
33
A DATA CENTRED FRAMEWORK

FOR USER-CENTRED DESIGN
David Benyon

Computing Department, Open University,

Milton Keynes, MK7 6AA, UK.

Tel: +44 (0) 1908 652679 e-mail: D.R.Benyon@ open.ac.uk

KEYWORDS
Data, task, design framework, conceptual design, physical design

ABSTRACT
The notion of a user task needs using with care and needs placing in the context of a more
abstract representation of the human-computer system. A framework is developed which
provides a structure within which both existing tasks and new tasks can be considered. The
framework focuses on an information processing view of HCI and distinguishes conceptual
from physical design. In doing so it seeks to complement other perspectives (such as
ergonomic, sociological , organisational etc.) rather than to replace them. The data centred
framework enables designers to place the idea of 'task' within a considered cognitive
approach.

INTRODUCTION

The essential principles of user-centred design
remain broadly in line with the original formulation
provided by Gould and Lewis (1985). These
principles clearly provide good advice, but a major
problem facing the system designer is to know how
the principles should be applied.

Whilst there is much good advice available in the
HCI literature on aspects of design, there are few
methods or approaches which guide the designer.
Even the more prescriptive of methods (e.g.
Browne, 1994) encourage designers to pick and
choose techniques according to the project at hand.

Other approaches to user-centred systems design
typically emphasise the concept of a user task. (e.g.
Carroll (1990), Johnson (1992)). Hix and Hartson
(1993) argue that 'Approaching user interface
development.. .from a user and task view, should
result in higher usability' (p. 7, authors italics).

The assumption underlying the emphasis put on
'task' appears to derive directly from Gould and
Lewis's (1985) first principle- to make user issues
central in the design process. But does attention to
user tasks correspond to making user issues central
in the design process? Moreover, these statements
do not make clear whether attention to tasks means
designing to support existing tasks or designing
new tasks in a more user-centred manner.

What is required is a more abstract representation
of the human-computer system; a framework
within which both existing tasks and new tasks can
be considered.

THE TROUBLE WITH 'TASK'

The concept of 'task' has dominated the ontology of
HCI since the earliest days. Tasks are part of

Long's (1989) conceptualisation of HCI along with
humans, computers and effectiveness. Moran's
(1981) command language grammar (CLG)
includes a task level of description and many task
analysis techniques have been developed (Diaper,
1989).

One would imagine that such a ubiquitous term
would have a simple definition, but this is not the
case. Some authors argue that a task is device
independent (Biisier, 1987) and others that it is
device dependent (Shepherd, 1989). More recently,
problems with the notion of task have been
identified by Draper (1993). He identifies several
different meanings for the term 'task' and warns
against instantiating current tasks in future systems.
The debate in Interacting with Computers (Benyon,
1992a; Diaper and Addison, 1992; Benyon, 1992b)
raises a number of issues. Long now prefers the
term 'work' in place of task and in a similar vein,
Preece et al (1994) argue that 'work' is more
appropriate than 'task' because of the distributed
nature of many real world work situations.
Fischer's (1989) design environments are to support
'human problem-domain communication' (p. 62).

In order to clarify the appropriate role and position
of 'task' within HCI, we can adopt the following
definitions.

A goal is;

a state of a system which the human (or, more
generally an agent where an agent is any
autonomous, rational, creature, machine or system
which formulates its own goals and seeks ways of
satisfying those goals) wishes to achieve.

For example, the human wants to write a letter, to
produce a balance sheet, to find what is on
television, and so on. A goal must be described at a
particular level of abstraction.

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995

198 Part Two Research and Theory

A goal is achieved using some instrument, method,
agent, tool, technique (mental or physical), skiii or,
generally, some device which is able to change the
system to the desired state. Typicaiiy a goal can be
accomplished using a variety of devices. For
example, writing a letter is a goal which can be
accomplished using a device such as a typewriter, a
word-processor or pen and paper. Calculating the
result of 385 + I I can be accomplished by using a
pocket calculator, doing some mental arithmetic or
using long division.

Given that the person has formed a goal, the person
selects a device which (s/he believes) wiii enable
him or her to achieve that goal. It is only once a
device has been selected, that the tasks necessary to
accomplish the goal may be understood. The tasks
are prescribed by the logical structure and
functioning of the device, that is, by the way that it
has been designed, or has evolved.

Thus, we can define a task as:

the activities required, used or believed to be
necessary to achieve a goal using a particular
device.

A task is a structured set of activities in which
actions are undertaken in some sequence. Certain
actions may be repeated during the execution of a
task. Alternative actions may be available which
will accomplish some part of the task. A task is an
activity which may include the sequence, selection
and repetition of actions.

At some point, the human physically interacts with
a device by performing an action . For example, the
person types a command on a keyboard, physically
moves a pointing device or presses a button on a
display panel. There are also mental actions (or
operations in GOMS (Kieras and Polson, 1985)
terminology) such as 'retrieve from memory',
'recognise', 'compare' etc .. The significant
difference between tasks and actions is that actions
do not •include any sequencing, repetition or
selection (the control structure). Actions are at the
skill level (Rasmussen, 1986).

Thus we define an action as:

a task which involves no problem solving or
control structure component.

This definition of 'action' is consistent with the
concept of a 'simple task' (Card, et a!., 1983), 'unit
task' (Payne and Green, 1989) or 'operation' (Kieras
and Polson, 1985). Clearly however these
definitions are only useful given some declared
level of abstraction and given the knowledge and
skills of particular users. A touch typist may
consider typing the letter 'e' as an action, whereas
for a novice this would probably be a relatively
complex task consisting of the sequence of actions
'search keyboard', 'locate letter 'e", 'press key'. Even
then 'search' and 'locate' may themselves be
relatively complex. It is these problems which
Draper (1983) highlights in his analysis - the
concepts of goals, tasks and actions need using

with care and require an explicit statement of the
context of the analysis to be useful.

The analysis above is not just intended to clarify
definitions. The fact that a task is dependent on the
device used to accomplish a goal means that any
change in device will change the task (even if it
does not change the user's goal). Even such a trivial
change of device such as replacing a corded by a
cordless telephone changes the task required to
accomplish the goal of making a phone call. The
functionality of the human-telephone system has
not changed, but the onus of making the initial
connection between handset and the telephone
network (i.e. to obtain a dialling tome) has shifted
from the device to the human. Whereas with corded
telephones, lifting the receiver automatically
established the connection, with the cordless phone
the user has to press a button to do this.

A FRAMEWORK FOR DESIGN

The three levels of description of HCI activity lead
to a two layered approach to design. Conceptual
design is concerned with the goal and task levels
and the mappings between these levels. It focuses
on what the system has to be like if it is to meet its
declared purpose, but not on how the structure and
functions are to be realised in a physicaily
instantiated system. The process of conceptual
design results in a conceptual model of the whole
human-computer system.

Physical design concerns the design of the
physical system - embedding the conceptual model
of a system in a physical structure (i.e. designing
the device) so that users can communicate with that
system. This involves both the operational aspects
- what the system wiii do - and the representational
aspects - what the system looks (and sounds) like.
The operational aspects include making decisions
about dialogue structure, the use of keystrokes,
mouse movements, button pushes, etc. and
feedback. Details of exactly how to display
information, such as where to position items on the
screen, the form of icons, dialogue boxes and how
to use different media is the concern of the
representational aspects of design

Moving from the conceptual to the physical level
requires the designer to decide who or what is
going to undertake particular functions and how
information is to be distributed through the system.
This is the process of task allocation. By
allocating certain (logical, or conceptual) functions
to humans, to the computer or to a human­
computer system, the designer creates tasks for the
human. By allocating certain data structures to the
system the designer creates a demand on the user's
cognitive processing. Within this framework, user­
centred design is not concerned with understanding
human tasks, it is concerned with designing devices
which impose tasks on humans. The purpose of
user-centred design is to support the goals which
people wish to achieve - it does this by allocating
tasks to human and to computer, with user issues
remaining central to this activity. Thus the

A data centred framework for user-centred design 199

conceptual/physical distinction above is reflected in
analysis as well as design. The designer needs to
understand, conceptually, what the human­
computer system is to do and to design, physically,
how the human-computer system can achieve this
purpose.

This framework seeks to simplify our
understanding of the information processing view
of HCI and to focus attention on the processes of
HCI design. The psychological basis of the
framework assumes that users can know something
at one level but not at another. For example, a user
may have knowledge at the conceptual level, i.e. a
clear goal (such as deleting a section of text) and
may understand the structure of the appropriate
task (such as selecting a piece of text and then
removing it) but not know how to do it at the
physical level (for example, which sequence of
keys to press, i.e. how to map the task structure
onto the action structure).

It is also important to recognise that distinguishing
between conceptual and physical design does not
provide a method for the design; only guidance
about what the design should involve. Analysts
and designers will iterate between these two levels
of description and will fix on certain physical
design decisions in order to understand the
conceptual level better. This iteration will involve
various kinds of evaluation with users to check that
the design really does meet their needs. However,
the advantage of designing at the conceptual level
before details of the physical design are fixed is
important as it helps to avoid the problem of
'design fixation' and maintains a wide design space
in which alternatives can be considered for as long
as possible.

This description of levels considers the conceptual
and physical components from both designers' and
users' perspectives. Designers often fall into the
trap of developing a conceptual model of a system
to which the user has to adapt rather than the other
way around. By analysing a design problem from
the two perspectives the differences between the
two can be highlighted and subsequently resolved.

CONCEPTUAL MODELLING

In order to develop a human-computer system, the
designer must construct a suitable representation - a
conceptual model - of the system. The purpose of
conceptual models is to allow analysts to reason
about a problem and come up with design solutions
in the abstract. The importance of conceptual
modelling has long been recognised in information
systems design (Benyon, 1990, Checkland, 1981)
and more recently in HCI (Braudes, 1991) A good
conceptual model is one which is appropriate to the
situation at hand. It highlights significant
information and suppresses unnecessary detail.
Conceptual models may be used to aid analysis -
constructing the model forces the analyst to
consider what is significant - as a formal design
technique, to communicate ideas or to test
hypotheses.

Models can be made of many things and can be
about different aspects of the situation. Within
HCI, we may want to model the social, political or
organisational aspects, using techniques such as
advocated within cooperative design (Greenbaum
and Kyng, 1991). We may wish to model the
physical interaction using a technique such as UAN
(Hix and Hartson, 1993) or using storyboards and
scenarios (Preece, et al. 1994). The constructs
which a model employs, the ability to manipulate
those constructs and the constraints which can be
expressed are essential to its efficacy. The notation
employed by a model can be critical to its usability.

HCI focuses on the interaction between humans
and computers, so a conceptual model of the
human-computer system which is both an
abstraction of humans and of the computer system
would be desirable. Moreover, one important
aspect of HCI is the exchange of information and
meaning. Using data models - models· of some
aspect of a human-computer system made of data. -
is particularly appropriate for human-computer
systems since the model uses a construct which is
applicable to both human information processing
and to computer data processing.

Data models can represent the structure of data in
the whole human-computer system by using the
technique of entity-relationship modelling
(Benyon, 1990). They can represent the processing
of data by using the technique of dataflow
diagramming (DeMarco, 1979). They can represent
the structure-function relationships through
'behavioural models' such as transition networks
and entity life histories (Benyon, 1990; DeMarco,
1979). They can represent the meaning of concepts
by representing data definitions using a data
dictionary (DeMarco, 1979). Data models support
the framework outlined above because they can be
used at both the conceptual and physical levels and
can be used to assist with task allocation.

The ERMIA technique (Green and Benyon, 1995)
applies this philosophy to an analysis of structure.
This paper focuses on a complementary use of data
models; to represent the information processing in
human-computer systems.

CONCEPTUAL DESIGN

In order to illustrate the framework in action and
the power of data models, let assume that an initial
analysis has been undertaken and that the following
requirements specification has been produced:

Eurobank PLC, a mythical international bank, is
designing an automatic bureau de change machine
that resembles the autoteller machines we see in
our high streets. The machine, Eurochange, is
intended initially for installation in airports and
will allow travellers to obtain the main European
currencies quickly without having to find the
nearest bank.

Three main processes have been identified; I.
Validate User which checks that the user has a
correct type of card and correct PIN (personal

200 Part Two Research and Theory

identification number), 2. Enter Requirements
which allows the user to specify the amount of
foreign currency required and 3. Deliver Currency
which updates the credit card with the amount
withdrawn and physically delivers the currency.

Dataflow diagrams have a number of desirable
properties. One of these is that they can represent
computer inputs and outputs and the data processed
by humans using the common concept of a
dataflow. Similarly both human and computer
processes can be represented (as circles). Designers
do not commit themselves to a particular
implementation by representing the flow of data in
the system.

Valid User
(from process I)

•
Curr~

Currency (to process 3)

•
Figure 1 'Top level' dataflow diagram for process 2.
Enter Requirements

The 'top level' dataflow diagram for process 2 is
shown in Figure 1. It is a conceptual model of
process 2. Notice that it says nothing about the
flow of control (e.g. whether the data from process
1 - ValidUser - is processed before the
Currency Amount is entered). It says nothing about
how the data should be entered. It does not even
say what the content of the dataflows are. All it
says is that CurrencyAmount and ValidUser are
two dataflowsl which are processed by the Enter
Requirements process to produce a dataflow called
Currency. The contents of these dataflows have not
yet been identified; conceptually process 2 requires
CurrencyAmount and ValidUser as input and
produces Currency as output. The abstraction
achieved by the dataflow diagram is vital to good
systems design; it hides the detail of the form and
control structure of processes and dataflows.

One of the most important decisions to be taken
during the development of a human-computer
system is to allocate tasks; to human, to computer
or to a human-computer system. The developer
needs to establish who (or what) is going to provide
the data or knowledge necessary to accomplish a
task and who (or what) is going to physically
accomplish the task. For example, in the
Eurochange example it is difficult to imagine how
the computer could provide the PIN. This must be a
user action in order to meet security criteria.
Similarly you would not expect the user to have to
calculate exchange amounts. The computer should
do this. Many other functions which are logically -
or conceptually - required, however, can be
allocated to the human, to the machine or to some
combination of the two.

TASK ALLOCATION

Dataflow diagrams can be used to assist in task
allocation; since the whole human-computer
system is represented, options for distributing
functions (and thereby creating human tasks) can
be clearly examined. In allocating tasks the
designer needs to consider the feasibility of
obtaining data from different sources and the
desirability of doing so. Let us consider the next
level of detail for Process 2. It takes in a dataflow
of'ValidUser' which is the output from process 1. It
also takes in a data item CurrencyAmount from
somewhere else and produces an output data item
called 'Currency" which we may take to be the
amount of foreign currency requested. The designer
must now consider what the content of the data
'Currency Amount' will be. Some possibilities are;

any amount expressed in the local currency
(then the user would need to know the equivalent
amount in the currency required)

any amount expressed in the currency required
(then the user would need to know what the
equivalent was in local currency).

a restricted amount in local or required
currency (in which case, the system could offer
certain amounts in the foreign currency and restrict
the user to selecting one of these).

The designer needs to produce a more
detailed level of description for process 2 in
order to examine the alternatives (see Figure
2).

Figure 2 Level 2 DFD for process 2, Enter
Requirements (first attempt)

Unlike Figure 1, Figure 2 includes a store of data
which is (conceptually) necessary for the process to
be possible. As we move down· the levels of
abstraction, we add details which are necessary at
that level. Clearly process 2 will need access to
some representation (a datastore2) of exchange·
rates; where that is located or how it is represented
is not relevant to this level of discussion. Four

A data centred framework for user-centred design 201

possible processes are shown which are required
for different scenarios. In one scenario the user's
goal is 'I want the equivalent of £100 in DM'.
Another scenario is 'I want 2000 Francs'. In the first
case, the user performs processes 2.1, 2.2 and 2.3
of Figure 2 and in the second case, the user
performs 2.3 and 2.4.

In allocating tasks, the designer will consider the
cognitive load imposed on the user by any of the
options chosen, how much learning will be
required, what knowledge may be transferred from
other tasks and how best to exploit that knowledge.
The simplicity of task-action mappings are also
important as is a simple conceptual-physical
mapping. Task analysis techniques, particularly
cognitive task analysis which focus on the user's
task knowledge are appropriate at this point to
inform the designer. Clearly in the allocation of
tasks, one important consideration is the mental
load demanded of the user by a particular user­
system design. Indeed, we implicitly considered
this above when arguing that the system should
calculate the exchange amount. This is an easy task
for the computer, but a difficult one for the human
which is a good reason why the computer should
perform it.

PHYSICAL DESIGN

Let us consider what a 'second attempt' analysis of
process 2 in Eurochange might be like and impose
the human-computer boundary as illustrated in
Figure 3. Flows across the boundary indicate the
user inputs and system outputs which are required.
The system will display the currencies which are
available and the user will select the required
currency. The system will display the exchange
rate between the requested currency and the user's
local currency. The user will then enter the amount
of the foreign currency required. The system will
display the equivalent amount in local currency and
the user may then accept this or return to the start
of the transaction. Amounts are only allowable in
certain denominations (depending on the required
currency). If the user enters an incorrect amount the
system will request that a more appropriate amount
is entered. Clearly this solution is only one option
and serves to illustrate the approach rather than
defining the best design.

With the design illustrated in Figure 3 the designer
has created three tasks for the human - 2.3 Select
Currency, 2.4 Enter Amount Required and 2.8
Confirm Amount. It would seem clear that the user
has (logically) to perform 2.3 (although even for
this process automated options are available -see
below), but there are many physical design options
all of which accomplish this same, logical process.

If it is decided that the computer will support this
process, then the currencies available can be
pointed at by a mouse, selected from a list using
cursor keys, displayed on a touch sensitive screen
or displayed using 'hard' selection keys. The system
could anticipate what the user requires either
through a simple rule such as 'if the user is in

France s/he will probably require French currency'
or through more elaborate mechanisms such as
inferring what the user requires from details of
previous transactions which could be stored on the
user's card (thus making it a 'smart card').

There are many other aspects to be considered. For
example, in deciding the amount required, the user
may need access to the exchange rate. We must
consider the possibility of the user making errors
and being able to correct them and of users
changing their mind when they see how much they
are asking for in the local currency.

CONCLUSION

This paper has provided a framework for HCI
design which draws the important distinction
between conceptual and physical design and places
task analysis within that framework. If we adopt
this framework then we must look for modelling
mechanisms which are suitable for describing the
whole human-computer system and which focus
attention on the demands on users and machines
which result from particular designs. Dataflow
diagrams fulfil that function for the processing.
Other techniques such as ERMIA are available for
describing the conceptual structure of human­
computer systems (Green and Benyon, 1995).

Figure 3 Second attempt DFD of process 2.
Allocating tasks to Human and machine in the
Eurochange example

The task allocation stage of developing human­
computer systems is certainly one of the most
important and one which will itself involve many
iterations, prototyping of options, detailed analysis
and user testing. The designer, starting off with a
conceptual description of the whole human­
computer system in the form of data models such
as dataflow diagrams, considers each process
bringing to bear task analysis techniques
as appropriate. Sutcliffe (1991) makes a similar
point, though with a different motivation.

It is certainly good practice to examine current
human tasks as an understanding of these will

202 Part Two Research and Theory

inform the design process. However, it is equally
important to abstract from current practice - in this
case by focusing on the information flow required
in the system. The method of using dataflow
diagrams is effective and robust. Moreover, it
conforms with software engineering techniques
which will be used to implement the system and
thus assists with the transfer of HCI considerations
to mainstream software engineering.

ACKNOWLEDGEMENTS

The ideas presented here are developed from Part
IV of (Preece, et al. 1994).

REFERENCES

Benyon, D.R. (1990) Information and Data
Modelling, Blackwell Scientific Publications,
Oxford

Benyon, D.R. (1992a) The Role of Task Analysis
in Systems design in Interacting with Computers
4(1), 1992

Benyon, D.R. (1992b) The Discipline of Data in
Interacting with Computers 4(2), 1992

Biisser, T. (1987) Learning in Man-Computer
Interaction, Springer-Verlag

Braudes, R.E. (1991) Conceptual modelling: A
look at system-level user interface issues. In Taking
Software Design Seriously (Karat, J., ed.)
Academic Press, London

Browne, D. (1994) STUDIO Structured User­
interface Design for Interaction Optimisation,
Prentice-Hall, London

Card S.K., Moran T.P., and Newell A.,(l983) The
Psychology of Human Computer Interaction.
Lawrence Erlbaum, 1983.

Carroll, J.M. Infinite detail and emulation in an
ontologically minimised HCI in J.C. Chew and J.
Whiteside (eds.) Empowering People; CHI '90
Proceedings 1990 ACM press

Checkland, P. B. (1981) Systems Theory, Systems
Practice. Wiley

DeMarco, T. (1979) Structured Analysis, Systems
Specification. Prentice Hall

Diaper, D. (1989) Task Analysis for Human­
Computer Interaction Ellis Horwood, Chichester

Diaper, D. and Addison, M. (1991) Task Analysis
and Systems Analysis for Software Development.
In: Interacting with Computers vol 3(3) pp 124 -
139

Draper, S. (1993) The Notion of Task. In Bridges
Between the Worlds, INTERCHI '93 Conference
Proceedings, adjunct proceedings (Ashlund S.,
Mullet K., Henderson A., Hollnagel, E. and White,
T., eds), pp 207-8 Addison-Wesley, Reading Ma.

Fischer, G. (1989) Human-Computer Interaction
Software: Lessons Learned, Challenges Ahead
IEEE Software, (January) pp 44-52

Gould, J. D. and Lewis, C. (1985) Designing for
Usability: Key principles and what designers think.
Communications of the ACM, 28, 300 -II

Green, T. R. G. and Benyon, D. R. (1995)
Displays as data structures: Entity-Relationship
Models of Information Artefacts. In Proceedings of
Interact '95 North Holland, Amsterdam

Greenbaum, J. and Kyng M., eds., (1991) Design at
Work: Cooperative Design of Computer Systems.
Lawrence Erlbaum, Hillsdale NJ

Hix, D. and Hartson, H. R. (1993) Developing User
Interfaces: Ensuring Usability through Product
and Process Wiley, New York

Johnson, P. (1992) Human-Computer Interaction:
Psychology, Task Analysis and Software
Engineering. McGraw-Hill, London

Kieras, D. and Polson, P.G., (1985) An approach to
the formal analysis of user complexity
International Journal of Man Machine Studies,
Vol. 22, 1985

Long, J, Cognitive Ergonomics and Human­
Computer Interaction. In P. Warr (ed.) Psychology
at Work Penguin, Harmondsworth. 1989

Moran, T. (1981) The Command Language
Grammar Intentional Journal of man-Machine
Studies 15(1) 3- 50

Payne, S.J and Green, T.R.G, (1989) Task-Action
Grammar: the model and its developments in
Diaper, D. (ed) Task Analysis for Human­
Computer Interaction. Ellis-Horwood

Preece, J. J., Rogers, Y., Sharp, H., Benyon, D. R.,
Holland, S. and Carey, T. (1994) Human Computer
Interaction: Understanding for Design.
Wokingham, UK; Addison-Wesley.

Rasmussen, J. (1986) On Information Processing
and Human-Machine Interaction: An Approach to
Cognitive Engineering Elsevier, Amsterdam

Shepherd, A. (1989) Analysis and Training in
information technology tasks in Diaper, D. (ed)
Task Analysis for Human-Computer Interaction.
Ellis-Horwood

Sutcliffe, A.G. (1991) Integrating methods of
human-computer interface design with structured
systems development. International Journal of
Man-Machine Studies 34 631-55

I A dataflow is any arbitrarily complex combination of
data elements (which may include gestures, speech, text,
mouse clicks, etc.) which travel together from one
process to another.
2 A datastore is any arbitrarily complex collection of data
(which may be resident in the human) which is more
persistent than a dataflow and does not travel between
processes, but which is employed or updated by a
process.

