
Chapter 25

Sharing Programming Resources Between Bio* Projects

Raoul J. P. Bonnal, Andrew Yates, Naohisa Goto, Laurent Gautier,
Scooter Willis, Christopher Fields, Toshiaki Katayama, and Pjotr Prins

Abstract

Open-source software encourages computer programmers to reuse software components written by others.
In evolutionary bioinformatics, open-source software comes in a broad range of programming languages,
including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times
for different languages, it is possible to share components by bridging computer languages and Bio*
projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor.
In this chapter, we compare the three principal approaches for sharing software between different

programming languages: by remote procedure call (RPC), by sharing a local “call stack,” and by calling
program to programs. RPC provides a language-independent protocol over a network interface; examples
are SOAP and Rserve. The local call stack provides a between-language mapping, not over the network
interface but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java
virtual machine stack. This functionality provides strategies for sharing of software between Bio* projects,
which can be exploited more often.
Here, we present cross-language examples for sequence translation and measure throughput of the

different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with
the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations and with call stack
bindings to BioJava and the European Molecular Biology Open Software Suite (EMBOSS).
In general, call stack approaches outperform native Bio* implementations, and these, in turn, outper-

form “RPC”-based approaches. To test and compare strategies, we provide a downloadable Docker
container with all examples, tools, and libraries included.

Key words Bioinformatics, R, Python, Ruby, Perl, Java, Web services, RPC, EMBOSS, PAML

1 Introduction

Bioinformatics has created its tower of Babel. The full set of func-
tionality for bioinformatics, including statistical and computational
methods for evolutionary biology, is implemented in a wide range
of computer languages, e.g., Java, C/C++, Perl, Python, Ruby, and
R. This comes as no surprise, as computer language design is the

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_25, © The Author(s) 2019

Download: https://github.com/EvolutionaryGenomics/Cross-language-interfacing

747

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9074-0_25&domain=pdf
https://doi.org/10.1007/978-1-4939-9074-0_25
https://github.com/EvolutionaryGenomics/Cross-language-interfacing

result of multiple trade-offs, for example, in strictness, convenience,
and performance. In this chapter we discuss strategies for combin-
ing solutions from different languages and look at performance
implications of combining cross-language functionality. In the pro-
cess we also highlight implications of such strategic choices.

Computer languages used in bioinformatics today typically fall
into two groups: those compiled and those interpreted. Java, C++,
and D, for example, are statically typed compiled languages,
while R, Perl, Ruby, and Python are dynamically typed interpreted
languages. In principle, a compiled language is converted into
machine code once by a language compiler, and an interpreted
language is compiled every time at runtime, the moment it is run
by an interpreter. Static typing allows a compiler to optimize
machine code for speed. Dynamic typing requires an interpreter
and resolves variable and function types at runtime. Such design
decisions cause Java, C++, and D to have stronger compile-time
type checking and faster execution speed than R, Perl, Ruby, and
Python. When comparing runtime performance of these languages,
compiled statically typed languages, such as C++, D, and Java,
generally outperform interpreted dynamically typed languages,
such as Python, Perl, and R. For speed comparison between lan-
guages, see, for example, the benchmarks game.

Statically typed compiled languages tend to produce faster code at
runtime

Runtime performance, however, is not the only criterion for
selecting a computer language. R, Perl, Ruby, and Python offer
sophisticated interactive analysis of data in an interpreted shell
which is not directly possible with C++, D, or Java. Another impor-
tant criterium may be conciseness. Interpreted languages generally
allow functionality to be written in less lines of code. The number
of lines matter, as it is often easier to grasp something expressed in a
short and concise fashion, if done competently, leading to easier
coding and maintenance of software and resulting in increased
programmer productivity. In general, with R, Perl, Ruby, and
Python, it takes less lines of code to write software than with C+
+, D, or Java; this is also visible from the examples in the bench-
marks game.

Interpreted languages allow for concise code that is easier to read
and results in increased programmer productivity

Based on the conciseness criterium, computer languages fall
into these two groups. This suggests a trade-off between execution
speed and conciseness/programmer productivity. Even so, strong
typing may help later when refactoring code, perhaps regaining
some of that lost productivity. The authors also note that in their
experience, the more programming languages one masters, the

748 Raoul J. P. Bonnal et al.

easier it becomes mastering new languages (with the exception,
perhaps, of Haskell). Learning new programming languages is
important when writing software.

Logically, to fully utilize the potential of existing and future
bioinformatics functionality, it is necessary to bridge between com-
puter languages. Bioinformaticians cannot be expected to master
every language, and it is inefficient to write the same functionality
for every language. For example, R/Bioconductor contains unique
and exhaustive functionalities for statistical methods, such as for
gene expression analysis [1]. The singular implementation of this
functionality in R has caused researchers to invest in learning the R
language. Others, meanwhile, have worked on building bridges
between languages. For example, RPy and Rserve allow accessing
R functionality from Python [2], and JRI and Rserve allow acces-
sing R functionality from Java [3, 4]. Other languages have similar
bindings, such as RSRuby that allows accessing R from Ruby.

Discussing other important criteria for selecting a program-
ming language, such as ease of understanding, productivity, porta-
bility, and the size and dynamics of the supporting Bio* project
developer communities, is beyond the scope of this chapter. The
authors, who have different individual preferences, wish to empha-
size that every language has characteristics driven by language
design and there is no single perfect all-purpose computer lan-
guage. In practice, the choice of a computer language depends
mainly on the individuals involved in a project, partly due to the
investment it takes to master a language. Researchers and program-
mers have prior investments and personal preferences, which have
resulted in a wide range of computer languages used in the bioin-
formatics community.

Contrasting with singular implementations, every mainstream
Bio* project, such as BioPerl [5], Biopython [6], BioRuby [7],
R/Bioconductor [1], BioJava [8], the EuropeanMolecular Biology
Open Software Suite (EMBOSS) [9], and Bio++ [10], contains
duplication of functionality. Every Bio* project consists of a
group of volunteers collaborating at providing functionality for
bioinformatics, genomics, and life science research under an
open-source software (OSS) license. The BioPerl project does
that for Perl, BioJava for Java, etc. Next to the language used, the
total coverage of functionality, and perhaps quality of implementa-
tion, differs between projects. Not only is there duplication of
effort, both in writing and testing code, but also there are differ-
ences in implementation, completeness, correctness, and perfor-
mance. For example, implementations between projects differ
even for something as straightforward as codon translation, e.g.,
in number of types of encoding and support for the translating of
ambiguous nucleotides. EMBOSS, uniquely, attempts to predict
the final amino acid in a sequence, even when there are only two
nucleotides available for the last codon.

Sharing Programming Resources Between Bio* Projects 749

Whereas Chapter 25 discusses Internet data resources and how
to share them, in this chapter, we discuss how to share functional
resources by interfacing and bridging functionality between differ-
ent computer languages. This is highly relevant to evolutionary
biology as most classic phylogenetic resources were written in C,
while nowadays phylogenetic routines are written in Java, Perl,
Python, Ruby, and R. Especially for communities with relatively
few software developers, we argue here that it is important to
bridge these functional resources from multiple languages. For
bridging, strategies are here discussed to invoke one program
from another, use some form of remote procedure calls (RPC), or
use a local call stack.

1.1 Bridging

Functional Resources

Calling from Program

to Program

The most simple way of interfacing software is by invoking one
program from another. This strategy is often used in Bio* projects,
for example, for invoking external programs. A regular subset
would be PAML [11], HMMER [12], ClustalW [13], MAFFT
[14], Muscle [15], BLAST [16], and MrBayes [17]. The Bio*
projects typically contain modules which invoke the external pro-
gram and parse the results. The advantage of this approach is that it
mimics running a program on the command line, so invocation is
straightforward. Another advantage, in a web service context, is
that if the called program crashes, it does not have to take the whole
service down. There are also some downsides, however. Loading a
new instance of a program every time incurs extra overhead. More
importantly, nonstandard input and output makes the interface
fragile, i.e., what happens when input or output differs between
two versions of a program? A further downside is that external
programs do not have fine-grained function access and have no
support for advanced error handling and exceptions. What hap-
pens, for example, when the invoked program runs out of process
memory? How to handle that gracefully? A final complication is
that such a program is an external software deployment depen-
dency, which may be hard to resolve for an end user.

1.2 Remote

Procedure Call

In contrast to calling one program from another, true cross-
language interfacing allows one language to access functions
and/or objects in another language, as if they are native function
calls. To achieve transparent function calls between different com-
puter languages, there are two principal approaches. The first
approach is for one language to call directly into another language’s
function or method over a network interface, the so-called remote
procedure call (RPC). The second approach is to call into another
language over a local “call stack.”

In bioinformatics, cross-language RPC comes in the form of
web services and binary network protocols. A web service applica-
tion programming interface (API) is exposed, and a function call
gets translated with its parameters into a language-independent

750 Raoul J. P. Bonnal et al.

format, a procedure called “marshalling.” After calling the function
on a server, the result is returned in, for example, XML and trans-
lated back through “unmarshalling.” Examples of cross-language
XML protocols are SOAP [18] and XML/RPC [19].

More techniques exist for web service-type cross-language
RPC. For example, representational state transfer (REST), or
ReSTful [20], is a straightforward HTTP protocol, often preferred
over SOAP because of its simplicity. Another XML-based protocol
is Resource Description Framework (RDF), as part of the semantic
web specification. Both REST and RDF can be used for RPC
solutions.

In addition, binary alternatives exist because XML-based pro-
tocols are not very efficient. XML is verbose, increasing the data
load, and requires parsing at both marshalling and unmarshalling
steps. In contrast, binary protocols are designed to reduce the data
transfer load and increase speed. Examples of binary protocols are
Rserve [3], which is specifically designed for R, and Google proto-
col buffers [21]. Another software framework based on a binary
protocol is Thrift, by the Apache software foundation, designed for
scalable cross-language service development [22]. Finally, also
worth considering are very fast interoperable messaging-based
paradigms, such as ZeroMQ [23], and high-level message-level
optimizers, such as GraphQL.

1.3 Local Call Stack The alternative to RPC is to create native local bindings from one
language to another using a shared native call stack, essentially
linking into code of a different computer language. With the call
stack, function calls do not run over the network but over a stack
implementation in shared computer memory. In a single virtual
machine, such as the JVM and Erlang Beam, compiled code can
share the same call stack, which can make cross-language calling
efficient. For example, the languages Java, Jython, JRuby, Clojure,
Groovy, and Scala can transparently call into each other when
running on the same virtual machine using native speeds.

Native call stack sharing is also supported at the lowest level by
the computer operating system through compiled shared libraries.
These shared libraries have an extension .so on Linux, .dylib on
OSX, and .dll on Windows. The shared libraries are designed so
that they contain code and data that provide services to indepen-
dent programs, which allows the sharing and changing of code and
data in a modular fashion. Shared library interfaces are well defined
at the operating system level, and languages have a way of binding
them. Specialized interface bindings to shared libraries exist for
every language, for example, R’s C modules, the Java Native Inter-
face (JNI) for the JVM, Foreign Function Interfaces (FFI) for
Python and Ruby, the Parrot native compiler interface PerlXS
for Perl.

Sharing Programming Resources Between Bio* Projects 751

With (dynamic) shared libraries, certain algorithms can be
written in a low-level, high-performance compiled computer lan-
guage, such as C/C++, D, or FORTRAN. And high-level lan-
guages, such as Perl, Python, Ruby, R, and even Java, can access
these algorithms. This way, languages can be mixed to optimize
solutions. Creating these shared library interfaces, however, can be
a tedious exercise, which often calls for code generators. One such
generator is the Simplified Wrapper and Interface Generator
(SWIG) [24], which consists of a macro-language, a C header file
parser, and the tools to bind low-level shared libraries to a wide
range of languages. For C/C++, SWIG can parse the header files
and generate the bindings for other languages, which, in turn, call
into these shared libraries. The Boost project has similar facilities
for mapping calls to SWIG. C FFI’s that come with programming
languages, such as Python’s CFFI and Ruby’s FFI, tend to be the
easiest to work with.

Even though this extensive functionality for interfacing is avail-
able, the full potential of creating cross-language adapters is not fully
exploited in bioinformatics. Rather than bridge two languages,
researchers often opt to duplicate functionality. This is possibly
due to a lack of information on the effort involved and the added
complexity of creating a language bridge. Also, the impact on
performance may be an unknown quantity. A further complication
is the need to understand, to some degree, both sides of the equa-
tion, i.e., to provide an R function to Python requires some under-
standing of both R and Python, at least to the level of reading the
documentation of the shared module and creating a working bind-
ing. Likewise, binding Python to C using a call stack approach
requires some understanding of both Python and C. Sometimes,
binding of complex functions can be daunting, and deploymentmay
be a concern, e.g., when creating shared library bindings on Linux,
they may not easily work on Windows or macOS.

1.4 Comparing

Approaches

Here, we compare bridging code from one language to another
using the RPC approach and the call stack approach. As a compari-
son we also provide a program-to-program approach and show how
dependencies can be fixated. The comparison is done in the form of
short experiments (scripts) which can be executed by the reader. To
measure performance between different approaches, we use codon
translation as an example of shared functionality between Bio*
projects. Codon translation is a straightforward algorithm with
table lookups. Such sequence translation is representative of many
bioinformatics tasks that deal with genome-sized data and require
many function calls with small-sized parameters.

In this chapter we first focus on comparing R and Python
bindings. We include native Bio* implementations, i.e., Biopython,
BioRuby, BioPerl, BioJava, and EMBOSS (C) for an absolute speed
comparison. Next we try bindings on the JVM.

752 Raoul J. P. Bonnal et al.

Examples and tests can in principle be experimented with a
computer running Linux, macOS, or Windows. To ease trials, we
have defined GNU Guix packages that contain the tools and their
dependencies. From this we have created a downloadable Docker
image that supports all interfaces and performance examples (GNU
Guix and Docker are discussed in Chapter 25).

2 Results

2.1 Calling into R R is a free and open-source environment for statistical computing
and graphics [25]. R comes with a wide range of functionality,
including modules for bioinformatics, such as bundled in R/Bio-
conductor [1]. R is treated as a special citizen in this chapter
because the language is widely used and comes with statistical
algorithms for evolutionary biology, such as Ape [26] and SeqinR
[27], both available through the comprehensive R archive network
(CRAN).

R defines a clear interface between the high-level language R
and low-level highly optimized C and FORTRAN libraries, some of
which have been around for a long time, such as the libraries for
linear regression and linear algebra. In addition, the R environment
successfully handles cross-platform packaging of C, C++, FOR-
TRAN, and R code. The combination of features has resulted in
R becoming the open-source language of choice in a number of
communities, including statistics and some disciplines in biology.
R/Bioconductor has gene expression analysis [1] and R/qtl [28]
and R/qtlbim [29] for QTL mapping (see also QTL mapping in
Chapter 21). Not all is lost, however, for those not comfortable
with the R language itself. R can act as an intermediate between
functionality and high-level languages. A number of libraries have
been created that interface to R from other languages, either
providing a form of RPC, through RSOAP or Rserve, or a call
stack interface calling into the R-shared library and executing R
commands, for example, RPy for Python, RSPerl for Perl, RSRuby
for Ruby, and JRI for Java. Of the last call stack approaches, RPy
currently has the most complete implementation; see also [2].

In this chapter, we compare different approaches for invoking
full R functionality from another language. To test cross-language
calling, we elected to demonstrate codon translation. Codon-to-
protein amino acid translation is representative for a relatively sim-
ple computation that potentially happens thousands of times with
genome-sized data. Every Bio* project includes such a translation
function, so it is a fair way to test for language interoperability and
performance. For data, we use a WormBase [30] C. elegans cDNA
FASTA file (33 Mb), containing 24,652 nucleotide sequences,
predicted to translate to protein (Fig. 1).

Sharing Programming Resources Between Bio* Projects 753

https://doi.org/10.1007/978-1-4939-9074-0_21

2.1.1 Using GeneR with

Plain R

“The R/Bioconductor GeneR package [31] supports fast codon
translation with the strTranslate function implemented in C.”
GeneR supports the eukaryotic code and other major encoding
standards. R usage is:

library(GeneR)

strTranslate("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt")

[1] "MSMVRNVSNQSEKLEIL"

The \name{R+GeneR} script (also available here) reads:

fasta = ’dna.fa’

library(GeneR)

idx = indexFasta(fasta)

Fig. 1 Throughput of mRNA to protein translation using combinations of cross-language calling with a range of
programming resources. WormBase C. elegans predicted protein coding DNA that was parsed in FASTA format
and translated into amino acids. Tests were executed inside a container. Different file sizes were used
containing 500, 1000, 5000, 15,000, and 25,000 sequences (X-axis) and the number of sequences processed
per seconds (Y-axis log10 scale). Measurements were taken on an AMD Opteron(TM) 6128 8 cores at 2.0 GHz,
4 sockets � 8 cores, with 512 GB RAM DDR3 ECC, and an HDD SATA of 2 TB. Broadly the figure shows that
sustained throughput is reached quickly and flattens out. R-Biostrings performs poorly at 285 Seq/s, while
R-GeneR and Rserve (Python+Rserve+GeneR) perform at the level of native Bio* libraries, respectively,
658 Seq/s and 660 Seq/s. The cross-language Ruby-FFI at 6256 Seq/s calls EMBOSS C translation and
outperforms all others

754 Raoul J. P. Bonnal et al.

lines <-readLines(paste(fasta,’.ix’,sep=’’))

index <-read.table(paste(fasta,’.ix’,sep=’’))[,1]

n = 0

for (i in 1:times) {

for (name in index) {

readFasta (file=fasta, name = name)

ntseq = getSeq(0)

aaseq = strTranslate(ntseq)

cat(">",name," (",n,")\n",aaseq,"\n",sep="")

n = n+1

}

}

and parses the nucleotide FASTA input and outputs amino acid
FASTA. Run the script:

docker run --rm -v ‘pwd‘/tmp:/tmp -v ‘pwd‘/scripts:/scripts -e \

BATCH_VARS=/tmp/test-dna-${i}.fa -t bionode bash -c "source

/etc/profile

cd /book-evolutionary-genomics

./scripts/create_test_files.rb

R -q --no-save --no-restore --no-readline --slave < src/R/

DNAtranslate_GeneR.R" > /dev/null

Used directly from R, the throughput of the GeneR module is
about 658 sequences per second (Seq/s) on the test system, an
AMD Opteron(TM) 6128 CPU at 2.00 GHz (see also Fig. 1).
When checking the implementation by reading the source code,
in the first edition, we found that the GeneR FASTA parser was a
huge bottleneck. The FASTA parser implementation created an
index on disk and reloaded the full index file from disk for each
individual sequence, thereby incurring a large overhead for every
single sequence.

To see if we could improve throughput, we replaced the slow
FASTA parser with \name{R+Biostrings} which reads FASTA once
into RAM using the R/Bioconductor BioStrings module and still
uses GeneR to translate. At the time, this implementation was 1.6
times faster than GeneR. At this time GeneR is 3.2 on average faster
than reading with Biostrings which had a throughput of
284.83 Seqs/s proving some work was done by the authors to
improve GeneR. The second script can be found here.

2.1.2 Calling into R from

Other Languages with RPC

One strategy for bridging between languages is to use R as a
network server and invoke remote procedure calls (RPC) over the
network.

1. SOAP
SOAP allows processes to communicate using XML over
HTTP in a client/server setup. SOAP is an operating system

Sharing Programming Resources Between Bio* Projects 755

and computer language “agnostic,” so it can be used to bridge
between languages. In the previous edition of this chapter {Ref
to Previous Edition, same chapter}, we wrote a R/SOAP [32]
adapter for codon translation and invoked it from Python
(a Python to R bridge). That client script can be found here.
The SOAP bridge was dropped from this chapter because the
SOAP packages are not maintained and it was by far the slowest
method of cross-language interfacing we tried! The marshal-
ling and unmarshalling of simple string objects using XML over
a local network interface takes a lot of computational resources.
We do not recommend using SOAP.

2. Rserve
Rserve [3] is a custom binary network protocol, more efficient
than XML-based protocols [3]. R data types are converted into
Rserve binary data types. Rserve was originally written for Java,
but nowadays connectors exist for other languages. With
Rserve, Python and R do not have to run on the same server.
Furthermore, all data structures will automatically be con-
verted from native R to native Python and numpy types
and back.

With RServe fired up a Python example is:

import pyRserve

conn = pyRserve.connect()

conn.eval(’library(GeneR)’)

conn.eval(’strTranslate("atgtcaatggtaagaaatgtatcaaatcagagc-

gaaaaattggaaattttgt")’)

’MSMVRNVSNQSEKLEIL’

where Rserve+GeneR uses the GeneR translate function. In
our test Biopython [6] is used for parsing FASTA, and at
797 Seq/s, even with this network bridge, Python+Rserve’s
speed is on par with that of R. The script can be found here.

2.1.3 Calling into R from

Other Languages with the

Call Stack Approach

Another strategy for bridging language is to use a native call stack,
i.e., data does not get transferred over the network. RPy2 executes
R code from within Python over a local call stack [2]. Invoking the
same GeneR functions from Python:

import rpy2.robjects as robjects

from rpy2.robjects.packages import importr

importr(’GeneR’)

strTranslate=robjects.r[’strTranslate’]

strTranslate("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt")[0]

’MSMVRNVSNQSEKLEIL’

756 Raoul J. P. Bonnal et al.

This example uses Biopython for parsing FASTA and invokes
GeneR translation over a call stack handled by RPy2. At 2049 Seq/
s, throughput is the highest of our calling into R examples. The
Python implementation outperforms the other FASTA parsers, and
GeneR is fast too when only the translation function is called
(GeneR’s strTranslate is actually written in C, not in R). Still,
there are some overheads for bridging and transforming string
objects from Python into R and back. The RPy2 call stack approach
is efficient for passing data back and forth. The script can be found
here.

2.2 Native Bio*

Implementations

When dealing with cross-language transport comparisons, it is
interesting to compare results with native language implementa-
tions. For example, Biopython [6] would be:

from Bio.Seq import Seq

from Bio.Alphabet import generic_dna

coding_dna = Seq("atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattg-

gaaattttgt", generic_dna)

coding_dna.translate()

Seq(’MSMVRNVSNQSEKLEIL’, ExtendedIUPACProtein())

which runs at 797 Seq/s which is slower than the Python3+RPy2
+GeneR version. This is because the translate function is written in
Python and not in C. It is, however, still faster than R+GeneR.
Ruby+BioRuby runs faster at 1481 Seq/s. Perl+BioPerl is in the
middle with 1165 Seq/s. We can assume the Biopython, BioPerl,
and BioRuby implementations are reasonably optimized for perfor-
mance. Therefore, throughput reflects the performance of these
interpreted languages (see Fig. 1).

Java is a statically typed compiled language. Java+BioJava [8]
outperforms the interpreters and runs at 2266 Seq/s.

The source code for all examples can be found here in the
{Biopython}, {BioRuby}, {BioPerl}, and {BioJava} subdirectories.

2.3 Using the JVM

for Cross-Language

Support

The Java virtual machine (JVM) is a “bytecode” standard that
represents a form of computer intermediate language. This lan-
guage conceptually represents the instruction set of a stack-
oriented capability architecture. This intermediate language, or
“bytecode,” is not tied to Java specifically, and in the last 10 years,
a number of languages have appeared which target the JVM,
including JRuby (Ruby on the JVM), Jython (Python on the
JVM), Groovy [33], Clojure [34], and Scala [35]. These languages
also compile into bytecode and share the same JVM stack. The
shared JVM stack allows transparent function calling between dif-
ferent languages.

Sharing Programming Resources Between Bio* Projects 757

An example of calling BioJava translation from a Scala program:

import org.biojava.nbio.core.sequence.transcription.Tran-

scriptionEngine

import org.biojava.nbio.core.sequence._

val transcriber = TranscriptionEngine.getDefault()

val dna = new DNASequence("atgtcaatggtaagaaatgtatcaaatcagagc-

gaaaaattggaaattttgt")

val rna = dna.getRNASequence(transcriber)

rna.getProteinSequence(transcriber)

’MSMVRNVSNQSEKLEIL’

which uses the BioJava libraries.
A native Java function, such as getProteinSequence, is directly

invoked from the other language without overheads (the passed-in
transcriber object is passed by reference, just like in Java). In fact,
Scala compiles to bytecode, which maps one to one to Java, includ-
ing the class definitions. The produced bytecode is a native Java
bytecode; therefore, the performance of calling BioJava from Scala
or Java is exactly the same. This also holds for other languages on
the JVM, such as Clojure and Groovy.

We have also included a JRuby example that calls into BioJava4
on the JVM and runs at 1413 Seq/s. JRuby is an interpreter on the
JVM that still needs some translation calling into JVM functions. It
is therefore slower than native calls.

2.4 Shared C Library

Cross-Calling Using

EMBOSS Codon

Translation

EMBOSS is a free and OSS analysis package specially developed for
the needs of the molecular biology user community, mostly written
in C [9].

2.4.1 FFI Using Foreign Function Interface (FFI), it is possible to load
dynamic libraries at runtime, define classes to map composite data
types, and bind functions for a later use inside your host program-
ming language. We used FFI to bind the EMBOSS translation
function to Python and Ruby. The Python example:

from ctypes import *

import os

emboss = cdll.LoadLibrary(os.path.join(os.path.dirname(os.

path.abspath(__file__)),"emboss.so"))

trnTable = emboss.ajTrnNewI(1)

ajpseq = emboss.ajSeqNewNameC(b"atgtcaatggtaagaaatgtatcaaat-

cagagcgaaaaattggaaattttgt", b"Test sequence")

ajpseqt = emboss.ajTrnSeqOrig(trnTable,ajpseq,1)

seq = emboss.ajSeqGetSeqCopyC(ajpseqt)

seq = str(c_char_p(seq).value,’utf-8’)

758 Raoul J. P. Bonnal et al.

print(seq)

MSMVRNVSNQSEKLEILX

The Ruby example:

require ’ffi’

module Emboss

extend FFI::Library

ffi_lib "./emboss.so"

attach_function :ajTrnNewI, [:int], :pointer

attach_function :ajSeqNewNameC, [:pointer, :pointer], :

pointer

attach_function :ajTrnSeqOrig, [:pointer, :pointer, :int], :

pointer

attach_function :ajSeqGetSeqCopyC, [:pointer], :string

end

trnTable = Emboss.ajTrnNewI(1)

ajpseq = Emboss.ajSeqNewNameC("atgtcaatggtaagaaatgtatcaaatca-

gagcgaaaaattggaaattttgt", "Test sequence")

ajpseqt = Emboss.ajTrnSeqOrig(trnTable,ajpseq,1)

aa = Emboss.ajSeqGetSeqCopyC(ajpseqt)

print aa,"\n"

MSMVRNVSNQSEKLEILX

In both cases the advantage of FFI is that it does not require to
compile any source code, just loading the shared library and bind-
ing what is needed. Python has a native library called ctypes, and
more sophisticated libraries are available to help the programmer
bind complex data structures and functions. Ruby has a dedicated
gem called [ruby-ffi].

The Ruby and Python FFI outperforms all above methods at
6257 Seq/s and 4787 Seq/s, respectively (see Fig. 1). Plotting the
time in seconds spent to translate the sequences, Ruby and Python
FFI are the lowest (quickest) in the whole comparison (see Fig. 2).
The high speed points out that (1) the invoked Biopython and
BioRuby functions are reasonably efficient at parsing FASTA,
(2) the FFI-generated call stack is efficient for moving data over
the local call stack, and (3) the EMBOSS transeq DNA to protein
translation is optimal C code.

2.5 Calling Program

to Program

Calling program to program is far more common than you may
think because even when you run a program in a shell, such as Bash,
you are calling program to program. You can invoke EMBOSS
from the command line:

Sharing Programming Resources Between Bio* Projects 759

transeq test-dna.fa test.pep

transeq is written in C and runs at a very fast 23,478 Seq/s.
Invoking above EMBOSS’ transeq in Python looks like this:

os.system("transeq "+fn+" out.pep")

for seq_record in SeqIO.parse("out.pep", "fasta"):

print(">",seq_record.id)

seq = str(seq_record.seq)

print(seq)

and this combination runs at 4768 Seq/s. That is close to Python
FFI and a third of the speed of transeq on its own because of Python
parsing the output. Every parsing step has a cost attached.

2.6 Web Services A discussion on bridging languages would not be complete if we
did not include web services, particularly using RESTAPI’s. Service
like TogoWS and EBI web services which include EMBOSS transeq

Fig. 2 Number of seconds needed for processing mRNA to protein translation using cross-language calling
with a range of programming resources. See Fig. 1 for the setup. The figure shows that for all the
implementations, the time increases linearly with the number of sequences in input. R-Biostrings performs
poorly with an upstart of 6.50 s and the highest slope. The cross-language Ruby-FFI, Python FFI, and Python-
EMBOSS with an upstart slightly higher than Java have a very minimal slope; Ruby-FFI has a nearly
constant time

760 Raoul J. P. Bonnal et al.

(SOAP) offer functionality over http(s) and can be used from any
programming language. Here a Ruby example of using TogoWS:

Invoke irb by loading BioRuby

% irb -r bio

Create a TogoWS object

>> togows = Bio::TogoWS::REST.new

=> #<Bio::TogoWS::REST:0x007f840faab9d8 @pathbase="/",

@http=#<Net::HTTP togows.dbcls.jp:80 open=false>,

@header={"User-Agent"=>"BioRuby/1.5.1"}, @debug=false>

Search for UniProt entries by keywords

>> togows.search(’uniprot’, ’lung cancer’)

=> "KKLC1_MACFA\nKKLC1_HUMAN\nDLEC1_HUMAN\n

Retrieve one UniProt entry (or multiple entries if you like)

>> entry = togows.entry(’uniprot’, ’KKLC1_MACFA’)

See the entry content

>> puts entry

ID KKLC1_MACFA Reviewed; 114 AA.

AC Q4R717;

:

Convert the retrieved UniProt entry into FASTA format

>> puts togows.convert(entry, ’uniprot’, ’fasta’)

>KKLC1_MACFA RecName: Full=Kita-kyushu lung cancer antigen

1 homolog;

MNVYLLLASGILCALMTVFWKYRRFQRNTGEMSSNSTALALVRPSSTGLINSNTDNNLSV

YDLSRDILNNFPHSIAMQKRILVNLTTVENKLVELEHILVSKGFRSASAHRKST

Web services can harness a lot of power because they use large
databases and access up-to-date information. As an example, let’s
generate RDF from above entry:

Retrieve PubMed entry and convert it into RDF/Turtle

(or JSON or XML if you like)

>> puts togows.entry(’pubmed’, ’16381885’, ’ttl’)

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix prism: <http://prismstandard.org/namespaces/2.0/ba-

sic/> .

@prefix medline: <http://purl.jp/bio/10/pubmed/> .

<http://rdf.ncbi.nlm.nih.gov/pubmed/16381885> medline:pmid

"16381885" ;

Sharing Programming Resources Between Bio* Projects 761

rdfs:label "pmid:16381885" ;

dc:identifier "16381885" ;

medline:own "NLM" ;

Unfortunately, data centric web services can be slow, i.e., send-
ing and retrieving data over the internet incurs large latency and
throughput penalties. Sometimes they use powerful back ends, and
it is possible to submit large batch jobs which compete with locally
installed solutions. Examples are the BLAST service [16] and
GeneNetwork [36].

3 Discussion

The half-life of bioinformatics software is 2 years—Pjotr Prins

In this chapter we show that there are many ways of bridging
between computer languages. Cross-language interfacing is a
topic of importance to evolutionary genomics (and beyond)
because computational biologists need to provide tools that are
capable of complex analysis and cope with the amount of biological
data generated by the latest technologies. Cross-language interfac-
ing allows sharing of code. This means computer software can be
written in the computer language of choice for a particular purpose.
Flexibility in choice of computer programming language allows
optimizing of computational resources and, perhaps even more
important, software developer resources, in bioinformatics.

When some functionality is needed that exists in a different
computer language than the one used for a project, a developer has
the following options: either rewrite the code in the preferred
language, essentially a duplication of effort, or bridge from one
language to the other. For bridging, there are essentially two tech-
nical methods that allow full programmatic access to functionality:
through RPC or a local call stack. A third option may be available
when functionality can be reached through the command line, as
shown above with transeq.

RPC function invocation, over a network interface, has the
advantage of being language agnostic and even machine indepen-
dent. A function can run on a different machine or even over the
Internet, which is the basis of web services and may be attractive
even for running services locally. RPC XML-based technologies,
however, are slow because of expensive parsing and high data load.
Our metrics suggest that it may be worth experimenting with
binary protocols, such as Rserve and Apache Thrift.

When performance is critical, e.g., when much data needs to be
processed, or functions are invoked millions of times, a native call
stack approachmay be preferred over RPC.Metrics suggest that the
EMBOSS C implementation performs well and that binding to the

762 Raoul J. P. Bonnal et al.

native C libraries with FFI is efficient (see Fig. 2). Alternatively, it is
possible to use R as an intermediate to C libraries. Interestingly,
calling R libraries, many of which are written in C, may give higher
performance than calling into native Bio* implementations. For
example, Python+RPy2+GeneR is faster that Biopython pure
Python implementation of sequence translation, and it is also faster
than R calling into GeneR directly—confirming a common com-
plaint that R can be slow.

Even though RPC may perform less well than local stack-based
approaches, RPC has some real advantages. For example, if you
have a choice of calling a local BLAST library or call into a remote
and ready NCBI RPC interface, the latter lacks the deployment
complexity. Also the public resource may be more up to date than a
copied server running locally. This holds for many curated services
that involve large databases, such as PDB [37], Pfam [38], KEGG
[39], and UniProt [40]. Chapter 25 gives a deeper treatment of
these Internet resources.

From the examples given in this chapter, it may be clear that
actual invocation of functions through the different technologies is
similar, i.e., all listed Python scripts look similar, provided the
underlying dependencies on tools and libraries have been resolved.
The main difference between implementations is with deployment
of software, rather than invocation of functionality. The JVM
approach is of interest, because it makes bridging between sup-
ported languages transparent and deployment straightforward. Not
only can languages be mixed, but also the advanced Java tool chain
is available, including debuggers, profilers, load distributors, and
build tools. Other shared virtual machines, such as .NET and
Parrot, potentially offer similar advantages but are less used in
bioinformatics.

In the first edition, we wrote that when striving for reliable and
correct software solutions, the alternative strategy of calling com-
puter programs as external units via the command line should be
discouraged: not only is it less efficient that a program gets started
every time a function gets called, but also a potential deployment
nightmare is introduced. What happens when the program is not
installed, or the interface changed between versions, or when there
is some other error? With the full programmatic interfaces, dis-
cussed in this chapter, incompatibilities between functions get
caught much earlier. In this edition of the chapter, we add that
efficiency considerations still hold, and error handling can be prob-
lematic. When it comes to deployment, however, there now exist
solutions that fixate versions of software and give control of the
dependency graph, i.e., a tool like transeq can be coupled with its
exact version against your software. To ascertain coupling: first
there are containers, such as offered by Docker, that allow for
bundling software binaries. Second, some recent software distribu-
tions allow for formal deployment solutions with reproducible

Sharing Programming Resources Between Bio* Projects 763

dependency graphs. If you want to know more, check the GNU
Guix and NixOS projects. It is possible to combine these deploy-
ment technologies. In fact, with this chapter, we provide tools and
scripts defined as GNU Guix packages and hosted in a Docker
container. These solutions are discussed in Chapter 25.

Choosing a computer language should not be based on run-
time performance considerations alone. The maturity of the lan-
guage and accompanying libraries, tools, and documentation
should count heavily, as well as the activity of the community
involved. The time saved by using a known language versus
learning a new language should be factored in. The main point
we are trying to make here is that it is possible to mix languages
using different interfacing strategies. This allows leveraging existing
functionality, as written by others, using a language of choice.
Depending on one’s needs, it is advisable to test possible alterna-
tives for performance, as the different tests show that performance
varies.

Whichever language and bridging technology is preferred, we
think it important to test the performance of different ways of
interfacing languages, as there is (1) a need for combining lan-
guages in bioinformatics and (2) it is not always clear what impact
a choice of cross-language interface may have on performance. By
testing different bridging technologies and functional implementa-
tions, the best solution should emerge for a specific scenario.

So far, we have focused on the performance of cross-language
calling. In Chapter 25, scalability of computation is discussed by
programming for multiple processors and machines.

4 Questions

1. Install the Docker container and run different tests. Can you
replicate the differences of throughput statistics?

2. Why are network protocols such as Rserve slower than native
call stack approaches?

3. What are possible advantages of using a virtual machine, such as
the JVM?

4. If you were to bridge between your favorite language and an R
library, what options do you have?

Acknowledgments

We thank all open-source software developers for creating such
great tools and libraries for the scientific community.

764 Raoul J. P. Bonnal et al.

References

1. Gentleman RC, Carey VJ, Bates DM et al
(2004) Bioconductor: open software develop-
ment for computational biology and bioinfor-
matics. Genome Biol 5(10):R80

2. Gautier L (2010) An intuitive Python interface
for Bioconductor libraries demonstrates the
utility of language translators. BMC Bioinfor-
matics 11(Suppl 12):S11

3. Urbanek S (2003) Rserve a fast way to provide
R functionality to applications. In Proceedings
of the 3rd International Workshop on
Distributed Statistical Computing (DSC
2003), Vienna, Austria

4. Urbanek S (2009) How to talk to strangers:
ways to leverage connectivity between R, Java
and objective C. Comput Stat 24:303–311

5. Stajich JE, Block D, Boulez K et al (2002) The
Bioperl toolkit: Perl modules for the life
sciences. Genome Res 12(10):1611–1618

6. Cock PJ, Antao T, Chang JT et al (2009) Bio-
python: freely available Python tools for
computational molecular biology and bioinfor-
matics. Bioinformatics 25(11):1422–1423

7. Goto N, Prins P, Nakao M et al (2010) Bior-
uby: bioinformatics software for the Ruby pro-
gramming language. Bioinformatics 26
(20):2617–2619

8. Holland RC, Down TA, Pocock M et al (2008)
BioJava: an open-source framework for bioin-
formatics. Bioinformatics 24(18):2096–2097

9. Rice P, Longden I, Bleasby A (2000)
EMBOSS: the european molecular biology
open software suite. Trends Genet 16
(6):276–277

10. Dutheil J, Gaillard S, Bazin E et al (2006) Bio+
+: a set of C++ libraries for sequence analysis,
phylogenetics, molecular evolution and popu-
lation genetics. BMC Bioinformatics 7:188

11. Yang Z (1997) PAML: a program package for
phylogenetic analysis by maximum likelihood.
Comput Appl Biosci 13(5):555–556

12. Eddy SR (2008) A probabilistic model of local
sequence alignment that simplifies statistical
significance estimation. PLoS Comput Biol 4
(5):e1000069

13. Larkin MA, Blackshields G, Brown NP et al
(2007) Clustal W and clustal X version 2.0.
Bioinformatics 23(21):2947–2948

14. Katoh K, Kuma K, Toh H, Miyata T (2005)
MAFFT version 5: improvement in accuracy of
multiple sequence alignment. Nucleic Acids
Res 33(2):511–518

15. Edgar RC (2004) MUSCLE: a multiple
sequence alignment method with reduced
time and space complexity. BMC Bioinformat-
ics 5:113

16. Altschul SF, Madden TL, Schaffer AA et al
(1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search pro-
grams. Nucleic Acids Res 25(17):3389–3402

17. Ronquist F, Huelsenbeck JP (2003) MrBayes
3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19
(12):1572–1574

18. Box D, Ehnebuske D, Kakivaya G et al (2000)
Simple object access protocol (SOAP) 1.1

19. St Laurent S, Johnston J, Dumbill E (2001)
Programming Web services with XML-RPC.
pub-ORA, 213p

20. Richardson L, Ruby S (2007) Restful web ser-
vices. pub-ORA, xxiv + 419p

21. Muller J, Lorenz M, Geller F, Zeier A, Plattner
H (2010) Assessment of communication pro-
tocols in the EPC network-replacing textual
SOAP and XML with binary google protocol
buffers encoding. In: Industrial Engineering
and Engineering Management (IE\&EM),
2010 IEEE 17Th International Conference
on. IEEE, New York, NY, pp 404–409

22. Agarwal A, Slee M, Kwiatkowski M (2007)
Thrift: scalable cross-language services
implementation

23. Hintjens P (2013) Zeromq: messaging for
many applications. O’Reilly Media, Sebastopol,
CA, 516p

24. Beazley D (1996) SWIG: an easy to use tool for
integrating scripting languages with C and C++.
Proceedings of the 4th conference on USENIX
Tcl/Tk Workshop, 1996-Volume 4, USENIX
Association, 15p

25. Development Core Team R (2010) R: a lan-
guage and environment for statistical
computing

26. Paradis E, Claude J, Strimmer K (2004) APE:
analyses of phylogenetics and evolution in R
language. Bioinformatics 20(2):289–290

27. Charif D, Thioulouse J, Lobry JR, Perriere G
(2005) Online synonymous codon usage ana-
lyses with the ade4 and seqinR packages. Bio-
informatics 21(4):545–547

28. Arends D, Prins P, Jansen RC, Broman KW
(2010) R/qtl: high-throughput multiple
QTL mapping. Bioinformatics 26
(23):2990–2992

Sharing Programming Resources Between Bio* Projects 765

29. Yandell BS, Mehta T, Banerjee S et al (2007)
R/qtlbim: QTL with Bayesian interval
mapping in experimental crosses. Bioinformat-
ics 23(5):641–643

30. Harris TW, Antoshechkin I, Bieri T et al (2010)
WormBase: a comprehensive resource for nem-
atode research. Nucleic Acids Res 38(Database
issue):D463–D467

31. Cottret L, Lucas A, Marrakchi E et al GeneR: R
for genes and sequences analysis

32. Warnes G (2004) RSOAP provides a SOAP
interface for the open-source statistical package
R

33. Koenig D, Glover A, King P, Laforge G, Skeet J
(2007) Groovy in action. Manning Publica-
tions Co, Greenwich, CT

34. Halloway S (2009) Programming Clojure.
Pragmatic Bookshelf, Raleigh, NC

35. Odersky M, Altherr P, Cremet V et al (2004)
An overview of the Scala programming lan-
guage. LAMP-EPFL. (IC/2004/64)

36. Sloan Z, Arends D, Broman KW et al (2016)
Genenetwork: framework for web-based
genetics. J Open Source Soft 1(25):2

37. BermanHM, Battistuz T, Bhat TN et al (2002)
The protein data bank. Acta Crystallogr D Biol
Crystallogr 58(Pt 6, 1):899–907

38. Finn RD, Mistry J, Tate J et al (2010) The
Pfam protein families database. Nucleic Acids
Res 38(Database Issue):D211–D222

39. Kanehisa M, Goto S (2000) KEGG: kyoto
encyclopedia of genes and genomes. Nucleic
Acids Res 28(1):27–30

40. Bairoch A, Apweiler R,Wu CH et al (2005) The
universal protein resource (UniProt). Nucleic
Acids Res 33(Database issue):D154–D159

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

766 Raoul J. P. Bonnal et al.

http://creativecommons.org/licenses/by/4.0/

	Chapter 25: Sharing Programming Resources Between Bio* Projects
	1 Introduction
	1.1 Bridging Functional Resources Calling from Program to Program
	1.2 Remote Procedure Call
	1.3 Local Call Stack
	1.4 Comparing Approaches

	2 Results
	2.1 Calling into R
	2.1.1 Using GeneR with Plain R
	2.1.2 Calling into R from Other Languages with RPC
	2.1.3 Calling into R from Other Languages with the Call Stack Approach

	2.2 Native Bio* Implementations
	2.3 Using the JVM for Cross-Language Support
	2.4 Shared C Library Cross-Calling Using EMBOSS Codon Translation
	2.4.1 FFI

	2.5 Calling Program to Program
	2.6 Web Services

	3 Discussion
	4 Questions
	References

