object) and a 
"global reuse logbook" (for the parent object). 

4. CONCLUSIONS 

The main purpose of the studies reported in this pa­
per was to explore the production and use of natural 
language documentation as part of the software d& 
sign process. A better knowledge of the designers' 
documentation strategies may help define guidelines 
for the integration of documentation tools into de­
sign support environments. 

Our preliminary studies suggest that natural lan­
guage information can serve various functions in the 
design of a piece of software. Comments may spe­
cify the use of a variable or object; make explicit the 
purpose of a procedure; explain the functioning of an 
algorithm. Moreover, comments seem to be issued 
as part of the designer's reasoning process. 

Our case study of design with reuse confirmed these 
preliminary findings. We found that designers rely 
on several types of knowledge, including memory of 
past applications in the domain as well as rules and 
heuristics concerning when and how to reuse. They 
made extensive usage of the documentation tools 
provided as part of the support environment. 
However, we found discrepancies between the propo­
sed labels and level of abstraction of the free text at­
tributes and their actual usage. For instance, the d& 
signers did not have much to say about the reasons 
to include a reusable component, but they would 
have needed an attribute to state the reuse planning 
of the reused components. These results illustrate the 
need to pay close attention to the designers' actual 
strategies when designing a support toolset. 

A serious problem for the development of design 
with reuse support environments is the need for 
contextual information, i.e., information about the 
context (application, purpose) in which the compo­
nent was originally designed. We suggest that this 
problem is related to the cognitive constraints of de­
sign activities. As pointed out by Detienne and 
Bisseret (1993), software design problems are often 
ill-structured, in that several solutions may be used 
to solve a problem. The designer's task is to select 
the most appropriate solution. Previous experiences 



218 Part Two Research and Theory 

in the same application domain play an important 
role in this decision process. For instance, the re­
examination of previous applications (not only 
components) can help decide on whether or not to 
reuse existing components, and at what level of abs­
traction reuse might take place (see Kruger, 1989). 

Another problem is that effective usage of a support 
environment requires the expert to learn the functio­
nalities and the interface. When confronted to a new 
set of tools, even computer science specialists have 
to go through a learning phase during which they 
explore, make mistakes and spend extra-time 
performing their task. Although toolset expertise can 
be acquired through hands-on experience, the 
consequences in terms of reusers' training needs 
should not be overlooked. 

Finally, it should be pointed out that the studies re­
ported here are only preliminary steps toward a gene­
ral cognitive model of documentation processes as 
part of design activities. Whenever possible, we have 
attempted to draw implications of our observations 
for the design of interactive environments. However, 
more field studies will be necessary in order to 
provide general recommendations on how to provide 
effective support for design activities. 

REFERENCES 

Curtis, B. (1991). Cognitive issues in reusing soft­
ware artefacts. InT. Biggerstaff & A.J. Perlis (Eds.), 
Software Reusability, v. II. New York, NY: ACM. 

D'Alessandro, M., Lachini, P.L., Martelli, A. "The 
Generic Reusable Component: An approach to 
Reuse 00 Designs" Proc. of Second International 
Workshop on Software Reusability, Lucca (Italy), 
March 24-26 1993. IEEE Computer Society Press. 

D'Alessandro, M., Martelli, A. "ReuseNICE: A 
toolset to nicely support reuse". Proc. of the XIV 
International Conference of the Chilean Computer 
Science Society - Conception, Chile October 31 -
November 4, 1994. 

Deleuze-Dordron, C. (1993). Analyse de l'activite ck 
documentation de programmes: premiere exploration. 
Memoire pour le DEA de Sciences Cognitives, 
Grenoble: INPG, 1993. 

Detienne, F. & Bisseret, A. (1993). A study of er­
gonomic and cognitive aspects related to the man-

machine interface of process support environments. 
SCALE Deliverable D2.1.2-1 

Frakes, W.B., Biggerstaff, T., Matsamura, K., 
Prieto-Diaz R., & Schaefer, W. (1991). Software 
Reuse: Is it delivering? Procs 13th Conference on 
Software engineering. Austin, TX, May 13-17. 

Guindon, R. (1990). Designing the Design process : 
Exploiting Opportunistic Thoughts. Human 
Computer Interaction, 5, 305-344. 

Hayes-Roth, F. & Hayes-Roth, B. (1979). A cogni­
tive model of planning. Cognitive Science, 3, 275-
310. 

Hoc, J.-M. (1988). Cognitive psychology of plan­
ning. London: Academic Press. 

HOOD Technical Group (1993). HOOD Reference 
Manual3.1. Paris: Masson 

Kiewra, K.A. (1989). A review of note-taking: The 
encoding-storage paradigm and beyond. Educational 
Psychology Review, 1, 147-172. 

Lehner, F. (1993). Quality control in software do­
cumentation based on measurement of text 
comprehension and text comprehensibility. 
Information Processing and Management, 29(5), 
551-568. 

Newell, A. & Simon, H. (1972). Human problem 
solving. Englewood cliffs, NJ: Prenctice Hall. 

Rouet, J.-F. & Deleuze-Dordron, Catherine (1994). 
Design with reuse and software documentation: 
Some cognitive and human factors issues. INRlA 
Rhone-Alpes, unpublished manuscript. 

Soloway, E., Ehrlich, K., Bonnar, J. & Greenspan, 
J. (1982). What do novice know about pro­
gramming? In A. Badre & B. Schneiderman (Eds.), 
Directions in Human Computer Interactions (pp. 27-
54). Norwood, NJ: Ablex Publishing Corp. 

Thunem, S. & Sindre, G. (1992). Development with 
and for reuse. Guidelines from the REBOOT project. 
Procs ERCIM Workshop on methods and tools for 
software reuse (pp. 2-16). Heraklion, Greece: 
October 29-30. 

Visser W. (1987). Giving up a hierarchical plan in a 
design activity. INRIA, tech. Rep. No 814. 


