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ABSTRACT: Spreadsheets and visual programming languages raise a challenge for exist­
ing schema-based models of programming knowledge, which have been scarcely been ap­
plied outside Pascal-like languages. Recent demonstrations of the role of mental imagery 
in spreadsheet programming raise another challenge to schema-based theories, which are 
propositional in form. We show that a recent schema-based model can be applied to visual 
languages and report comparisons between elicited mental structures for visual, spreadsheet 
and textual languages. Although visualness affected elicited structure (which is not 
predicted by schema theory), results suggest modification of schema theory rather than 
refutation. Programming environments should support 2D layout better. 

INTRODUCTION 
Understanding programmers' mental models is an im­
portant goal for cognitive science and for HCI. How do 
people design, build and maintain such vastly intricate 
mechanisms as a full-size program? How can we 
improve their tools? How can we improve the teaching 
of programming? As programming languages prolifer­
ate, especially for end-users, we also need to ask, with 
increasing urgency, how should languages be designed 
for best results? 

Two streams of research have investigated mental mod­
els of programming, each with its own methodologies. 
One stream has investigated conceptions of the com­
puter (or the programming language) as a whole mech­
anism. The methodology adopted has necessarily con­
centrated on subjects' perceptions of programming 
concepts, rather than the components of a particular 
program. Thus, programming experts organize pro­
gramming keywords according to their meaning, 
whereas novices focus on surface features (McKeithen 
et al., 1981); experienced programmers form more co­
herent networks of concepts than intermediates or 

novices (Cooke and Schvaneveldt, 1988); better feed­
back improves the concept networks formed by novices 
(Canas et al., 1994). 

The other stream has investigated mental models of 
particular programs, usually conceiving them as com­
positions of 'plans' or 'schemas' such as a Running 
Total plan: 

Total := 0; 
{start loop} 
Total := Total + X 

This tradition goes back to Soloway & Ehrlich (1984). 
The most thorough and recent statement of it is by 
Rist (1994), and it is his analysis that we shall use be­
low. Appropriate methodologies have focused either on 
the inferences that can be drawn from particular com­
ponents of the program (e.g. Detienne, 1988) or else 
on the perceived relationship between components (e.g. 
Pennington, 1987). 

However, all the studies cited, and virtually all those in 
the literature, have used 'traditional' languages, usually 
Pascal, occasionally Fortran, C, or Cobol. These are 
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all text-based languages whose underlying paradigm is 
procedural and imperative. There are many alternatives 
including logic languages, object-oriented languages, 
dataflow languages, forms-based languages, and spread­
sheets, some of which exist in visual form as well as 
textual, yet very few studies have reported comparisons 
across paradigms. In fact, it has not been easy to see 
how the methods developed for text-based programs 
could be applied to other paradigms. Consider, for in­
stance, McKeithen et al.'s study of keyword classifica­
tion. What equivalent could be found for a visual 
dataflow language, which is effectively devoid of key­
words? Or consider Detienne's study, in which a pro­
gram was exposed line by line to the subject: what 
would be the equivalent in a visual programming lan­
guage, which has no individual lines of code? 

These difficulties suggest that schema-based theories of 
programming have limited applicability. Such theories 
would be worth little. One goal of this paper is to 
show how theory and experimentation can be applied 
to other paradigms, as is urgently needed. 

Our other goal is to see whether schema theory is not 
only applicable, but also correct. Are programming 
schemas the same for all paradigms, or is anything dif­
ferent about the mental representation of visual pro­
grams? Saariluoma and Sajaniemi (in press) have chal­
lenged the entire position of programming theory to 
date, charging it (and indeed the whole of HCI) with 
paying too little attention to image-based mental repre­
sentations and concentrating instead on theories of 
propositional representation. They showed that spread­
sheet users make use of visual imagery in planning 
manipulations, a result which of course is perfectly 
consistent with the well-known importance of visual 
imagery in other kinds of problem solving. The impli­
cation is that mental images of program layout are a 
'preferred resource', one that programmers would use if 
they could. Perhaps, therefore, the schema-based theo­
ries only describe a type of behaviour that occurs in 
impoverished situations, an 'unpreferred resource', and 
will need to be extended to deal with other paradigms. 

Plans of programs 
Early versions of the theory of programming 'plans' or 
'schemas' had little to say about the cognitive ar~.:hitec­
ture (Soloway and Ehrlich, 1984; Detienne, 1988). 
Rist (1994) has greatly extended the theory and 
developed it into a working AI program, showing how 
it can describe many strategies of program design and 
comprehension. He posits a hierarchical structure of 
cues and nodes. Cues are indexes into memory 
(knowledge of programming, understanding of a partic­
ular program), and they can specify the role (e.g. data 

stream), the goal (compute a total), the object (e.g. 
carpet rolls), or both goal and object (total of carpet 
rolls). In the last form they correspond to program­
ming plans. The decomposition of knowledge into 
cues is accompanie!..! by a decomposition of object 
structures (house = rooms = wall + floor, floor = 
length + width). 

Cues are combined into nodes, to which they may 
supply data or control, from which they may receive 
data or control. Concrete nodes are built into code, al­
though one line of code may combine several nodes. 
Nodes are hierarchically structured. 

The novelty of the theory lies in its development of 
abstraction, allowing the same abstract component to 
be identified with different concrete realisations. It is 
this, the representational part of the theory, that is 
tested in the present paper. Other parts of the theory 
deal with the cognitive processes of memory search, 
yielding predictions of the relationship between 
expertise and the processes of program development 
and program comprehension; these will not be 
considered here. 

Paradigms of textual, spreadsheet, and VI· 
sual programming 
Textual-imperative programs in the style of Basic will 
be familiar to all readers. The spreadsheet is fun­
damentally different because its formulae do not specify 
a sequence of computations, but instead specify sources 
of data for computations. Visual dataflow programs are 
similar to spreadsheets in that respect, but instead of 
referring to data sources by addresses on a grid, a direct 
line is drawn between operators to indicate the flow of 
data. 

Programmers have considerable freedom to use two­
dimensional layout in functionally meaningful ways in 
a spreadsheet, less in Lab VIEW, and still less in Basic. 
Nardi (1993) has convincingly argued that the 'visual 
formalism' of spreadsheet layout is fundamental to 
their wide acceptance. 

METHODS OF INVESTIGATION 
Our approach draws on both the 'whole program' and 
the 'individual program' research traditions mentioned 
in the Introduction. Instead of asking how program­
mers perceive keywords, which have no particular sta­
tus in schema-based theories, we have asked how 
subjects perceive the program fragments identified by 
schema theory. Thus we have united the two traditions 
for the first time. 
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Many techniques have been used to elicit and analyse 
mental representations of programs and program 
components: priming (Pennington, 1987), card-sorts 
(Davies et a!., in press), multi-dimensional scaling 
(Canas et a!., 1994), etc. We followed Cooke and 
Schvaneveldt (1988) in using the 'Pathfinder' technique 
to analyse paired comparison ratings, because this 
technique yields networks that can be directly compared 
to the theoretical structure; unlike hierarchical analysis 
it does not constrain the structure of the network, and 
unlike multi-dimensional scaling it shows direct 
relationships between items. 

Equivalent programs in three different paradigms were 
analysed into theoretically equivalent fragments. After 
exploring the program, subjects rated pairs of 
fragments for similarity and for closeness of 
relationship. The principal question of interest lay in 
the structure derived from these ratings. If schema 
theory is correct and complete, and if the ratings are 
eliciting the mental representations, the structures 
should be identical. 

EXPERIMENT 

Design 
Three programming languages were employed: a 
typical spreadsheet (we used Microsoft Excel version 
4.0); a version of Basic, chosen as a 'vanilla' text lan­
guage; and Lab VIEW, a visual dataflow language. Two 
programs were written in each language. One program, 
used for practice, computed the total time taken for a 
journey given a table of distances and speeds for each 
leg of the journey. The second program, used for the 
experiment proper, took as data the dimensions of a set 
of rooms, plus constants for price and size of carpet 
rolls and of wallpaper rolls, and computed the total 
cost of carpets and of wallpaper (no allowance being 
made for doors windows etc.). Three different qualities 
of carpet were allowed for. 

Each program was analysed according to Rist's theory. 
Since their computations were identical, the abstract 
structure revealed by the analysis was identical across 
languages. The concrete structures isolated by the anal­
ysis were, of course, very different (Figure 1). Note 
that we used the formula view for the spreadsheet, 
which is not the default view but which obviously is 
much nearer to being informationally equivalent to the 
Lab VIEW and Basic representations than the values 
view. 

X 

FOR room = I to 3 

lnoor ~rusl 
(IU) 

READ width (room), length (room), height(room) 
NEXT room 

FOR room = 1 to 3 
floor_aru (room) = width (room)*length (room) 

NEXT room 

A B c 
1 
2 Len2ths Floor area 
3 I BS*B3 
4 12 B9*B4 
5 12 -B10*B5 
6 
7 Widths 
8 13 
9 14 
10 10 

F1gure 1: concrete realisation of an equivalent 
fragment in each language. Ellipses in the 
Basic indicate physical separation; all frag­
ments were displayed in their exact physical 
position within the whole program. 

The subject viewed a Macintosh displaying a blank 
window on which were located button icons. Pressing 
a button revealed one of the fragments. Releasing the 
button hid it again. For the Lab VIEW and spreadsheet 
programs the buttons were placed roughly in the centre 
of the fragments they invoked; for the Basic program, 
the buttons were placed on the line that was identified 
as the 'focal line' in Rist's theory. Fragments were 
displayed in their exact position in the whole running 
program, so the effect was rather like viewing a jigsaw 
piece by piece until one understood the picture. (The 
nature of Basic means that some fragments contain 
physically separate statements, such as in a Running 
Total .) This phase of the study is similar to 'line-at-a­
time' text exploration (Detienne, 1988; Robertson et 
a!., 1990) or 'cell-at-a-time' spreadsheet exploration 
(Saariluoma and Sajaniemi, 1989, 1991), but with a 
larger grain size. 
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Subjects were volunteers (5 per group) from the staff 
and doctoral students of the MRC Applied Psychology 
Unit. The populations of available users of the three 
paradigms differed in length of programming experi­
ence and in the typical domain of programming, and 
therefore there is an unavoidable confounding; how­
ever, as they were all persons of very high educational 
achievement, there would be little point in bothering 
with any kind of aptitude test. 

Procedure 
The first phase of the experiment required subjects to 
familiarise themselves with a program by viewing one 
fragment at a time, in freely chosen order. Each subject 
performed the exploration task first with :he practice 
program and then with the experimental program. They 
were instructed to continue exploring until they felt 
confident that they understood the program and could 
explain it to the experimenter. During their explo­
rations, all their button pushes were recorded. 

When subjects felt they understood the experimental 
program they told the experimenter, who asked two 
simple questions about its operation to verify their 
understanding. Subjects then started the second phase 
of the experiment, during which they were asked to 
make comparisons between pairs of fragments. The 
comparisons were presented on-line and ratings were 
indicated by pressing one of 9 radio buttons, going 
from 'not at all' to 'very'. For each pair of fragments 
two questions were asked: (1) How similar are these 
two fragments?, and (2) In the program you have stud­
ied how close is the relationship between these two 
fragments? (Question 1 is not theoretically interesting, 
but was included because its presence helped subjects 
to understand that in question 2 they should not 
interpret 'closeness' to mean surface similarity.) 

RESULTS 

Exploration Phase 
During the exploration of programs all button presses 
and times were recorded. (Exploration data for one sub­
ject were lost because of technical problems). 
Individual differences were large and analysis of 
variance on raw and log-transformed data revealed no 
significant group difference in the number of button 
presses, the total time, the average duration of button 
presses, or the proportion of time spent looking at 
different fragments. 

Comparisons Phase 
The principal question of interest was whether differ­
ences existed in the mental representations elicited by 
the comparison questions. The Pathfinder technique can 

form networks based on individuals' ratings or on aver­
aged ratings; evidently, networks averaged over groups 
are desirable, but precautions should be taken when 
using any such technique, to avoid imputing structure 
to data that do not in fact contain any such structure 
(Pathfinder, like cluster analysis, can be applied to 
random numbers, but the results would be 
meaningless, of course). The first precaution is to ex­
amine the coherence of the data, that is, whether a 
directly-elicited similarity between two entities agrees 
with a similarity computed indirectly from ratings of 
other entities. 

For question 1 the coherence was rather low (mean = 
0.45), suggesting that our subjects interpreted 
similarity in different ways for different comparisons, 
which was confirmed by post-experimental verbal 
reports. Results from question 1 were discarded. 
Fortunately, this was the less interesting question, and 
the coherence for question 2 was very much higher, 
varying from 0.76 (LabVIEW group) to 0.94 
(spreadsheet group), indicating that subjects applied a 
relatively uniform criterion. 

The second precaution was to correlate the similarities 
obtained from each subject with the mean similarities 
of their groups, to be sure that the means were repre­
sentative. In almost all cases the correlations were very 
high (Spearman's rho = 0.74 to 0.94), with 3 subjects 
- one in each group - giving lower correlations. The 
network analyses described below were computed both 
with, and without, these 3 subjects, giving results that 
were minimally different. We have reported the 
analyses that used all the subjects. 

Having taken these precautions the Pathfinder networks 
were computed for the question 2 ratings (Figure 2). 
The networks were appreciably different, and no pair of 
networks correlated at better than 0.2, showing that the 
cognitive structures were different for the three groups. 
In particular, the spreadsheet group produced a network 
which was completely separated into two parallel sub­
networks, one for the carpeting and one for the 
papering, while the other networks intermingled these 
computations. (Wallpaper-related fragments have thick 
borders in Figure 2.) All three groups showed some 
direct influence of the physical layout of the program 
code, especially the spreadsheet group, but that was 
clearly not the only factor. 

The first interpretation is that schema-theory is thereby 
refuted, since it predicts no differences, but closer 
examination suggests the following interpretation. 
Rist's schemas, it will be remembered, combine a 
decomposition of the goal structure with a decompo-



Programming plans, imagery, and visual programming 

sition of the object structure. The spreadsheet group 
produced a network which almost exactly matched the 
object structure. In contrast, the Basic group produced a 
network which closely matched the goal structure: that 
is, fragments that achieve similar goals are closely 
linked in the network, irrespective of the object (carpet 
or wallpaper). The LabVIEW group is somewhere in 
the middle, possibly combining both aspects. 

Why should subjects do that? Because our spreadsheet 
program, following typical real-life practice (Hendry 
and Green, 1994), was organized by function. Thus, 
subjects could make extensive use of spatial position 
imagery as a coding. Lab VIEW has less scope for that, 
and Basic has virtually none. 

Caveat. No one experiment can settle all issues. 
There are some cautions needed, as follows. First, it 
has already been mentioned that our subjects came 
from different populations. Although we ourselves do 
not believe that the effects were due solely to popula­
tion differences, the possibility cannot be discounted. 

Second, there are many parochial differences between 
the products we compared. Excel, like most spread­
sheets, is obstinately old-fashioned, insisting on using 
uppercase text with minimal use of whitespace to im­
prove legibility (a sad case where the original design 
has persisted in the face of both common-sense and 
well-researched studies on legibility). The result is 
formulae looking like this: 

:CEILING(A31/$E$6, 1) 
:E 19.1NDEX(D6:08,A6) 

The other two languages have better legibility. Again, 
we do not believe that these differences affected our 
results in any serious way. 

CONCLUSIONS 
First, we believe this is the first occasion that schema­
based theories of programming knowledge have been 
extended to visual and textual dataflow languages. 

Second, we have also shown that cognitive rela­
tionships between theoretically-equivalent structures 
are different. However, we do not think that these dif­
ferences refute the claims of schema theories. Our in­
terpretation is that they show that different asrects of 
the schema are emphasized in different situations. 
Differences between the textual and visual languages 
show a gradation from Basic to spreadsheet, closely 
following the degree to which the program layout re­
flects the functional organization. 

spreadsheet 

Figure 2: Pathfinder networks 
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The emphasis on layout apparently reconciles schema 
theory with the views of Saariluoma and Sajaniemi (in 
press). Our subjects behaved as though they did, 
indeed, use spatial imagery, just as theirs did, but they 
apparently used it not as a thing apart but to support 
the perception of schema-like components. 

Rist's schema model could readily be modified. The 
cognitive processes it posits already include several 
ways to index nodes in memory and in the world. One 
of these is linear search, designed - of course - for 
searching through conventional textual code. The 
theory can be readily extended by adding location cues 
to its repertoire, usable only when the programming 
language allows location to be closely aligned with 
function. These findings reinforce the views expressed 
by Saariluoma and Sajaniemi that more work is 
required on integrating imagery into HCI theory. 

The use of layout in this way, as a meaningful 
supplement outside the 'official' notation, has been 
termed 'secondary notation' by Petre and Green (1992). 
A close parallel can be found in recent developments 
on information visualisation, and in particular the 
concept of 'cost-of-knowledge' (Card eta!., 1994); the 
inference we draw from these results is that the use of 
layout is preferred because the cost-of-knowledge is 
less, which would strongly confirm the interview-based 
conclusions drawn by Nardi (1993) and Hendry and 
Green (1994). From a development perspective, 
therefore, increased attention should be given to 
programming environments in which spatial layout 
can be correlated with function. 
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