
23
PROGRAMMING PLANS, IMAGERY, AND

VISUAL PROGRAMMING
T. R. G. Green I& R. Navarro 2

1 MRC Applied Psychology Unit
15 Chaucer Road, Cambridge CB2 2EF, UK

fax: +44-(0)-223-359062

2 Departamento de Psicologia Experimental y Fisiolog. Comp.
Campo de la Cartuja, Universidad de Granada

Granada, Spain
e-mail: rnavarro@ugr. es

KEY WORDS: visual programming, spreadsheets, Basic, mental models, mental
imagery, programming plans, schema theory, Pathfinder, program comprehension

ABSTRACT: Spreadsheets and visual programming languages raise a challenge for exist­
ing schema-based models of programming knowledge, which have been scarcely been ap­
plied outside Pascal-like languages. Recent demonstrations of the role of mental imagery
in spreadsheet programming raise another challenge to schema-based theories, which are
propositional in form. We show that a recent schema-based model can be applied to visual
languages and report comparisons between elicited mental structures for visual, spreadsheet
and textual languages. Although visualness affected elicited structure (which is not
predicted by schema theory), results suggest modification of schema theory rather than
refutation. Programming environments should support 2D layout better.

INTRODUCTION
Understanding programmers' mental models is an im­
portant goal for cognitive science and for HCI. How do
people design, build and maintain such vastly intricate
mechanisms as a full-size program? How can we
improve their tools? How can we improve the teaching
of programming? As programming languages prolifer­
ate, especially for end-users, we also need to ask, with
increasing urgency, how should languages be designed
for best results?

Two streams of research have investigated mental mod­
els of programming, each with its own methodologies.
One stream has investigated conceptions of the com­
puter (or the programming language) as a whole mech­
anism. The methodology adopted has necessarily con­
centrated on subjects' perceptions of programming
concepts, rather than the components of a particular
program. Thus, programming experts organize pro­
gramming keywords according to their meaning,
whereas novices focus on surface features (McKeithen
et al., 1981); experienced programmers form more co­
herent networks of concepts than intermediates or

novices (Cooke and Schvaneveldt, 1988); better feed­
back improves the concept networks formed by novices
(Canas et al., 1994).

The other stream has investigated mental models of
particular programs, usually conceiving them as com­
positions of 'plans' or 'schemas' such as a Running
Total plan:

Total := 0;
{start loop}
Total := Total + X

This tradition goes back to Soloway & Ehrlich (1984).
The most thorough and recent statement of it is by
Rist (1994), and it is his analysis that we shall use be­
low. Appropriate methodologies have focused either on
the inferences that can be drawn from particular com­
ponents of the program (e.g. Detienne, 1988) or else
on the perceived relationship between components (e.g.
Pennington, 1987).

However, all the studies cited, and virtually all those in
the literature, have used 'traditional' languages, usually
Pascal, occasionally Fortran, C, or Cobol. These are

K. Nordby et al. (eds.), Human- Computer Interaction
© IFIP International Federation for Information Processing 1995

140 Part Two Research and Theory

all text-based languages whose underlying paradigm is
procedural and imperative. There are many alternatives
including logic languages, object-oriented languages,
dataflow languages, forms-based languages, and spread­
sheets, some of which exist in visual form as well as
textual, yet very few studies have reported comparisons
across paradigms. In fact, it has not been easy to see
how the methods developed for text-based programs
could be applied to other paradigms. Consider, for in­
stance, McKeithen et al.'s study of keyword classifica­
tion. What equivalent could be found for a visual
dataflow language, which is effectively devoid of key­
words? Or consider Detienne's study, in which a pro­
gram was exposed line by line to the subject: what
would be the equivalent in a visual programming lan­
guage, which has no individual lines of code?

These difficulties suggest that schema-based theories of
programming have limited applicability. Such theories
would be worth little. One goal of this paper is to
show how theory and experimentation can be applied
to other paradigms, as is urgently needed.

Our other goal is to see whether schema theory is not
only applicable, but also correct. Are programming
schemas the same for all paradigms, or is anything dif­
ferent about the mental representation of visual pro­
grams? Saariluoma and Sajaniemi (in press) have chal­
lenged the entire position of programming theory to
date, charging it (and indeed the whole of HCI) with
paying too little attention to image-based mental repre­
sentations and concentrating instead on theories of
propositional representation. They showed that spread­
sheet users make use of visual imagery in planning
manipulations, a result which of course is perfectly
consistent with the well-known importance of visual
imagery in other kinds of problem solving. The impli­
cation is that mental images of program layout are a
'preferred resource', one that programmers would use if
they could. Perhaps, therefore, the schema-based theo­
ries only describe a type of behaviour that occurs in
impoverished situations, an 'unpreferred resource', and
will need to be extended to deal with other paradigms.

Plans of programs
Early versions of the theory of programming 'plans' or
'schemas' had little to say about the cognitive ar~.:hitec­
ture (Soloway and Ehrlich, 1984; Detienne, 1988).
Rist (1994) has greatly extended the theory and
developed it into a working AI program, showing how
it can describe many strategies of program design and
comprehension. He posits a hierarchical structure of
cues and nodes. Cues are indexes into memory
(knowledge of programming, understanding of a partic­
ular program), and they can specify the role (e.g. data

stream), the goal (compute a total), the object (e.g.
carpet rolls), or both goal and object (total of carpet
rolls). In the last form they correspond to program­
ming plans. The decomposition of knowledge into
cues is accompanie!..! by a decomposition of object
structures (house = rooms = wall + floor, floor =
length + width).

Cues are combined into nodes, to which they may
supply data or control, from which they may receive
data or control. Concrete nodes are built into code, al­
though one line of code may combine several nodes.
Nodes are hierarchically structured.

The novelty of the theory lies in its development of
abstraction, allowing the same abstract component to
be identified with different concrete realisations. It is
this, the representational part of the theory, that is
tested in the present paper. Other parts of the theory
deal with the cognitive processes of memory search,
yielding predictions of the relationship between
expertise and the processes of program development
and program comprehension; these will not be
considered here.

Paradigms of textual, spreadsheet, and VI·
sual programming
Textual-imperative programs in the style of Basic will
be familiar to all readers. The spreadsheet is fun­
damentally different because its formulae do not specify
a sequence of computations, but instead specify sources
of data for computations. Visual dataflow programs are
similar to spreadsheets in that respect, but instead of
referring to data sources by addresses on a grid, a direct
line is drawn between operators to indicate the flow of
data.

Programmers have considerable freedom to use two­
dimensional layout in functionally meaningful ways in
a spreadsheet, less in Lab VIEW, and still less in Basic.
Nardi (1993) has convincingly argued that the 'visual
formalism' of spreadsheet layout is fundamental to
their wide acceptance.

METHODS OF INVESTIGATION
Our approach draws on both the 'whole program' and
the 'individual program' research traditions mentioned
in the Introduction. Instead of asking how program­
mers perceive keywords, which have no particular sta­
tus in schema-based theories, we have asked how
subjects perceive the program fragments identified by
schema theory. Thus we have united the two traditions
for the first time.

Programming plans, imagery, and visual programming 141

Many techniques have been used to elicit and analyse
mental representations of programs and program
components: priming (Pennington, 1987), card-sorts
(Davies et a!., in press), multi-dimensional scaling
(Canas et a!., 1994), etc. We followed Cooke and
Schvaneveldt (1988) in using the 'Pathfinder' technique
to analyse paired comparison ratings, because this
technique yields networks that can be directly compared
to the theoretical structure; unlike hierarchical analysis
it does not constrain the structure of the network, and
unlike multi-dimensional scaling it shows direct
relationships between items.

Equivalent programs in three different paradigms were
analysed into theoretically equivalent fragments. After
exploring the program, subjects rated pairs of
fragments for similarity and for closeness of
relationship. The principal question of interest lay in
the structure derived from these ratings. If schema
theory is correct and complete, and if the ratings are
eliciting the mental representations, the structures
should be identical.

EXPERIMENT

Design
Three programming languages were employed: a
typical spreadsheet (we used Microsoft Excel version
4.0); a version of Basic, chosen as a 'vanilla' text lan­
guage; and Lab VIEW, a visual dataflow language. Two
programs were written in each language. One program,
used for practice, computed the total time taken for a
journey given a table of distances and speeds for each
leg of the journey. The second program, used for the
experiment proper, took as data the dimensions of a set
of rooms, plus constants for price and size of carpet
rolls and of wallpaper rolls, and computed the total
cost of carpets and of wallpaper (no allowance being
made for doors windows etc.). Three different qualities
of carpet were allowed for.

Each program was analysed according to Rist's theory.
Since their computations were identical, the abstract
structure revealed by the analysis was identical across
languages. The concrete structures isolated by the anal­
ysis were, of course, very different (Figure 1). Note
that we used the formula view for the spreadsheet,
which is not the default view but which obviously is
much nearer to being informationally equivalent to the
Lab VIEW and Basic representations than the values
view.

X

FOR room = I to 3

lnoor ~rusl
(IU)

READ width (room), length (room), height(room)
NEXT room

FOR room = 1 to 3
floor_aru (room) = width (room)*length (room)

NEXT room

A B c
1
2 Len2ths Floor area
3 I BS*B3
4 12 B9*B4
5 12 -B10*B5
6
7 Widths
8 13
9 14
10 10

F1gure 1: concrete realisation of an equivalent
fragment in each language. Ellipses in the
Basic indicate physical separation; all frag­
ments were displayed in their exact physical
position within the whole program.

The subject viewed a Macintosh displaying a blank
window on which were located button icons. Pressing
a button revealed one of the fragments. Releasing the
button hid it again. For the Lab VIEW and spreadsheet
programs the buttons were placed roughly in the centre
of the fragments they invoked; for the Basic program,
the buttons were placed on the line that was identified
as the 'focal line' in Rist's theory. Fragments were
displayed in their exact position in the whole running
program, so the effect was rather like viewing a jigsaw
piece by piece until one understood the picture. (The
nature of Basic means that some fragments contain
physically separate statements, such as in a Running
Total .) This phase of the study is similar to 'line-at-a­
time' text exploration (Detienne, 1988; Robertson et
a!., 1990) or 'cell-at-a-time' spreadsheet exploration
(Saariluoma and Sajaniemi, 1989, 1991), but with a
larger grain size.

142 Part Two Research and Theory

Subjects were volunteers (5 per group) from the staff
and doctoral students of the MRC Applied Psychology
Unit. The populations of available users of the three
paradigms differed in length of programming experi­
ence and in the typical domain of programming, and
therefore there is an unavoidable confounding; how­
ever, as they were all persons of very high educational
achievement, there would be little point in bothering
with any kind of aptitude test.

Procedure
The first phase of the experiment required subjects to
familiarise themselves with a program by viewing one
fragment at a time, in freely chosen order. Each subject
performed the exploration task first with :he practice
program and then with the experimental program. They
were instructed to continue exploring until they felt
confident that they understood the program and could
explain it to the experimenter. During their explo­
rations, all their button pushes were recorded.

When subjects felt they understood the experimental
program they told the experimenter, who asked two
simple questions about its operation to verify their
understanding. Subjects then started the second phase
of the experiment, during which they were asked to
make comparisons between pairs of fragments. The
comparisons were presented on-line and ratings were
indicated by pressing one of 9 radio buttons, going
from 'not at all' to 'very'. For each pair of fragments
two questions were asked: (1) How similar are these
two fragments?, and (2) In the program you have stud­
ied how close is the relationship between these two
fragments? (Question 1 is not theoretically interesting,
but was included because its presence helped subjects
to understand that in question 2 they should not
interpret 'closeness' to mean surface similarity.)

RESULTS

Exploration Phase
During the exploration of programs all button presses
and times were recorded. (Exploration data for one sub­
ject were lost because of technical problems).
Individual differences were large and analysis of
variance on raw and log-transformed data revealed no
significant group difference in the number of button
presses, the total time, the average duration of button
presses, or the proportion of time spent looking at
different fragments.

Comparisons Phase
The principal question of interest was whether differ­
ences existed in the mental representations elicited by
the comparison questions. The Pathfinder technique can

form networks based on individuals' ratings or on aver­
aged ratings; evidently, networks averaged over groups
are desirable, but precautions should be taken when
using any such technique, to avoid imputing structure
to data that do not in fact contain any such structure
(Pathfinder, like cluster analysis, can be applied to
random numbers, but the results would be
meaningless, of course). The first precaution is to ex­
amine the coherence of the data, that is, whether a
directly-elicited similarity between two entities agrees
with a similarity computed indirectly from ratings of
other entities.

For question 1 the coherence was rather low (mean =
0.45), suggesting that our subjects interpreted
similarity in different ways for different comparisons,
which was confirmed by post-experimental verbal
reports. Results from question 1 were discarded.
Fortunately, this was the less interesting question, and
the coherence for question 2 was very much higher,
varying from 0.76 (LabVIEW group) to 0.94
(spreadsheet group), indicating that subjects applied a
relatively uniform criterion.

The second precaution was to correlate the similarities
obtained from each subject with the mean similarities
of their groups, to be sure that the means were repre­
sentative. In almost all cases the correlations were very
high (Spearman's rho = 0.74 to 0.94), with 3 subjects
- one in each group - giving lower correlations. The
network analyses described below were computed both
with, and without, these 3 subjects, giving results that
were minimally different. We have reported the
analyses that used all the subjects.

Having taken these precautions the Pathfinder networks
were computed for the question 2 ratings (Figure 2).
The networks were appreciably different, and no pair of
networks correlated at better than 0.2, showing that the
cognitive structures were different for the three groups.
In particular, the spreadsheet group produced a network
which was completely separated into two parallel sub­
networks, one for the carpeting and one for the
papering, while the other networks intermingled these
computations. (Wallpaper-related fragments have thick
borders in Figure 2.) All three groups showed some
direct influence of the physical layout of the program
code, especially the spreadsheet group, but that was
clearly not the only factor.

The first interpretation is that schema-theory is thereby
refuted, since it predicts no differences, but closer
examination suggests the following interpretation.
Rist's schemas, it will be remembered, combine a
decomposition of the goal structure with a decompo-

Programming plans, imagery, and visual programming

sition of the object structure. The spreadsheet group
produced a network which almost exactly matched the
object structure. In contrast, the Basic group produced a
network which closely matched the goal structure: that
is, fragments that achieve similar goals are closely
linked in the network, irrespective of the object (carpet
or wallpaper). The LabVIEW group is somewhere in
the middle, possibly combining both aspects.

Why should subjects do that? Because our spreadsheet
program, following typical real-life practice (Hendry
and Green, 1994), was organized by function. Thus,
subjects could make extensive use of spatial position
imagery as a coding. Lab VIEW has less scope for that,
and Basic has virtually none.

Caveat. No one experiment can settle all issues.
There are some cautions needed, as follows. First, it
has already been mentioned that our subjects came
from different populations. Although we ourselves do
not believe that the effects were due solely to popula­
tion differences, the possibility cannot be discounted.

Second, there are many parochial differences between
the products we compared. Excel, like most spread­
sheets, is obstinately old-fashioned, insisting on using
uppercase text with minimal use of whitespace to im­
prove legibility (a sad case where the original design
has persisted in the face of both common-sense and
well-researched studies on legibility). The result is
formulae looking like this:

:CEILING(A31/E6, 1)
:E 19.1NDEX(D6:08,A6)

The other two languages have better legibility. Again,
we do not believe that these differences affected our
results in any serious way.

CONCLUSIONS
First, we believe this is the first occasion that schema­
based theories of programming knowledge have been
extended to visual and textual dataflow languages.

Second, we have also shown that cognitive rela­
tionships between theoretically-equivalent structures
are different. However, we do not think that these dif­
ferences refute the claims of schema theories. Our in­
terpretation is that they show that different asrects of
the schema are emphasized in different situations.
Differences between the textual and visual languages
show a gradation from Basic to spreadsheet, closely
following the degree to which the program layout re­
flects the functional organization.

spreadsheet

Figure 2: Pathfinder networks

143

144 Part Two Research and Theory

The emphasis on layout apparently reconciles schema
theory with the views of Saariluoma and Sajaniemi (in
press). Our subjects behaved as though they did,
indeed, use spatial imagery, just as theirs did, but they
apparently used it not as a thing apart but to support
the perception of schema-like components.

Rist's schema model could readily be modified. The
cognitive processes it posits already include several
ways to index nodes in memory and in the world. One
of these is linear search, designed - of course - for
searching through conventional textual code. The
theory can be readily extended by adding location cues
to its repertoire, usable only when the programming
language allows location to be closely aligned with
function. These findings reinforce the views expressed
by Saariluoma and Sajaniemi that more work is
required on integrating imagery into HCI theory.

The use of layout in this way, as a meaningful
supplement outside the 'official' notation, has been
termed 'secondary notation' by Petre and Green (1992).
A close parallel can be found in recent developments
on information visualisation, and in particular the
concept of 'cost-of-knowledge' (Card eta!., 1994); the
inference we draw from these results is that the use of
layout is preferred because the cost-of-knowledge is
less, which would strongly confirm the interview-based
conclusions drawn by Nardi (1993) and Hendry and
Green (1994). From a development perspective,
therefore, increased attention should be given to
programming environments in which spatial layout
can be correlated with function.

REFERENCES
Canas, J. J., Bajo, M. T. and Gonzalvo, P. (1994)
Mental models and computer programming. Int. 1.
Human Computer Studies 40, 795-811.

Card, S. K., Pirolli, P. and Mackinlay, J. D. (1994)
The cost-of-knowledge characteristic function: display
evaluation for direct-walk dynamic information
visualizations. Proc. CHI '94. ACM Press.

Cooke, N.J. and Schvaneveldt, R. W. (1988) Effects
of computer programming experience on network rep­
resentations of abstract programming concepts. Int. J.
Man-Machine Studies, 29 (4), 407-427.

Detienne, F. (1988) Une application de Ia theorie des
schemas a Ia comprehension de programmes. Le
Travail Humain, 51, 335-350.

Hendry , D. G. and Green, T. R. G. (1994) Creating,
comprehending, and explaining spreadsheets: a cogni­
tive interpretation of what discretionary users think of
the spreadsheet model. Int. 1. Human-Computer
Studies, 40(6), 1033-1065.

McKeithen, K. B., Reitman, J. S., Rueter, H. H. and
Hirtle, S.C. (1981) Knowledge organization and skill
differences in computer programmers. Cognitive
Psychology, 13, 307-325.

Nardi, B. (1993) A Small Matter of Programming:
Perspectives on End-User Computing. MIT Press.
Pennington, N. (1987) Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, 19,295-341.

Petre, M. and Green, T. R. G. (1992) Requirements of
graphical notations for professional users: electronics
CAD systems as a case study. Le Travail Humain,
55(1), 47-70

Rist, R. S. (1986) Plans in programming: definition,
demonstration, and development. In E. Soloway and S.
Iyengar (Eds.), Empirical studies of programmers.
Norwood, NJ: Ablex.

Rist, R. S. (1994) Program structure and design.
Unpublished report 94.4, School of Computing
Sciences, Sydney University of Technology.
Robertson, S. P., Davis, E. F., Okabe, K. and Fitz­
Randolf, D. (1990) Program comprehension beyond
the line. In D. Diaper, D. Gilmore, G. Cockton and B.
Shackel (Eds.) Human-Computer Interaction -
INTERACT '90. Elsevier.

Saariluoma, P. and Sajaniemi, J. (1989) Visual infor­
mation chunking in spreadsheet calculation. Int. 1.
Man-Machine Studies, 30,475-488.
Saariluoma, P. and Sajaniemi, J. (1991) Extracting
implicit tree structures in spreadsheet calculation.
Ergonomics, 34 (8) 1027-1046.

Saariluoma, P. and Sajaniemi, J. (in press)
Transforming verbal descriptions into mathematical
formulas in spreadsheet calculation. Int. 1. Human
Computer Studies.
Soloway, E. and Ehrlich, K. (1984) Empirical studies
of programming knowledge. IEEE Transactions on
Software Engineering, SE-10, 595-609.

ACKNOWLEDGEMENTS
We thank Robert Rist, who helpfully checked our
analysis; Pertti Saariluoma and Jorma Sajaniemi, for
details of their method of analysis, and Jose Canas for
help with Pathfinder. Remaining errors are, of course,
our responsibility. Our subjects and support staff at the
APU also deserve grateful thanks. Excel and Lab VIEW
are trademarks of Microsoft and National Instruments
Corp. respectively. This work was performed while the
second author was a visitor at the MRC APU, and she
thanks the director and staff for their hospitality.

