
24 
Learning graphical programming: An 

evaluation of KidSim™ 
David J Gilmore, Karen Pheasey, Jean Underwood & Geoffrey Underwood 

ESRC Centre for Learning Research 
Psychology Dept 

University of Nottingham 
Nottingham, NG7 2RD, UK 

dg@psyc.nott.ac.uk 

K E Y W 0 R D S : Programming, Graphical programming, Abstraction, Educational 
technology, Learning, End-user programming. 

ABSTRACT: This paper presents part of an evaluation of a new children's 
programming environment, developed by Apple Computer Inc. for 10-13 year old 
children. We studied 56 children, generally working in groups of 2-3, using 
K.idSim ™ for between 2-12 hours, over a period of between 2 days and 3 weeks. The 
results show that children of this age can readily learn to master the programming 
environment, and that they greatly enjoy using the system- indeed in most cases it 
clearly fired their imaginations. However, questions remain about the level of 
programming abstractions that they were able to understand. 

INTRODUCTION TO KidSimTM* 
Smith (1993) describes the programming environ­
ment KidSim™, developed by Apple Computer Inc. 
as an end-user programming environment targeted at 
children aged between 10-13. K.idSim™ is a wholly 
graphical programming environment, containing 
agents for whom the children can construct graphical 
production rules which will move them around a 2-
dimensional world. 

Many of the ideas embodied in the system are 
derived from teachers' suggestions following the use 
of HyperCard for modelling Dewdney's 2-d world 
"The Planiverse" (Dewdney, 1982). 

K.idSim™ is still in the process of being developed 
and the version we used for these evaluations was an 
early prototype. It was extremely similar to that 
described in Smith (1993). Being a prototype it 
consumed large amounts of disk space and RAM and 
this imposed constraints on the evaluations in ways 
described below. By contrast, production versions of 
KidSim ™ are expected to run on home machines, 
with minimal RAM requirements. 

*KidSim™ is a registered trademark of Apple 
Computer Inc. 

All interactions, whether programming or drawing 
(of the 2-dimensional world) are by direct 
manipulation. Except for naming agents, and maybe 
naming some of their characteristics, the children 
have no need to use a keyboard. The appearance of 
the world, objects within the world and of the agents 
themselves is all under the control of the children, 
through simple drawing tools. 

The basic programming architecture is of a graphical 
production rules in which the interpreter tries to 
match the world around an agent to the left-hand side 
of one of their rules. When such a match is found 
then the world around the agent is changed to that 
represented by the rule's right-hand side. Each agent 
can have multiple rules and a world can contain 
multiple agents. 

The 'world-around-an-agent' is of flexible size, 
though the size must be same for the left- and right­
hand sides. It could be simply an agent and one 
adjacent space (the world is divided into square 
spaces), or it could be a large rectangle surrounding 
the agent by any number of spaces in differing 
directions. The whole of the world defined by the 
rule has to match in order for the rule to be 
triggered. 

PROGRAMMING ISSUES 
At CHI'92 a special workshop on end-user 
programming was held (see Gray et al, 1993), at 

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995



146 Part Two Research and Theory 

which there was lengthy discussion about both the 
potential and the interfaces for end-user program­
ming. Rather pessimistically Gilmore presented an 
argument that people were assuming that end-users 
could acquire a complete conceptual grasp of prog­
ramming, including the tough concepts of abstrac­
tion, modularity and analysis. Arguing that abstrac­
tion was the most important concept, it was claimed 
that end-users would not really acquire programming 
skills unless the interface provided concrete 
embodiments (visualisations) of abstraction. 

As an example one can consider the abstract concept 
of a variable in HyperCard. Many HyperCard 
programmers do not use variables, since they are 
uncertain of their exact status and usage. However, 
people do use fields quite freely, and then they adapt 
to the slightly abstract notion of invisible fields 
(occasionally made visible when debugging). In fact, 
apart from long-term storage and speed, there are no 
differences between variables and invisible fields. 
HyperCard provides an ideal vehicle for scaffolding 
the concept of variable out of domain-specific text 
fields. What is not clear is whether the variable 
concept acquired is genuinely abstract, or whether it 
is HyperCard specific. 

Unfortunately, this is not a readily testable idea, 
since HyperCard is neither a novice, nor an end-user 
programming environment. The discussion at 
CHI'92 was mixed - some believed that end-users 
would not be able to (or should not have to) learn 
any abstractions, whilst others felt that a good 
scaffolding environment could lead them through to 
general programming skills. 

To date there have been no tests of end-user 
programming skills and knowledge - the studies 
have focused on task analysis and documenting the 
actual activities undertaken. However, there is an 
interesting and striking parallel here with the use of 
computing in classrooms. Indeed, maybe children are 
the ultimate end-user programmers. 

Classroom computing 
Papert (1970) argued that the study of programming 
is intellectually beneficial and for a number of years 
the notion persisted that programming was a "new 
Latin" which would promote good, domain­
independent thinking skills in our children. Initial 
studies with LOGO offered the possibility that these 
claims might actually be true, but then more detailed 
and more rigorous studies came along which were 
generally unable to find any evidence of transfer 
from programming to general problem-solving 
skills (e.g. Mayer, Dyck & Vilberg, 1986). 

However, most of these studies had a very narrow 
view of transfer, and used languages (usually LOGO) 
which embodied a narrow view of programming. 
And one of the key problems in the studies was that 
too many children acquired too little expertise in 
programming (e.g. Kurland, Pea, Clement & 
Mawby, 1986). 

One of the key factors about programming skills is 
that most key concepts seem to be acquired when 
people are trying to solve their own problems, rather 
than the exercises provided by the teacher. 
Programming seems to be inherently a 'discovery 
learning' domain. Many of the early LOGO and 
other studies used fairly traditional instructional 
regimes, in which programming was taught through 
language features, code templates, procedural skills 
(e.g. planning and debugging) and finally general 
problem-solving. It isn't perhaps too surprising that 
children showed little transfer of this knowledge. 

Linn & Dalbey (1985) showed how quality of 
instruction was of prime importance in determining 
children's programming success, with 'exemplary 
instruction' (which emphasised design skills and 
general transferable skills) advancing the students 
furthest along the chain of cognitive 
accomplishments. However, even here the only 
example of a general transferable skill was an 
understanding of a general sorting algorithm. 

KidSim™, therefore, offers a chance to look at 
classroom computing in a manner which goes 
beyond most of the studies conducted so far. It offers 
children the possibility of studying problems of 
their own choosing, in a context which does not 
strongly associate programming with Maths or 
Science, or any other specific discipline. And yet, 
KidSim™ contains tough, general programming 
abstractions to be understood (e.g. the concept of 
abstraction itself, variables, a black box system). 

At the current stage of development, our primary 
goal was to provide an early formative evaluation, 
hoping that our evaluations of KidSim™ can inform 
not only classroom computing, but the development 
of end-user programming systems too. 

THE EVALUATION 
If children can learn about abstraction and 
modularity, through good interface and environment 
design (rather than by instruction), then the potential 
for truly powerful end-user programming is more 
promising. 



Learning graphical programming 147 

KidSim™ provides an opportunity to investigate 
this question. The nature of the prototype at the 
time of this evaluation constrained us to using 
machines in our Department, rather than being able 
to take KidSim™ into schools. It should also be 
pointed out that there was practically no 
documentation available about the system for the 
children to use, and the two research staff who were 
always present had themselves only been using 
KidSim™ for 2-3 weeks prior to the evaluation. 

These constraints meant that we were engaging in a 
very conservative evaluation, since the system was 
both slow and unreliable, both seemingly 
undesirable properties in software intended for 11 
year old children. Because of these constraints we 
decided against engaging in a serious educational 
evaluation, preferring instead to concentrate on 
interface issues and the children's general 
understanding of programming in KidSim™. 

Evaluators 
In total we studied 56 children for varying lengths of 
time. The majority of these came as a class from a 
local school for 3 afternoons (two classes were used, 
one aged 11112 and the other 13114). Other children 
in the study were the 11-12 year old children and 
friends of our colleagues. These latter children tended 
to come in for two or three whole days. 

In most cases the children worked in groups of 2-3, 
though sometimes groups coalesced into larger 
groups. Also, sometimes some of the children 
preferred to work alone. 

The data reported here relate to the 12- and 14- year 
old children from the local school. This was a total 
of approximately 32 children, who worked in groups 
of 2-3 children at each machine, for a total of about 
6 hours .. 

Activities 
Across all 56 children the activities were very varied, 
since they were all present for differing lengths of 
time. However, the children whose data is presented 
here were all given relatively structured activities to 
perform, with the focus being on the writing and 
comprehension of rules. 

Thus, for example, they were asked to write a rule to 
move an agent to the right (or left), and a rule to 
enable the agent to climb over an obstacle, etc. As 
well as being given specific rules to write, the 
children also were given opportunities to create their 
own rules for their own agents. 

Besides the on-line KidSim™ activity, the children 
were also given a pencil-and-paper test of their 
understanding of rule construction in KidSim™. 
This contained monochrome images of some simple 
graphical rewrite rules, which the children had to 
write a one sentence description of. These rules were 
in fact much the same as the ones we asked them to 
write, but they included some important 
characteristics (for example, two versions of the 
same movement, but one with ground beneath the 
agent and one without). 

Results 
Our studies did not aim to produce clean readily 
analysable data· - partly due to the speed and 
unreliability of the KidSim™ system anyway. 
However, from the videos it is possible to extract 
substantial quantities of information concerning 
their comprehension and their enjoyment. 

Ease of Use A striking feature of the children's 
activities is their overwhelming enjoyment of using 
the system. This was more true of the 11/12 year 
olds than the 13/14 year olds, but there was a strong 
sense of disappointment at the end of each session 
and an eagerness to return. 

In the time when the children were able to create 
their own worlds and agents it was clear that 
KidSim™ was a spur to their creative imaginations. 
An enormous variety of different worlds were 
created, ranging from wars and battles, to aquariums 
or soccer pitches! However, there were few differ­
ences in the rules written for these different worlds -
although the agents concerned were very different, 
their programmed actions were surprisingly similar. 

It appears, therefore, that KidSim™ does provide an 
environment where children have the opportunity to 
learn about programming at the same time as 
solving their own problems, rather than teacher­
defined ones. 

Hardly any of the children had any major difficulties 
in using the interface to construct agents and rules. 
Across all their sessions (40-80 minutes) the 
children constructed an average of 8 rules per session 
(3-15). Some of these were rules suggested by the 
us, whilst others were of their own invention. 

The most common problem was over-eager mouse­
clicking due to the slow responses of the system. 
This, coupled with a problem in the rule 
construction process (due to our use of 16" 
monitors), led to a number of "dud" rules that did 
absolutely nothing. 



148 Part Two Research and Theory 

Figure 1: A successfully written rule for jumping over a rock, incorporating 4 actions. 

Figure 2: A similar rule using an unnecessarily large spotlight (e.g. the 12 squares at the right end) and 10 
separate actions. Such a rule could be labelled an animation. 

Rule-Writing Ignoring some minor interface 
difficulties to rule-writing, it is the choice of rule 
and its implementation which gives us much 
information about the children's understanding of 
programming. 

A rule in KidSim™ is defined by a spotlight around 
an agent which indicates the scope of matching 
required before the rule can fire. 

A key question, therefore, is what size of spotlights 
did the children prefer to use? A small spotlight 
indicates a comprehension of the matching process 
and the general model of repetitive rule application. 
Likewise one can ask about how many actions an 
agent makes within a single rule, since a more 
useful, generic rule (containing a single small 
action) would seem to reflect a greater degree of 
understanding than large rules containing many 
actions. 

For example, Figure I illustrates a rule successfully 
written to make an agent jump over a rock., whereas 
Figure 2 shows a different pair's attempt at the same 
rule. This second rule shows how some of the 
children, at least, had a model of the system which 
did not distinguish between single and repeated rule 
firing. Their rules resembled animations rather than 
programs for action. 

Figure 2 also illustrates how some of the children 
included squares in the spotlight which were not 
used by the animation. These redundant squares limit 

the applicability of the rule and suggest that the 
children do not have a good model of the matching 
process. In fact, their discussions with each other 
suggest that they have a model in which empty 
squares are irrelevant, whereas in fact, KidSim™ 
will only match an empty square with an empty 
square. 

Summarising over the children reported here, we 
found differences in a variety of measures between 
when the children were doing our exercises and when 
they wrote their own rules. 

The average spotlight size when writing rules to 
meet our specifications is 5.5 squares, but when 
writing their own rules, this increases to an average 
of 36 squares (ranging from 6 to 80). Likewise the 
number of redundant squares in the spotlight 
averages 2.5 on exercises and 14 on their own rules. 
It is interesting to note, however, that this is 
approximately the same proportion of redundancy in 
each case (approximately 40%). Finally the number 
of steps in each rule averages 1.1 for the exercise 
rules, but 3.1 for their own rules. 

Rule Comprehension The average score on the 
test of rule comprehension was 7/10, with the 
majority of marks being lost on the three questions 
which involved spotlights which included pieces of 
ground. Figure 3 shows an example of one of these 
questions, which is almost identical to the test item 
preceding it, except for the presence of the ground 
squares. 



Learning graphical programming 149 

Figure 3: Question 2 from the rule comprehension test, for which only 
22% of children mentioned the importance of the ground. 

A further means of studying rule comprehension is 
to examine the set of rules written for its coherence. 
What we observed here is that the children seem to 
spend very little time reading back over the rules 
they have already written for an agent. Indeed, one 
pair of children, who initially appeared very 
productive (15 rules written in just over one hour), 
turned out to have been producing multiple copies of 
very similar rules. Of the 15 rules written, only 6 
can really be regarded as distinct rules (a rule to 
move right four spaces was written 4 times). 

Similarly, on occasions where a rule did not work as 
expected, the children showed no awareness of the 
concept of debugging. In most cases, the reaction to 
a rule which did not work as expected was an 
attempt to rewrite the rule from scratch. 

Confirmation of the animation model of KidSim™ 
also comes from some the dialogue which occurred 
when things did not go as expected. A quite 
common utterance was of the form "But we didn't 
write that rule for there.", indicating that they 
expected a rule to apply in the context where it was 
written and not simply anywhere that matched. 

Qualitatively As already mentioned the children 
enjoyed their KidSim™ activities and, despite some 
of the lack of comprehension, they produced some 
surprisingly interesting worlds. These worlds were 
of great interest to the children, not just to us. 

For example, there were a number of occasions 
where the children demonstrated their worlds to other 
children, along with discussions about how various 
effects had been achieved. 

One of the pairs actually took control of the video 
camera and constructed their own short 
demonstration of KidSim™ and how to use it. In 
this video they actually make jokes about the speed 
of the program, but still manage to offer a sales­
style presentation. 

Another indicator of the children' s enthusiasm, and 
one which surprised us, was their willingness to 
reconstruct worlds which were lost when the system 
unexpectedly crashed. Some of the children had 2 or 
3 attempts at constructing the same large world (up 
to 30 minutes each time) which was lost due to 
unreliability. Whilst it would not be true to say that 
they did not complain about having to rebuild the 
world, the agents and the rule-sets, they set about 
the reconstruction with remarkable patience. 

Summary 
The children understood how to use KidSim™ and in 
many cases were not aware of their lack of 
comprehension. They became actively and 
enthusiastically involved in constructing their own 
worlds, agents and rule-sets and it is clear that 
KidSim™ was a great spur to their imaginations. 

However, there is plenty of evidence to suggest that 
they really didn't have any depth of understanding 
about the programming concepts involved. Many 
children expressed puzzlement over the use of the 
word 'rule' ; many of them wrote rules which 
appeared more like animations (cartoons) than rules; 
few of them showed any clear understanding of the 
graphical matching process. 

DISCUSSION 
The implications of these results are mixed, since it 
would seem that KidSim™ has many features which 
the earlier LOGO environments lacked and which 
may be conducive to learning about programming. 
But, at the same time, we haven't obtained any good 
evidence that the programming concepts have been 
learnt. 

This gives rise to two possibilities:-
a. Children would acquire more programming 

knowledge if KidSim TM were redesigned. 
b. Children I end-users cannot acquire these 

programming abstractions. 



150 Part Two Research and Theory 

Possibility (a) is our currently preferred conclusion, 
since the system used in the evaluation had so many 
weaknesses. For example, the system was slow and 
crashed regularly, there was no documentation and 
the main research staff did not have much knowledge 
of the detailed workings of the system. 

However, it is not our belief that the redesign should 
make the interface any easier, since children seem to 
be successful with it already. The problem seems to 
be more one of the interface being too easy and, 
thereby failing to encourage reflection and learning 
(see Gilmore, 1994). 

Possibility (b) may be true for situations where 
there is no scaffolding for. the acquisition of these 
concepts, or where the interface I system reliability 
obscures them. The design challenge is to make the 
system support the learning of the programming 
abstractions, whilst maintaining the acceptability of 
the user interface, where the former will almost 
inevitably add more complications to the interface 
and the user's model of the system. 

Analysing our data for the problems which arose, 
and which may have prevented programming concept 
acquisition, we generated a list of over 20 possible 
features to redesign. However, almost all of these 
changes have side-effects on the others. 

The goal was a system in which interface and funct­
ionality encourage children towards 'small spotlight, 
small action rules', not 'large spotlight, multiple 
action animations', in the belief that without the 
former the abstractions will not be learnt. 

In the end three changes were selected which were 
felt to be achievable within the available time-frame 
and were also thought to have the desired effects 
without unwanted side-effects:-

1. Speed improvements. These were inevitable 
anyway, but one reason for the children's preference 
for animations may have been the speed at which the 
rule editor appeared (once open, they felt obliged to 
use it for as much as possible); 

2. Rules apply to all agents of the same type. 
Currently a rule belongs just to the agent it is 
created for and, therefore, it is not surprising if 
children do not appreciate the generality of the rule. 
If rules apply to all similar agents in the world, then 
there is a big cue to the importance of generality. 

3. Individual agents can be saved and imported 
into new worlds. Along similar lines it can be 
argued that enabling agents to be moved between 
worlds means that it is important to consider how 
one's rules will work in an, as yet unknown, world. 

The advantage of these changes is that they should 
maintain, or even increase the acceptability of the 
system (since rule writing is faster, applies to more 
agents and may not always be necessary) to children, 
whilst at the same time providing clear scaffolding 
for the development of programming concepts. 

SUMMARY 
It is possible to offer a graphical programming 
environment to young children which enables them 
to address their own problems and interests rather 
than those of a teacher. Whether they acquire the 
generalised programming constructs and thinking 
skills from such a system is as yet untested, but the 
enthusiasm with which the KidSim™ system was 
received suggest that this will provide a very good 
test bed for addressing this issue. 

On the basis of our results, KidSim™ can be 
labelled an end-user programming environment. The 
long-term importance of this is that if it does indeed 
prove possible to scaffold the acquisition of 
programming concepts in 11 year old children, then 
the prospects for genuinely powerful end-user 
programming languages are extremely promising 

ACKNOWLEDGEMENTS 
This collaborative project between Nottingham and 
Apple Computer Inc. was supported by a NATO 
Collaborative Research Grant (no. 920469). 

REFERENCES 
Gray, W., Spohrer, J., & Green, T. (1993). 
End-user programming languages: A work­
shop report. SIGCHI Bulletin, 25(2), 46-50. 

Kurland, M., Pea, R. Clement, C. & 
Mawby, R. (1986). The development of 
programming ability and thinking skills in 
high school students. Journal of Educational 
Computing Research, 2(4), 429-458. 

Linn, M. & Dalbey, J. (1985). Cognitive 
consequences of programming instruction. 
Educational Psychologist, 20(4), 191-206. 

Mayer, R, Dyck, J. & Vilberg, W. (1986). 
Learning to program and learning to think. 
Communications of the ACM, 29, 605-610. 

Papert, S. (1970). Teaching Children 
Thinking. Mathematics Teaching, 1970. 

Smith, D.C, Cypher, A & Spohrer J. (1994). 
KidSim: Programming agents without a 
programming language. Communications of 
the ACM, 1994 , 54-67. 


