
Chapter 15
Epidemiological Models Incorporating
Mobility, Behavior, and Time Scales

15.1 Introduction

The work of Eubank et al. [24], Sara del Valle et al. [44], Chowell et al. [7, 18], and
Castillo-Chavez and Song [13] have highlighted the impact of modified modeling
approaches that incorporate heterogeneous modes of mobility within variable
environments in order to study their impact on the dynamics of infectious diseases.
Castillo-Chavez and Song [13], for example, proceeded to highlight a Lagrangian
perspective, that is, the use of models that keep track at all times of the identity of
each individual. This approach was used to study the consequences of deliberate
efforts to transmit smallpox in a highly populated city, involving transient sub-
populations and the availability of massive modes of public transportation.

Here, a multi-group epidemic Lagrangian framework where mobility and the
risk of infection are functions of patch residence time and local environmental risk
is introduced. This Lagrangian approach has been used within classical contact
epidemiological (that is, transmission is due to “contacts” between individuals)
formulations in the context of a possible deliberate release of biological agents
[2, 13]. The Lagrangian approach is introduced here as a modeling approach that
explicitly avoids the assignment of heterogeneous contact rates to individuals. The
use of contacts or activity levels and the view that transmission is due to collisions
between individuals has a long history and it is conceptually consistent with the way
we envision disease transmission between susceptible and infectious individuals.
However, contacts are hard to define and consequently, at least in the context of
communicable diseases, impossible to measure in various settings. Is it possible
to capture interactions of individual mathematically in a way different from the
notion of contacts? The approach that is proposed focuses on the use of modeling
frameworks that involve patches/environments defined or characterized by risks of
infection that are functions of the time spent in each environment/patch. These
patches/environments may or may not have permanent hosts and they may be used
to account for places of “transitory” residence like mass transportation systems or
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hospitals or forests, to name but a few possibilities. Each environment or patch is
characterized by the expected risk of infection of visitors as a function of time spent
in such an environment. For example, a population near a forest may have some
of its individuals spend time in the forest. Those who like the outdoors may be
exposed longer to vectors than those who do not visit the forest. Consequently, the
possibility of acquiring a vector-borne disease is a function of, among other factors,
how long an individual spends in the forest each day. Similarly, individuals that use
mass transportation routinely (during rush hour) are at a higher risk of acquiring a
communicable disease including common colds, and it makes sense to assume that
the risk may be a function of how long each individual spends each day commuting
to work or to school. In other words, the average time spent in a community defined
as a collection of environments that determined a priori the risk of acquiring an
infection is at the heart of the Lagrangian approach.

What is the Lagrangian approach and what does the theory tell us about the
dynamics of such models in epidemic settings? We revisit this framework in
possibly the simplest general setting that of a susceptible–infected–susceptible (SIS)
epidemic multi-group model. We collect some of the mathematical formulae and
results in the context of this general SIS multi-group model as reported in the
literature [4, 6, 7, 11]. We proceed to identify basic reproduction numbers R0 as
a function of the associated multi-patch residence-time matrix P (pi,j : i, j =
1, 2, 3 . . . n), which determines the proportion of time that a resident of Patch i

spends in environment j . The analysis shows that the n-patch SIS model (as long as
it is a strongly connected system) has a unique globally stable endemic equilibrium
when R0 > 1, and a globally stable disease-free equilibrium when R0 ≤ 1. We

have used simulations to generate insights on the impact that the residence matrix P

has on infection levels within each patch. Model results [4, 6, 7, 11] show that the
infection risk vector, which characterizes environments by risk to a pre-specified
disease (measured by B), and the residence-time matrix P both play an important
role in determining, for example, whether or not endemicity is reached at the patch
level. Further, it is shown that the right combinations of environmental risks (B)
and mobility behavior (P) are capable of promoting or suppressing infection within
particular patches. The theoretical results [4, 6, 7, 11] are used to characterize patch-
specific disease dynamics as a function of the time spent by residents and visitors
in patches of interest. These results have helped classify patches as sources or sinks
of infection, depending, of course, on the risk (B) and mobility (P) matrices. In
general a residence-time matrix P cannot be made of constant entries in realistic
settings. In fact the entries of P may depend on disease prevalence levels. We have
explored some simple situations, via simulations, when the entries of the matrix P

are state-dependent [4, 6, 7, 11]. The analysis and simulations for specific diseases
are illustrated later in this chapter. They are used to highlight some of the possible
differences that arise from having a state-dependent residence-time matrix P.
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15.2 General Lagrangian Epidemic Model in an SIS Setting

The following SIS model involving n-patches (environments) is introduced in [7]:

S′
i = bi − diSi + γiIi − Siλi(t) (15.1)

I ′
i = Siλi(t) − γiIi − diIi

N ′
i = bi − diNi,

where bi , di , and γi denote the per-capita birth, natural death, and recovery rates,
respectively, for i = 1, 2, 3 . . . n. The infection rates λi(t) have the form:

λi(t) =
n∑

j=1

βjpij

∑n
k=1 pkj Ik∑n
k=1 pkjNk

, i = 1, 2, . . . , n, (15.2)

where pij denotes the proportion of susceptibles from Patch i who are currently in
Patch j , βj is the risk of infection in Patch j , and the last fraction represents the
proportion of infected in Patch j . Using the approach of the next generation matrix,
the basic reproduction number R0 can be derived using the following system:

İi =
(

bi

di

− Ii

)
λi(t) − (γi + di)Ii, i = 1, 2, . . . , n.

As shown in the next section, R0 is a function of the risk vector B =
(β1, β2, . . . , βn)

t and the residence times matrix P = (pij ), i, j = 1, . . . , n, and it
is shown in [7] that whenever P is irreducible (patches are strongly connected), the
disease-free steady state is globally asymptotically stable if R0 ≤ 1 and a unique
interior equilibrium exists and is globally asymptotically stable if R0 > 1.

While a specific formula for the multi-patch basic reproduction number cannot
be computed explicitly, it is possible in this case to find expressions for the patch-
specific basic reproduction number. In fact, we have

R0i (P) = R0i ×
n∑

j=1

pji,

where R0i are the local basic reproduction numbers (i = 1, 2, 3, · · · , n) computed
when the patches are isolated from each other. From the R0i (i = 1, 2, 3, · · · , n),
the role that the relative risk that each environment (patch) plays, namely

βj

βi
,

can be assessed. Further, the role that residence times play in keeping track of
the appropriate fraction of the population involved in a given patch is given by

(pij bi/di)∑n
k=1 pkj bk/dk

. In other words, this patch specific R0i (i = 1, 2, 3, · · · ,) captures

the impact of the P and B matrices.
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In short, if R0i (P) > 1 the disease persists in Patch i and furthermore, if pkj = 0
for all k = 1, 2, · · · , n and k �= i whenever pij>1, then it is shown that the disease
dies in Patch i if R0i (P) < 1, that is, patch-specific basic reproduction numbers
help characterize disease dynamics at the patch level [7].

We can look first at the following example of a multi-patch SIR model for a
single outbreak:

S′
i = −Siλi(t),

I ′
i = Siλi(t) − αiIi,

R′
i = αiIi, i = 1, 2,

(15.3)

where Si, Ii , and Ri denote the population of susceptible, infected, and recovered
immune individuals, respectively, in Patch i, and Ni = Si + Ii + Ri . This model
is the same as the model (14.7–14.8) in the preceding chapter. The parameter αi

denotes the per-capita recovery rate in Patch i and λi(t) are given in (15.2).
In the rest of this chapter we make use of this Lagrangian modeling perspective

(disease-specific versions) to carry out preliminary studies, in rather simple set ups,
of the role of mobility in reducing or enhancing the transmission of specific diseases
in regions of variable risk for the case of two patches. Numerical results are used to
illustrate the power and limitations of this approach. Lagrangian models are used to
explore the role that mobility plays in disease transmission for the cases of Ebola,
tuberculosis, and Zika in simplified settings. Figure 15.1 represents a schematic
representation of the Lagrangian dispersal between two patches.

Fig. 15.1 Dispersal of individuals via a Lagrangian approach



15.3 Assessing the Efficiency of Cordon Sanitaire as a Control Strategy of Ebola 481

15.3 Assessing the Efficiency of Cordon Sanitaire
as a Control Strategy of Ebola

During the 2014 Ebola Epidemic in West Africa, it was observed [10, 46] that the
rate of growth of the Ebola epidemic seemed to be increasing rather than decreasing
as is standard in the study of epidemics. In other words, the reproduction number
tends to decrease in time rather than increase. The evidence provided by the data
and our analysis indicated that something was not right. We learned that troops
were being used to prevent individuals from moving out of the most devastated
communities facing Ebola. The use of cordons sanitaires seemed to be implemented
even though past experiences have shown them to have a deleterious effect. Here, we
formulate a two-patch mathematical model for Ebola virus disease (EVD) dynamics
to highlight the potential lack of effectiveness or the deleterious impact of impeding
mobility (cordons sanitaires). Via simulations, we look at the role of mandatory
mobility restrictions and their impact on disease dynamics and epidemic final size. It
is shown that mobility restrictions between high and low risk areas of closely linked
communities are likely to have a deleterious impact on overall levels of infection in
the total population involved.

15.3.1 Formulation of the Model

The community of interest is assumed to be composed of two adjacent regions
facing highly distinct levels of EVD infection and having access to a highly
differentiated public health system (the haves and have-nots). There are differences
in population density, availability of medical services, and isolation facilities. The
need of those in the high-risk area to travel to the low-risk area is high as the jobs are
in the well-off community. For Ebola, it may be unrealistic to assume susceptibles
and infectives travel at the same rate. We let N1 denote the population in Patch 1
(high risk) and N2 the population in Patch 2 (low risk). The classes Si , Ei , Ii , Ri

represent the susceptible, exposed, infective, and recovered sub-populations in Patch
i (i = 1, 2). The class Di represents the number of disease induced deaths in Patch
i. The dispersal of individuals is modeled via the Lagrangian approach defined in
terms of residence times [4, 7].

The numbers of new infections per unit of time are based on the following
assumptions:

• The density of infected individuals mingling in Patch 1 at time t , who are only
capable of infecting susceptible individuals currently in Patch 1 at time t , that is,
the effective infectious proportion in Patch 1 is given by

p11I1 + p21I2

p11N1 + p21N2
,
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where p11 denotes the proportion of time that residents from Patch 1 spend in
Patch 1 and p21 the proportion of time that residents from Patch 2 spend in Patch
1.

• The number of newly infected Patch 1 residents while sojourning in Patch 1 is
therefore given by

β1p11S1

(
p11I1 + p21I2

p11N1 + p21N2

)
.

• The number of new infections within members of Patch 1, in Patch 2 per unit of
time is therefore

β2p12S1

(
p12I1 + p22I2

p12N1 + p22N2

)
,

where p12 denotes the proportion of time that residents from Patch 1 spend in
Patch 2 and p22 the proportion of time that residents from Patch 2 spend in Patch
2. Hence, the effective density of infected individuals in Patch j is given by

p1jN1 + p2jN2, j = 1, 2.

If we further assume that infection by dead bodies occurs only at the local level
(bodies are not moved), then, by following the same rationale as in model (15.3),
we arrive at the following model:

S′
i = −Siλi(t) − εiβipiiSi

Di

Ni

,

E′
i = Siλi(t) + εiβipiiSi

Di

Ni

− κEi,

I ′
i = κEi − γ Ii,

D′
i = fdγ Ii − νDi,

R′
i = (1 − fd)γ Ii + νDi,

Ni = Si + Ei + Ii + Di + Ri, i = 1, 2,

(15.4)

where λi(t) are given in (15.2).

15.3.2 Simulations

Simulations show that if only individuals from the high-risk region (Patch 1) were
allowed to travel, then the epidemic final size can go under the cordon sanitaire
level. Figure 15.2 captures the patch-specific prevalence levels for mobility values
of p12 = 0, 0.2, 0.4, 0.6 with p21 = 0 (no movement). Disease dispersal, if the
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Fig. 15.2 Dynamics of prevalence in each patch for values of mobility p12 =
0%, 20%, 40%, 60% and p21 = 0, with parameters: ε1,2 = 1.1,R01 = 2.45,R02 =
0.9, fd = 0.7, k = 1/7, ν = 1/2, γ = 1/7

Fig. 15.3 Dynamics of patch specific and total final epidemic size, for mobility values p12 =
0%, 20%, 40%, 60% and p21 = 0, with parameters: ε1,2 = 1.1,R01 = 2.45,R02 = 0.9, fd =
0.7, k = 1/7, ν = 1/2, γ = 1/7

disease spreads to a totally susceptible region, means that the secondary infections
produced in the low-risk region reduce the overall two-patch prevalence, due to its
access to better sanitary conditions and resources. However, there is a cost to the
low-risk patch not only for the services provided but also for the generation of a
larger number of secondary cases than if the “borders” were closed. Figure 15.3
shows that different mobility regimes can increase or decrease the total epidemic
final size. In the presence of “low mobility” levels (p12 = 0.2, 0.4), the total final
size curve may turn out to be greater than the cordon sanitaire case. We observe
that the nonlinear impact of mobility on the total epidemic final size can bring it
below the cordoned case even under relative “high mobility” regimes. This result
highlights the trade-off that comes from reducing individuals’ time spent in a high-
risk region versus exposing a totally susceptible population living in a safer region.
Under certain mobility conditions, the results of such a trade-off are beneficial for
the Global Commons.
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Fig. 15.4 Dynamics of
maximum final size and
maximum prevalence in Patch
1 with parameters: ε1,2 =
1.1,R01 = 2.45,R02 =
0.9, fd = 0.7, k = 1/7, ν =
1/2, γ = 1/7

Fig. 15.5 Dynamics of final
epidemic size in the one way
case with parameters: ε1,2 =
1.1,R01 = 2.45,R02 =
0.9, 1.0, 1.1, fd = 0.7, k =
1/7, ν = 1/2, γ = 1/7

Further, in order to clarify the effects of residence times on total final epidemic
size, we proceeded to analyze its behavior under one way mobility. Figure 15.4
shows the cordon sanitaire (dashed gray line), patch specific, and the total epi-
demic final size for various possible mobility scenarios, p12 ∈ [0, 1]. We see
that one way mobility reduces Patch 1 epidemic final size while increasing the
Patch 2 final number of infections. We see that the total epidemic final size
under low mobility (p12 < 0.5) is above the cordoned case. We also observe
that Patch 2 sanitary conditions play an important role under high mobility
regime bringing the total epidemic final size below the cordon sanitaire scenario
(p12 > 0.5).

Moreover, results suggest that for R02 < 1 extremely high mobility levels
might eradicate an Ebola outbreak. It is important to stress that mobility reducing
the total epidemic final size is dependent not only on the residence times and
mobility type, but also on the patch-specific prevailing infection rates. Figure 15.5
shows that if R02 > 1 mobility is not capable of leading the total epidemic final
size towards zero. Figure 15.6 shows that the global basic reproduction number
decreases monotonically as one way mobility increases. However, it is not capable
of capturing the harmful effect of low mobility levels, increasing the total epidemic
final size. Mobility on its own is not always enough to reduce R0 below the critical
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Fig. 15.6 Dynamics of R0
with parameters:
ε1,2 = 1,R01 = 2.45,R02 =
0.9, 1.0, 1.1, fd = 0.708, k =
1/7, α = 0, ν = 1/2, γ =
1/6.5

threshold. Instead, bringing the global R0 less than one requires reducing local risk,
that is, getting a lower R02.

15.4 *Mobility and Health Disparities on the Transmission
Dynamics of Tuberculosis

TB dynamics is the result of complex epidemiological and socio-economical
interactions between and among individuals living in highly heterogeneous regional
conditions. Many factors impact TB transmission and progression. A model is intro-
duced to enhance the understanding of TB dynamics in the presence of diametrically
distinct rates of infection and mobility. The dynamics are studied in a simplified
world consisting of two patches, that is, two risk-defined environments, where the
impact of short-term mobility and variations in reinfection and infection rates are
assessed. The modeling framework captures “daily dynamics” of individuals within
and between places of residency, work, or business. Activities are modeled by the
proportion of time spent in environments (patches) having different TB infection
risk. Mobility affects the effective population size of each Patch i (home of i-
residents) at time t and they must also account for visitors and residents of Patch i, at
time t . The impact that effective population size and the distribution of individuals’
residence times in different patches have on TB transmission and control is explored
using selected scenarios where risk is defined by the estimated or perceived first
time infection and/or exogenous reinfection rates. Model simulation results suggest
that, under certain conditions, allowing infected individuals to move from high to
low TB prevalence areas (for example, via the sharing of treatment and isolation
facilities) may lead to a reduction in the total TB prevalence in an overall, two-
patch, population.
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15.4.1 *A Two-Patch TB Model with Heterogeneity
in Population Through Residence Times in the Patches

Using a similar approach to model formulation, we consider the following model
for the dynamics of TB in two patches:

Ṡi = μiNi − Siλi(t) − μiSi,

L̇i = qSiλi(t) − Liλ̂i(t) − (γi + μi)Li + ρiIi,

İi = (1 − q)Siλi(t) + Liλ̂i(t) + γLi − (μi + ρi)Ii, i = 1, 2,

(15.5)

where λi(t) is the same as in (15.2) and

λ̂i (t) =
2∑

j=1

δjpij

∑2
k=1 pkj Ik∑2
k=1 pkjNk

, i = 1, 2.

15.4.2 *Results: The Role of Risk and Mobility on TB
Prevalence

We highlighted the dynamics of tuberculosis within a two-patch system, described
by (15.5), under various residence times schemes via numerical experiments. The
simulations were carried out using the two-patch Lagrangian modeling framework
on pre-constructed scenarios. We assume that one of the two regions (say, Patch 1)
has high TB prevalence. We do not model specific cities or regions. Nomenclature
of some terms and scenarios are defined in Table 15.1.

The interconnection of the two idealized patches demands that individuals from
Patch 1 travel to the “safer” Patch 2 to work, to school, or for other social activities.
It is assumed that the proportion of time that Patch 2 residents spend in Patch 1 is
negligible.

Here we define “high risk” based on the value of the probability of developing
active TB using two distinct definitions: (i) patch having high direct first time
transmission potential but no difference in exogenous reinfection potential between
patches (β1 > β2 and δ1 = δ2) and (ii) the patch with high exogenous reinfection
potential (δ1 > δ2 and β1 = β2 ). In addition, we assume a fixed population size
for Patch 1 and vary the population size of Patch 2. Particularly, we assume that
Patch 1 is the denser patch, while Patch 2 is assumed to have 1

2N1 and 1
4N1. That

is, contact rates are higher in the Patch 1 population as compared to corresponding
rates in Patch 2.
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Table 15.1 Definitions and scenarios

Nomenclature

Risk Interpreted based on levels of infection rate, prevalence, or
average contacts (via population size)

High-risk patch Defined either by high direct first time infection rate (i.e., high β

which leads to high corresponding R0) or by high exogenous
reinfection rate (i.e., high δ)

Enhanced
socio-economic
conditions (reducing
health disparity)

Defined by better healthcare infrastructure which is incorporated
by high prevalence of a disease (i.e., high I (0)/N ) in a large
population (i.e., large N )

Mobility Captured by average residence times of an individual in different
patches (i.e., by using P matrix)

Scenarios (assume high-risk and diminished socio-economic conditions in
Patch 1 as compared to Patch 2)

Scenario 1 β1 > β2, δ1 = δ2;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

vary p12 & p21 ≈ 0

Scenario 2 β1 = β2, δ1 > δ2;
I1(0)

N1
>

I2(0)

N2
, N1 > N2;

vary p12 & p21 ≈ 0

Fig. 15.7 Effect of mobility in the case of different transmission rates 0.13 = β1 > β2 = 0.07
(which gives R01 = 1.5, R02 = 0.8) and δ1 = δ2 = 0.0026, on the endemic prevalence.
The cumulative prevalence and prevalence for each patch using the following population size
proportions N2 = 1

2 N1 (left figure) and N2 = 1
4 N1 (right figure) are shown here. The green

horizontal dotted line represents the decoupled case (i.e., the case when there is no movement
between patches)

15.4.3 The Role of Risk as Defined by Direct First Time
Transmission Rates

In this subsection, we explore the impact of differences in transmission rates
between patches. Patch 1 is high risk (R01 > 1; obtained by assuming β1 > β2),
while Patch 2 in the absence of visitors would be unable to sustain an epidemic
(R02 < 1). In addition the effect of different population ratios N1/N2 is explored.
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Figure 15.7 uses mobility values p12 as it looks at their impact on increases in
cumulative two-patch prevalence. At the individual patch level, increase in mobility
values reduces the prevalence in Patch 1 but increases the prevalence in Patch 2
initially and then decreases past a threshold value of p12 (see red and black curves
in Fig. 15.7). That is, completely cordoning off infected regions may not be a good
idea to control disease. However, the movement rate of individuals between high-
risk infection region and low-risk region must be maintained above a critical value
to control an outbreak. Thus, it is possible that when Patch 1 (riskier patch) has a
bigger population size, then mobility may turn out to be beneficial; the higher the
ratio in population sizes, the higher the range of beneficial “traveling” times.

15.4.4 The Impact of Risk as Defined by Exogenous
Reinfection Rates

Here, we focus our attention on the impact of exogenous reinfection on TB’s
transmission dynamics when transmission rates are the same in both patches,
β1 = β2. In this scenario, we assume the disease in both patches have reached
an endemic state, that is, R01 > 1 and R02 > 1. However, Patch 1 remains the
riskier, due to the assumption that exogenous reactivation of TB in Patch 1 is higher
than in Patch 2, δ1 > δ2.

Figure 15.8 shows the combined role of exogenous reinfection and mobility
values when the population of Patch 1 is twice or four times the population of
Patch 2.

It is possible to see a small reduction in the overall prevalence, given for all
mobility values from Patch 1 to Patch 2. Within this framework, parameters, and
scenarios, our model suggests that direct first time transmission plays a central role

Fig. 15.8 Effect of mobility when risk is defined by the exogenous reinfection rates 0.0053 =
δ1 > δ2 = 0.0026 and β1 = β2 = 0.1 (which gives R01 = R02 = 1.155), on the
endemic prevalence. The cumulative prevalence and prevalence for each patch using the following
population size proportions N2 = 1

2 N1 (left figure) and N2 = 1
4 N1 (right figure) are shown here.

The green dotted line represents the decoupled case (i.e., the case when there is no movement
between patches)
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Fig. 15.9 Effect of mobility
and population size
proportions on the global
basic reproduction number
R0 when
0.13 = β1 > β2 = 0.07 and
δ1 = δ2 = 0.0026

in TB dynamics when mobility is considered. Although mobility also reduces the
overall prevalence when exogenous reinfection differs between patches, its impact
is small compared to direct first time transmission results.

Finally, Fig. 15.9 shows the relationship between population densities and mobil-
ity (p12) with respect to the basic reproduction number R0. In this case we only
explore the first case: direct first time transmission heterogeneity and found out that
in this case mobility could indeed eliminate a TB outbreak.

According to the World Health Organization (WHO) [48], in 2014, 80% of the
reported TB cases occurred in 22 countries, all developing countries. Efforts to
control TB have been successful in many regions of the globe and yet we still see 1.5
million people die each year. And so, TB, faithful to its history [19], still poses one
of the greatest challenges to global health. Recent reports suggest that established
control measures for TB have not been adequately implemented, particularly in sub-
Saharan countries [1, 15]. In Brazil rates have decreased with relapse being more
important than reinfection [20, 33]. Finally, in Cape Town, South Africa, a study [47]
showed that in high incidence areas, individuals who have received TB treatment
and are no longer infectious are at the highest risk of developing TB instead of
being the most protected. Hence, policies that do not account for population specific
factors are unlikely to be effective. Without a complete description of the attributes
of the community in question, it is almost impossible to implement successful
intervention programs capable of generating low reinfection rates through multiple
pathways and low number of drug resistant cases. Intervention must account for
the risks that are inherent with high levels of migration as well as with local and
regional mobility patterns between areas defined by high differences in TB risk. This
discussion of TB dynamics within a simplified framework of a two-patch system
has captured in a rather dramatic way the dynamics in two worlds: the world of the
haves and the world of the have-nots. Simulations of simplified extreme scenarios
highlight the impact of disparities.

TB dynamics depend on the basic reproduction number (R0), a function of
model parameters that includes direct first transmission and exogenous (reinfection)
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transmission rates. The simulations of specific extreme scenarios suggest that short-
term mobility between heterogeneous patches does not always contribute to overall
increases in TB prevalence. The results show that when risk is considered only in
terms of exogenous reinfection, global TB prevalence remains almost unchanged
when compared to the effect of direct new infection transmission. In the case of
a high-risk direct first time transmission, it is observed that mobile populations
may contribute to prevalence levels in both environments (patches). The simulations
show that when the individuals from the risky population spend 25% of their time
or less in the safer patch this is bad for the overall prevalence. However, if they
spend more, the overall prevalence decreases. Further, in the absence of exogenous
reinfections, the model is robust, that is, the disease dies out or persists based on
whether or not the basic R0 is below or above unity, respectively. Although, the
role of exogenous reinfection seems not that relevant to overall prevalence, the fact
remains that such mode of transmission increases the risk that comes from a large
displacement of individuals into a particular TB-free areas, due to catastrophes or
conflict. As noted in [25], ignoring exogenous reinfections, that is, establishing
policies that focus exclusively on the reproduction number R0, would amount to
ignoring the role of dramatic changes in initial conditions, now more common
than before, due to the displacement of large groups of individuals, the result of
catastrophes, and/or conflict.

15.5 *ZIKA

In November 2015, El Salvador reported their first case of Zika virus (ZIKV), an
event followed by an explosive outbreak that generated over 6000 suspected cases
in a period of 2 months. National agencies began implementing control measures
that included vector control and recommending an increased use of repellents. In
addition in response to the alarming and growing number of microcephaly cases
in Brazil, the importance of avoiding pregnancies for 2 years was stressed. The
role of mobility within communities characterized by extreme poverty, crime, and
violence where public health services are not functioning is the set up for this
example. We use a Lagrangian modeling approach within a two-patch setting in
order to highlight the possible effects that short-term mobility, within two highly
distinct environments, may have on the dynamics of ZIKV when the overall goal is
to reduce the number of cases in both patches. The results of simulations in highly
polarized and simplified scenarios are used to highlight the role of mobility on ZIKV
dynamics. We found that matching observed patterns of ZIKV outbreaks was not
possible without incorporating increasing levels of heterogeneity (more patches). A
lack of attention to the threats posed by the weakest links in the global spread of
diseases poses a serious threat to global health policies (see [12, 16, 23, 34, 40–
42, 50]). Our results highlight the importance of focusing on key nodes of global
transmission networks, which in the case of many regions correspond to places
where the level of violence is highest. Latin America and the Caribbean, which
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house 9% of the global population are a particular hot spot because this region
accounts for 33% of the world’s homicides [29]. Hence, it is essential to assess how
much public safety conditions may affect mobility and the level of local risk, which
may affect the dynamics of ZIKV.

15.5.1 *Single Patch Model

Assume that individuals while in Patch 1 will be experiencing high risk of infection,
while those in Patch 2 will be experiencing low risk. Movement (daily activities) will
alter the amount of time that each individual spends on each patch, the longer that an
individual is found in Patch 1, the more likely that he/she will become infected. The
level of patch-specific risk to infection is captured via the use of a single parameter
β̂i , i = 1, 2 with β̂1 � β̂2. This assumption pretends to capture health disparities
in a rather simplistic way. The case of Johannesburg and Soweto in South Africa,
or North and South Bogota in Colombia, or Rio de Janeiro and adjacent favelas in
Brazil, or gang-controlled and gang-free areas within San Salvador are but some
of the unfortunately large number of pockets dominated by conflict, high crime
or highly differentiated health structures within urban centers around world. The
short time scale dynamics of individuals (going to work or attending schools or
universities) are incorporated within this model. The dynamics of transmission is
carried out via simulations over the duration of a single outbreak.

The ZIKV dynamics single patch model involves host and vector populations of
size Nh and Nv , respectively. Both populations are subdivided by epidemiological
states; the transmission process is modeled as the result of the interactions of
these populations. On that account, we let Sh, Eh, Ih,a , Ih,s , and Rh denote the
susceptible, latent, infectious asymptomatic, infectious symptomatic, and recovered
host sub-populations. Similarly, Sv , Ev , and Iv are used to denote the susceptible,
latent, and infectious mosquito sub-populations. Since the focus is on the study of
disease dynamics over a single outbreak, we neglect the host demographics while
assuming that the vector demographics do not change, meaning that it is assumed
the birth and death per-capita mosquito rates cancel each other out. New reports
[14, 21] point out the presence of large numbers of asymptomatic ZIKV infectious
individuals. Consequently, we consider two classes of infectious Ih,a and Ih,s , that
is, asymptomatic and symptomatic infectious individuals. Further, since there is no
full knowledge of the dynamics of ZIKV transmission, it is assumed that Ih,a and
Ih,s individuals are equally infectious with their periods of infectiousness roughly
the same. Our assumptions could be used to reduce the model to one that considers
a single infectious class Ih = Ih,a + Ih,s . We keep both infectious classes as it may
be desirable to keep track of each type. These assumptions may not be too bad given
our current knowledge of ZIKV epidemiology and the fact that ZIKV infections, in
general, are not severe. Furthermore, given that the infectious process of ZIKV is
somewhat similar to that of dengue, we use some of the parameters estimated in
dengue transmission studies within El Salvador. ZIKV basic reproduction number
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estimates are taken from those that we just estimated using outbreak data from
Barranquilla Colombia [45]. Furthermore, the selection of model parameters ranges
used also benefited from prior estimates conducted with data from the 2013–2014
French Polynesia outbreak [31], some of the best available. The dynamics of the
prototypic single patch system, single epidemic outbreak, can therefore be modeled
using the following standard nonlinear system of differential equations [9]:

S′
h = −bβvhSh

Iv

Nh

E′
h = bβvhSh

Iv

Nh
− νhEh

I ′
h,s = (1 − q)νhEh − γhIh,s

I ′
h,a = qνhEh − γhIh,a

R′
h = γh(Ih,s + Ih,a)

S′
v = μvNv − bβhvSv

Ih,s+Ih,a

Nh
− μvSv

E′
v = bβhvSv

Ih,s+Ih,a

Nh
− (μv + νv)Ev

I ′
v = νvEv − μvIv.

(15.6)

15.5.2 *Residence Times and Two-Patch Models

The role of mobility between two communities, within the same city, living under
dramatically distinct health, economic, social, and security settings is explored using
a model as simple as possible, that is, a model that only considers two patches
(prior modeling efforts that didn’t account for the effective population size but that
incorporated specific controls include [32]). Patch 2 has access to working health
facilities, low crime rate, adequate human and financial resources, and adequate
public health policies, in place. Patch 1 lacks nearly everything and crime is high.
The differences in risk are captured by postulating very different transmission rates.
We study the dynamics of host mobility in highly distinct environments, with risk
being captured by the transmission rate, β̂. Hence, β̂1 � β̂2, where β̂i defines the
risk in Patch i, i = 1, 2 [Patch 1 (high risk) and Patch 2 (low risk)].

The host populations are stratified by epidemiological classes indexed by the
patch of residence. In particular, Sh,i , Eh,i , Ih,a,i , Ih,s,i , and Rh,i denote the
susceptible, latent, infectious asymptomatic, infectious symptomatic, and recovered
host populations in Patch i, i = 1, 2 with Sv,i , Ev,i , and Iv,i denoting the
susceptible, latent, and infectious mosquito populations in Patch i, i = 1, 2. As
before, Nh,i denotes the host patch population size (i, i = 1, 2) and Nv,i the total
vector population in Patch i, i = 1, 2. The vector is assumed to be incapable of
moving between patches, a reasonable assumption in the case of Aedes aegypti
under the appropriate spatial scale. The patch model parameters are presented in
Table 15.2 with the flow diagram, single patch dynamics model, capturing the
situation when residents and visitors do not move; that is, when the 2 × 2 residence
times matrix P is such that p11 = p22 = 1 (Fig 15.10).
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Table 15.2 Description of the parameters used in system (15.6)

Parameters Description Value

βvh Infectiousness of human to mosquitoes 0.41

βhv Infectiousness of mosquitoes to humans 0.5

bi Biting rate in Patch i 0.8

νh Humans’ incubation rate 1
7

q Fraction of latent that become asymptomatic and infectious 0.1218

γi Recovery rate in Patch i 1
5

pij Proportion of time residents of Patch i spend in Patch j [0, 1]
μv Vectors’ natural mortality rate 1

13

νv Vectors’ incubation rate 1
9.5

Fig. 15.10 Flow diagram of model (15.6)

Since individuals experience a higher risk of ZIKV infection while in Patch 1,
then it is assumed that mobility from Patch 2 to Patch 1 is unappealing with typical
Patch 2 residents spending (on the average) a reduced amount of time each unit of
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time in Patch 1. Parameters are chosen so that the dynamics of ZIKV within Patch 2
cannot be supported in the absence of mobility between Patch 1 and Patch 2. Thus,
the Patch 2 local basic reproduction number is taken to be less than one, namely
R02 = 0.9. Mobility is modeled under the residence times matrix P with entries
given initially by p21 = 0.10 and p12 = 0.

Two cases are explored: A “worst case” scenario where control measures are
hardly implemented due to crime, conflict, or other factors on Patch 1, that is, Patch
1 is a place where the risk of acquiring a ZIKV infection is high since R01 = 2.
The “best case” scenario corresponds to the case when Patch 1 can implement
some control measures with some degree of effectiveness, and consequently Patch
1 has an R01 = 1.52. The R0i values used are in line with those previously
estimated for ZIKV outbreaks [31, 45]. Simulations are seeded by introducing an
asymptomatic infected individual in Patch 1 under the assumption that the host and
vector populations are fully susceptible in both patches.

Figure 15.11 (top) shows the incidence and final ZIKV epidemic size when Patch
1 is under the “worst case scenario,” defined by a basic reproduction number of
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Fig. 15.11 Per patch incidence and final size proportions for p21 = 0.10, p12 = 0, 0.15, 0.30, and
0.45. Mobility shifts the behavior of the Patch 1 final size in the “worst case” scenario: R01 = 2
and R02 = 0.9
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R01 = 2 [45]. Figure 15.11 shows that at p12 = 0.15 the final number of infected
residents in Patch 1 is larger to the number in the baseline scenario (p12 = 0).
In fact, it reaches almost 96% of the population, an unrealistic value. Additional
simulated p12 values show that final Patch 1 size would go below the baseline case;
a benefit of mobility. Figure 15.11 highlights the case when the Patch 2 epidemic
final size grows with increases in mobility when compared with the baseline case
(no mobility from Patch 1). We see reductions in the Patch 1 epidemic final size for
some mobility values accompanied by increments in the Patch 2 epidemic final size
when compared to the baseline scenario (no mobility from Patch 1). Specifically,
reductions in Patch 1 epidemic final size are around 1 × 10−3, while increments in
Patch 2 are around 1 × 10−2, under the assumption that the population in Patch 1 is
the same as that in Patch 2. Thus while mobility may provide benefits within Patch
1 (under the above assumptions) the fact remains that it does it at a cost. In short, it
is also observed that the epidemic final size per patch does not respond linearly to
changes in mobility even when only the mobility p12 is increased (see Figs. 15.11
and 15.12).

Fig. 15.12 Per patch incidence and final size proportions for p21 = 0.10, p12 = 0, 0.15, 0.30, and
0.45. Mobility significantly shapes the per patch final sizes in the “worst case” scenario R01 = 2
and R02 = 0.9
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Consider now the “best case” scenario, a basic reproduction number R01 = 1.52,
under the assumption that the population in Patch 1 is the same as that in Patch 2.
The results of simulations collected in Fig. 15.12 show a final size epidemic curve
similar to that generated in the “worst case” scenario for Patch 1. Some mobility
values can increase the Patch 1 epidemic final size, reaching almost 80% of the
population when p12 = 0.30, an unrealistic level, albeit, as expected lower than in
the “worst” case scenario. The existence of a mobility threshold after which the final
epidemic sizes in Patch 1 start to decrease is also observed. The results in Fig. 15.12
suggest that under all p12 mobility levels, Patch 2 ZIKV epidemic final size supports
monotone growth in the total number of infected individuals. The changes in the
epidemic final size in each patch in Fig. 15.12 are roughly equivalent (the same
order, 1 × 10−2) given that the population in Patch 1 is the same as that in Patch 2.

The simulation results presented so far provide only partial information on the
impact that short-term mobility may have on the transmission dynamics of ZIKV.
Now, by fixing the mobility from Patch 2 to Patch 1, we are just focusing only on
the impact of changes in mobility from Patch 1 to Patch 2. Further, the potential
changes in mobility patterns that host populations may have in response to ZIKV
dynamics are ignored by our use of a mobility matrix P with constant entries pij .
We found that epidemic final size within Patch 1 is qualitatively similar in the worst
and best case scenarios: increasing at first, decreasing after a certain threshold, and
crossing down the baseline case under some mobility regimes. Further, it has been
observed that the qualitative behavior of the epidemic final size in Patch 2 grows
monotonically as mobility increases. Patch 1 and Patch 2 responses are of different
orders of magnitude in the “worst case” scenario but roughly of the same order of
magnitude in the “best case” scenario, which means, under our restrictive conditions
and assumptions, that reductions in risk in Patch 1 do help significantly.

15.5.2.1 *The Role of Risk Heterogeneity in the Dynamics of ZIKV
Transmission

The impact of risk heterogeneity on ZIKV dynamics within the overall two-
patch system is explored, an analysis that requires the numerical estimation of
the global reproduction number as a function of the mobility matrix P. Using the
previous scenarios (R01 = 1.52, 2) simulations are carried out first assuming equal
population sizes (N1 = N2). However, when looking at the impact of changes
in risk on Patch 2 (R02 = 0.8, 0.9, 1, 1.1), our simulations identify a growing
epidemic in Patch 2 as risk increases with the overall community experiencing
nonlinear changes in risk as residency times change from the baseline scenario
given by p12 = 0. Specifically, Fig. 15.13 captures overall reductions on the global
reproduction number for all residence times while identifying the existence of a
residence time interval for which mobility decreases the total size of the outbreak
in the two-patch community, when compared to the corresponding baseline case
(p12 = 0). In the absence of mobility from Patch 1 (p12 = 0), increases in the
epidemic final size as R0i increases are observed. These simulations show that
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Fig. 15.13 Local and global final sizes through mobility values when p21 = 0.10. Although
mobility reduces the global R0, allowing mobility in the case of El Salvador (R0 = 2) might
lead to a detrimental effect in the global final size

mobility can slow down the speed of the outbreak (smaller global R0). Of course,
the simulation results also re-affirm the obvious, that is, that the existence of a
high risk, mobile, and well-connected patch can serve as an outbreak magnifier; a
situation that has been explored within an n-patch system under various connective
schemes [7, 10]. This is because, in the two-patch case, it is observed that the global
reproduction number R0 experiences reductions for almost all mobility values. For
the scenarios selected R0 never drops below 1. Hence, under our assumptions and
scenarios, it is seen that the use of fixed mobility patterns makes the elimination
of ZIKV extremely difficult if not impossible under our two scenarios. Figure 15.13
provides an example that highlights the relationship between the global reproduction
number and corresponding epidemic final size.

15.5.2.2 *The Role of Population Size Heterogeneity in the Dynamics
of ZIKV Transmission

The role of population density in the total epidemic final size and global basic
reproduction number is explored under our two scenarios, now under the changed
assumption that the densities (population sizes) of Patch 1 and Patch 2 differ.
Specifically, we take N1 = 2N2, 3N2, 5N2, and 10N2.
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Fig. 15.14 Total final size and global basic reproduction number through mobility values when
p21 = 0.10. Local risk values are set up to R02 = 0.9 and R01 = 1.52, 2

It is observed that difference in population sizes do matter. Specifically, it is
observed that (under our selections) a big difference in density indicate that a higher
epidemic final size is reached. The value of 90% for the “worst case” is possible
with changes in the global reproduction number exhibiting different patterns (see
Fig. 15.14). We observe that despite increases in the total epidemic final size as
mobility changes the global R0 actually decreases monotonically for most residence
times, never falling below one. A sensible degree of magnification on the spread
of the disease as residence times change is observed whenever the differences
between N1 and N2 are not too extreme. In fact, it is possible for mobility to be
beneficial in the control of ZIKV under the above simplistic extreme scenarios.
Simulations continue to show that under the prescribed conditions and assumptions,
model generated ZIKV outbreaks remain unrealistically high. The simulations show,
for example, that the global reproduction number reaches its minimum at around
p12 = 0.90 with Fig. 15.14 showing that the larger the high risk population gets
(N1 >> N2), the greater the total epidemic final size becomes as individuals from
Patch 1 spend more than half of their day in Patch 2. Using a low p12 value, a
small benefit is observed, namely the total epidemic final size is reduced, when the
differences between R0i are high.

For the two epidemiological scenarios R01 = 2 and R01 = 1.52, Tables 15.3
and 15.4 provide a summary of the average proportion of infected for low
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Table 15.3 Final size (Patch 1, Patch 2) N1 = 10,000, R01 = 2, R02 = 0.9, and p21 = 0.10

N2 Low mobility Intermediate mobility High mobility Min R0

N1 = N2 (0.9594, 0.5333) (0.9583, 0.5633) (0.9539, 0.6122) 1.4954

N1 = 2N2 (0.9683, 0.5418) (0.9685, 0.5599) (0.9667, 0.6116) 1.6786

N1 = 3N2 (0.9709, 0.5390) (0.9713, 0.5478) (0.9701, 0.6018) 1.7640

N1 = 5N2 (0.9729, 0.5283) (0.9732, 0.5255) (0.9725, 0.5852) 1.8457

N1 = 10N2 (0.9741, 0.5030) (0.9743, 0.4908) (0.9739, 0.5624) 1,9173

Table 15.4 Final size (Patch 1, Patch 2) N1 = 10,000, R01 = 1.52, R02 = 0.9, and p21 = 0.10

N2 Low mobility Intermediate mobility High mobility Min R0

N1 = N2 (0.7920, 0.3756) (0.7950, 0.4010) (0.7849, 0.4304) 1.1853

N1 = 2N2 (0.8287, 0.3938) (0.8340, 0.4061) (0.8300, 0.4356) 1.3023

N1 = 3N2 (0.8398, 0.3948) (0.8448, 0.3956) (0.8422, 0.4248) 1.3590

N1 = 5N2 (0.8480, 0.3877) (0.8520, 0.3731) (0.8500, 0.4046) 1.4141

N1 = 10N2 (0.8533, 0.3652) (0.8556, 0.3352) (0.8542, 0.3756) 1.4630

Fig. 15.15 Global R0 dynamics through mobility when p21 = 0.10. Patch 2 populations vary
from N1 = N2, 2N2, 3N2, 5N2 up to N1 = 10N2. The global R0 hits its minimum always at an
unrealistic 91% of mobility. As N1 approaches N2, this minimum value decreases

(p12 = 0–0.2), intermediate (p12 = 0.2–0.4), and high mobility (p12 = 0.4–0.6)
when p21 = 0.10. The role of population scaling N1 = 2N2, 3N2, 5N2, and 10N2
is also explored. Figure 15.15 shows the global R0 over all mobility values for
different population weights in the two epidemic scenarios. The minimum R0 value
is reached for all cases when mobility is at an unrealistic 91% and when N1 ≈ N2.
The results collected in Fig. 15.15 show that short-term mobility plays an important
role in ZIKV dynamics, again, under a system involving two highly differentiated
patches. Simulations also suggest that, even though mobility can reduce the global
reproduction number, mobility by itself is not enough to eliminate an outbreak or
make a real difference under our two scenarios.
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15.5.3 What Did We Learn from These Single Outbreak
Simulations?

The study of the role of mobility at large spatial scales may be best captured
using question-specific related models that account for the possibility of long-term
mobility (see, for example, [2, 3, 18, 22, 27, 28, 30, 43]). Here, we made use
of two patches, as distinct as they can be would be able to shed some light on
the transmission dynamics of ZIKV, whenever extreme health disparities within
neighboring communities or within urban centers were the norm. Although the
goal is not to fit specific outbreaks, we decided to make use of recently published
parameter ranges, including some reported by us [45]. The impact of ZIKV can be
assessed locally (each patch) or globally, that is, over the two-patch system. Here,
system risk assessment was carried out by computing R0, via the numerical solution
of a system of nonlinear equations. Changes in the system R0 were computed (as
residence times were varied) in relationship to the local R0i , that is, local basic
reproduction numbers (in the absence of mobility). Further, the mobility-dependent
system epidemic final sizes were computed via simulations that assessed the impact
of mobility (and risk) locally and on the overall system. The metrics used in
our assessment included the overall epidemic final size (a measure of the overall
impact of an outbreak), a function of mobility within the two selected scenarios
(R01 = 1.52 and R01 = 2).

The challenges posed by policies that may be beneficial to the system but
detrimental to each patch were explored within our two-patch system. Situations
where the total final epidemic size increased with increments in R02, and situations
where the total final epidemic size decreased under low mobility values for R(02)

were documented. Population density does make a difference and examples when
R02 < 1 with mobility incapable of reducing the total epidemic final size under no
differences in patch density (here measured by total population size in each patch,
both assumed to have roughly the same area) were also identified. Differences in
population density were also shown to be capable of generating reductions on the
total final epidemic size within some mobility regimes.

The highly simplified two-patch model used seemed to have shed some light
on the role of mobility on the spread of ZIKV in areas where huge differences
in the availability of public health programs and services—the result of endemic
crime, generalized violence, and neglect—exist. Model simulations seemed to have
shed some light on the potential relevance of factors that we failed to account for.
The value of the use of single patch-specific risk parameters (β̂) has strengths and
limitations. The model used did not account explicitly for changes in the levels
of infection within the vector population nor did it account for the impact of
substantial differences in patch vector population sizes. The simplified model failed
to account for the responses to outbreaks by patch residents as individuals may alter
mobility patterns, use more protective clothing while responding individually and
independently to official control programs in the face of dramatic increases on the
vector population or due to a surge in the number of cases. The use of two patches
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and severe assumptions limits the outcomes that such an oversimplified system can
support. Communities can’t in generally be modeled under a highly differentiated
two-tier system and in the case of ZIKV, the possibility of vertical transmission
in humans and vectors as well as sexually transmitted ZIKV cannot be completely
neglected [8, 39]. The introduction of changes in behavior in response to individuals’
assessment of the levels of risk infection over time needs to be addressed [10];
a challenge that has yet to be met to the satisfaction of the scientific community
involved in the study of epidemiological processes as complex adaptive systems
(see, for example, [26, 36, 42]).

The limitations of the role of technology in the absence of the public health
infrastructure—there is no silver bullet—have been addressed in the context of
Ebola [16, 49]. It would be interesting to see the impact of technology in settings
where health disparities are pervasive, using a two-patch Lagrangian epidemic
model in the context of communicable and vector-borne diseases, including dengue,
tuberculosis , and Ebola [5, 23, 34, 35]. Further, its often the case that the use of
simplified models quite often overestimates the impact of an outbreak (see [37, 38])
and so find the right level of model heterogeneity (number of patches) becomes a
pressing and challenging question. What is the right level of aggregation to address
these questions?

Certainly, we have seen the use of dramatic measures to limit the spread of
diseases like SARS, influenza , or Ebola [16, 17, 27], as well as the rise of vector-
borne diseases like dengue and Zika, and the dramatic implications that some
measures have had on local and global economies. The question remains, what
can we do to mitigate or limit the spread of disease, particularly emergent diseases
without disrupting central components? Discussions on these issues are recurrent
[26, 36], most intensely in the context of SARS, influenza, Ebola , and Zika, in the
last decade or so. The vulnerability of world societies is directly linked to the lack
of action in addressing the challenges faced by the weakest links in the system. This
must be accepted and acted on by the world community. We need global investments
in communities and nations where health disparities and lack of resources are the
norm. We must invest in research and surveillance within clearly identified world
hot spots, where the emergence of new diseases is most likely to occur. We must do
so with involvement at all levels of the affected communities [12, 44].
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