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Research of Infectious Diseases
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Abstract

An increasing body of evidence highlights the role of host genetic variation in driving susceptibility to 
severe disease following pathogen infection. In order to fully appreciate the importance of host genetics on 
infection susceptibility and resulting disease, genetically variable experimental model systems should be 
employed. These systems allow for the identification, characterization, and mechanistic dissection of 
genetic variants that cause differential disease responses. Herein we discuss application of the Collaborative 
Cross (CC) panel of recombinant inbred strains to study viral pathogenesis, focusing on practical consid-
erations for experimental design, assessment and analysis of disease responses within the CC, as well as 
some of the resources developed for the CC. Although the focus of this chapter is on viral pathogenesis, 
many of the methods presented within are applicable to studies of other pathogens, as well as to case–con-
trol designs in genetically diverse populations.
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1  �Introduction

A confluence of factors interacts to result in adverse infectious 
disease outcomes, including demographic, environmental, and 
genetic contributions from the host and pathogen. Given the many 
challenges of studying viral infections during primary human out-
breaks, small animal model systems have been and continue to be 
essential for the assessment of host genes that drive differences in 
infection susceptibility and outcomes [1–5]. Differential immune 
regulation before and after infection is often modulated by com-
plex genetic effects, such as gene-by-gene/gene-by-environment 
interactions, and allelic variation at individual genes (e.g., hypo-
morphs, deletions), as an increasing number of studies have begun 
to illustrate [6–9]. These complex effects are best uncovered and 
studied in the context of genetically diverse and multi-allelic sys-
tems. Therefore, in order to dissect the role of genetic variation on 
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host interactions with viruses and other pathogens, it is critical that 
novel frameworks are developed for the analysis of these complex 
traits within these genetically diverse systems.

Genetic reference populations (GRPs) have long proven to be 
powerful for studying complex traits and their underlying causal 
genetic variants. Many of the classical GRPs (e.g., the BxH [10–
12], AxB [13] and BxD panels [14]), as well as classical backcrosses 
and intercrosses, have been critical in identifying polymorphic host 
genome regions that influence disease susceptibility and pathology. 
Building upon the utility of the classical systems, the Collaborative 
Cross (CC) GRP and the Diversity Outbred (DO) heterogeneous 
stock were created. These populations advanced the progress of 
complex trait studies in mice, while also modeling the genetic and 
allelic complexity present in naturally occurring populations [15–
17]. Briefly, both the CC and the DO were derived from a com-
mon set of eight founder strains, which are comprised of the three 
major Mus musculus subspecies: musculus, domesticus, and casta-
neus. As a result of their breeding designs, both populations have 
high levels of genetic diversity (∼45 million SNPs, and ∼4 million 
indels) spread roughly evenly across the genome. Furthermore, in 
these GRPs, up to eight unique alleles may exist at any gene/locus, 
and novel epistatic (gene-by-gene) interactions have been intro-
duced that are not present in any of the classical inbred laboratory 
mouse strains.

Concurrently with advances in the development and genetic 
characterization of GRPs, a variety of statistical and computational 
advances have been made. These have improved our ability to 
identify and characterize unique genetic variants driving differen-
tial traits. Improved power and precision for detecting QTL and 
causative underlying haplotypes, as evinced in refs. [18], have 
resulted specifically from: our enhanced ability to identify founder 
strain haplotypes [19]; the publication of annotated whole-genome 
sequences for the eight founder strains [20, 21]; and the develop-
ment of powerful software packages for genetic mapping [22–24]. 
These advances have also enabled the narrowing of QTL regions 
down directly to candidate causative polymorphisms. Concurrently, 
RNA-seq and a variety of computational pipelines [25–27] allow 
for precise and accurate quantification of transcripts, allele-specific 
expression, and isoform expression within genetically heteroge-
neous populations. Together, these methods provide powerful 
new tools in the systems genetics arsenal.

To understand the contribution of host genetic effects on dif-
ferential infectious disease responses, the CC recombinant inbred 
(CC-RI) lines and a variety of related populations, including the 
eight CC founder strains, the partially inbred incipient CC 
(preCC), the DO, and CC-F1 (recombinant inbred intercrosses, 
or CC-RIX), have been used in a number of recent studies. In the 
following sections, we summarize results from across these studies, 
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and use them to provide a framework for researchers interested in 
using multiparent populations (MPPs) to study host responses to 
infection. Although we largely focus on viral pathogens, this guid-
ance is equally useful for other pathogen systems, as well as for 
systems genetics studies using a case–control design.

Resources describing other uses of the CC and related popula-
tions are available in the accompanying chapters of this book, and 
are also referenced in the following reviews: ref. [28], which covers 
informatics resources for the Collaborative Cross; ref. [29], which 
discusses behavioral studies in complex genetic populations; ref. 
[30], which specifically deals with systems genetics of coronavi-
ruses; and ref. [31], which reviews systems genetics and the utility 
of network modeling for inference. In addition, there have been 
several studies examining baseline immune status, autoimmunity, 
allergy, and inflammation in the CC [32–35]. While highlighting 
and expanding on the approaches described below, expansion to 
include specific autoimmune and allergic responses are beyond the 
scope of this chapter.

2  �Methods

In this section, we provide some suggestions for experimental design 
of infectious disease studies in the CC. A general and useful basic 
guideline, as adapted from a chapter by [36] is as follows: (1) formu-
late statistical and biological hypotheses; (2) determine treatment 
variables, phenotypes of interest, and nuisance variables; (3) deter-
mine the population, selecting and/or excluding mouse lines, and 
simulate and estimate the number of mice that will be required; (4) 
decide on a randomization protocol; and (5) decide on tools for 
computational and statistical analysis; and we expand on these points 
below. We note that there are a large number of different approaches 
and goals for studying pathogens within the CC. These include, but 
are not limited to: identifying novel models of pathogenesis [37]; 
determining the effects, across genetic backgrounds, of variants at 
previously characterized genes of major effect (e.g., Mx1 [38] or 
Oas1b [39]); and mapping genetic variants driving differential dis-
ease responses [38, 40]. We focus the methodology within in this 
section as if a researcher were interested in genetic mapping. The 
general principles and basic protocol are enumerated below:

	 1.	Determine the range of phenotypes to be collected within the 
study. While many phenotypes are classically considered to be 
linked during viral infection in traditional inbred lines, it is likely 
that: (a) these phenotypes will become unlinked due to segregat-
ing variants within the CC; and (b) phenotypes causing severe 
pathology may be differentiated from those simply correlated 
with disease. Thus, collecting a variety of related phenotypes will 
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allow for better inferences about the pathways involved in disease 
pathogenesis. Additionally, in order to avoid confounding effects, 
potentially important baseline measures, prior to infection, 
should be considered and recorded. Genetically diverse mice also 
have phenotypically diverse baseline measures, such as body mass, 
coat color, litter size, susceptibility to spontaneous disease during 
aging, etc. Some of these measures may be important for causal 
inference of the effect of infection, or for clarifying misallocated 
sample identities, when the data is analyzed.

	 2.	Consider the impact of genes of major effect in order to deter-
mine experimental design and/or select a subset of lines. For 
many pathogens, host genes or loci, e.g., MHC [41, 42], that 
exert major effects on control of viral disease have already been 
identified, e.g., Cmv1 for cytomegalovirus, Oas1b for flavivi-
ruses, Mx1 for influenza, and CCR5 for HIV. Furthermore, 
for Oas1b [39] and Mx1 [38], there are both functional and 
nonfunctional variants segregating within the CC. Using the 
genetic sequence information available for CC-RIs, experi-
menters may wish to exclude specific lines from their experi-
mental population. For example, a researcher interested in 
identifying genetic variants that enhance lung damage during 
influenza A virus infection might wish to exclude lines with a 
functional Mx1 from their study.

An analogous approach deals with those cases where reagents 
required to properly assess disease responses are genotype-
sensitive or genotype-specific. One example includes a specific 
viral peptide or tetramer with a major histocompatibility com-
plex (MHC) haplotype restriction. In this case, although CC 
lines with (e.g.) a C57BL/6J MHC haplotype should generate 
robust disease response data, CC lines with other founder hap-
lotypes at the MHC locus might not be compatible with the 
reagent, and therefore accurate assessments of the antiviral states 
of these lines will not be possible. Thus, exclusion of specific 
lines, stratified analysis of all lines, or alternative experimental 
designs may be needed to address these issues. In both of these 
cases, the best approach to identify specific lines is to examine 
the founder-strain haplotypes at the genes/loci of interest. The 
CC status website (http://csbio.unc.edu/CCstatus/index.py) 
contains a variety of tools, reviewed in ref. [28], with which 
researchers can identify and visualize the haplotypes present in 
all available CC lines at given loci. In this way, specific lines can 
be identified, and subsequently included or excluded, based on 
the investigator’s desired and required haplotypes. We note that 
while the DO might provide a greater number of genetically 
unique individuals for a study, the outbred nature of the DO 
and not being able to preselect animals with given haplotypes 
from the DO before purchase might strongly affect the ability to 
assess phenotypic variation if these haplotype-specific reagents 
and/or genes of major effect are present.
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	 3.	Assess a range of phenotypes in a preliminary subset of lines. 
Host responses to viral infections can differ in a variety of ways, 
including disease magnitude, kinetics, duration and infection 
dose responses. Depending on the question of interest, any 
number of study designs may be optimal for analysis. However, 
in all cases it is useful to understand the potential range of phe-
notypic variation being driven by host genetic variants in the 
CC. This can be achieved by assessing a preliminary subset of 
mouse lines. A common and useful approach is to screen the 
eight founder strains of the CC and DO, using a standard, 
well-characterized dose of virus and relatively long experimen-
tal timecourse. In this way, estimates of the range of variation 
in kinetics, magnitude, onset, and duration of disease can be 
obtained. Importantly, it is likely, due to transgressive segrega-
tion and allele shuffling, that some CC lines will express more 
extreme viral resistance or susceptibility phenotypes than the 
eight founder strains. Within these eight strains, one can col-
lect data on the full range of viral pathogenesis phenotypes of 
interest (e.g., clinical disease, viral replication/dissemination, 
and tissue damage), following step (1), and determine the phe-
notypes which vary the most due to host genetic differences.

In some cases, assessment of the founder strains will be 
insufficient for estimating phenotypic ranges within the CC. 
As mentioned above, prior knowledge may dictate that a spe-
cific founder strain haplotype should be included or excluded 
to accommodate experimental needs. In these cases, assuming 
that the founder haplotype distributions within the CC allow 
it, an initial screen may be performed using a subset of CC 
lines rather than the eight founder lines. To illustrate, if only 
one of the eight founder haplotypes is informative (e.g., seven 
of the founders are highly resistant to infection due to their 
allele at a major effect locus), screening several CC strains that 
contain the one haplotype may be preferable. In contrast, if 
seven or eight founder haplotypes are informative, screening 
the seven or eight founders of interest may be preferable to 
using a subset of CC lines.

	 4.	Determine the batching/blocking and covariates to be used in 
the study. After an initial screen using the subset of lines in step 3, 
it will be useful to revisit and modify, as necessary, the experimen-
tal design for the larger CC study, including experimental block 
designs and specific covariate data collection, and design of the 
linear model to be used in the analysis. Again, such decisions are 
likely to be driven by the investigator’s questions of interest, the 
infectious disease system, and experimental approaches that will 
be used. However, a few general rules may be helpful.

One type of idealized experimental design might include an 
assessment of every treatment group, timepoint, and sex across 
multiple replicate animals in a single infection batch, with sev-
eral full batches studied to confirm and generalize these results. 
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However, we note that even for those examining a single 
timepoint post-infection, a screen of replicate animals from the 
entire library of available CC lines might be logistically diffi-
cult. In such cases, some form of well-reasoned batching (or 
“blocking”) is required to improve experimental feasibly, while 
still maintaining an ability to assess statistical significance. The 
investigator may also want to ensure that the characteristics of 
the various blocks are well-balanced with respect to the sample 
size and factors of interest.

There are a large number of ways to design blocking, and 
we suggest a few simple guidelines. First of all, attempt to ran-
domize, where possible, such that if there is a choice to be 
made, mice of a given line and sex should be randomly selected 
from among those available. In order to simplify the screen, it 
may be preferable to assess and perform QTL mapping in a 
single sex, with follow-up studies of single lines or timepoints 
expanded into both sexes to broaden conclusions and to exam-
ine sex-specific differences. The inclusion of specific timepoints 
or subsets of lines will likely depend on the resources available 
and the phenotypes of interest, such as discovery of new mod-
els of previously restricted pathogens, genetic mapping of host 
variants affecting specific pathologic outcomes, or analysis of 
differentially expressed transcriptional pathways. For example, 
if genetic mapping at a single specific timepoint is critical, then 
ensuring that some lines are repeated across multiple batches, 
and that each batch contains lines that are repeated in other 
batches, can be useful for normalizing data across batches. In 
contrast, if examining the kinetics of differential transcriptional 
networks is the goal, batches should include all animals of each 
line in the experiment, with a subset of the total lines to be 
used. Most importantly, when mock samples are to be paired 
with samples from a specific timepoint post-infection (DPI, 
e.g., to study transcriptional differences at 2 DPI or to contrast 
immune cell infiltration into specific tissues), the mock animals 
and infected animals from each line should be assayed on the 
same day to explicitly control for any batch effects. To general-
ize, for a given contrast or factor of interest (sex, treatment/
condition, dose, etc.), including all the levels of interest within 
each given batch (or even each cage), is preferable when feasi-
ble, so that the effect of confounding variables is reduced.

	 5.	Collect phenotype data. Once an appropriate experimental 
blocking strategy is determined, the study should proceed fol-
lowing the investigator’s appropriate infection protocols and 
design. We note that it is critical to carefully observe and record 
potentially important, yet previously undescribed disease 
responses. Such phenotypes might be useful for characterizing 
novel disease phenotypes in follow-up studies and/or for 
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improving disease classifications for transcriptional analysis. Be 
aware of and carefully annotate aberrant or unexpected pheno-
types that might be useful as covariates in further analyses (e.g., 
tumors within tissues of importance that could impact immune 
phenotypes in those tissues).

	6a.	Examine the distribution of and correlation between pheno-
types. Following data collection, quantify and visualize the 
within-strain means and variances, as well as the aggregate mean 
and variance for each phenotype. The use of a Box–Cox trans-
formation on the raw pathogenesis phenotype data will ensure 
that the residuals follow a more normal phenotypic distribution, 
enabling a more robust array of statistical analyses. Once data 
are appropriately transformed, one may determine the genetic 
contribution to the variance in the data, otherwise known as the 
broad-sense heritability (H2), and related measures.
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2 is the total phenotypic variance, σG

2 is the total vari-
ance attributable to genetics, and σE

2 is the remaining variance, 
attributable to environment and residual noise. σG

2 can be par-
titioned into additive (σA

2), dominance (σD
2), and epistatic (σI

2) 
components. Broad-sense heritability (H2) is calculated as the 
ratio of the genetic variance (σG

2), to the total phenotypic vari-
ance. Narrow-sense heritability (h2), which is a subset of H2, is 
calculated as the ratio of the additive (σA

2) to the total pheno-
typic variance. The “coefficient of genetic determination” (g2), 
which is used for estimating broad-sense heritability in inbred 
lines [35, 43], is a function of the number of animals tested per 
strain (n), and the between- and within-strain mean-squared 
errors (MSB, MSW).

Furthermore, a reexamination of the correlation structure 
of the disease phenotypes (both stratified by strain, and in 
aggregate) can help to clarify relationships between different 
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aspects of viral pathogenesis, and can strengthen decision 
making regarding the phenotypes to be used for mapping 
causal loci. Simple packages such as corrplot (https://cran.r-
project.org/web/packages/corrplot/index.html) and corr-
gram (https://cran.r-project.org/web/packages/corrgram/
index.html) in R can be used to visualize the correlation and 
covariance structure of a phenotype matrix.

	6b.	Identify/select samples for transcriptional analysis. In some 
cases, researchers may wish to add whole-genome transcrip-
tional analysis to further clarify the genes and pathways that are 
differentially expressed in concordance with specific pheno-
types. In many cases, it will be cost-prohibitive to run tran-
scriptional analyses on all samples. Transcriptional analyses that 
are focused on extreme phenotypic outcomes (e.g., contrast 
individuals with high vs. undetectable titers), such as is used in 
bulk segregant analysis, may provide increased power to iden-
tify transcripts associated with differential disease. This 
approach has been illustrated in ref. [44], where a combination 
of titer and weight loss extremes was used to identify reactive 
transcriptional networks differentiating the extreme pheno-
typic groups. Consider, additionally, whether banking a variety 
of specific immune-related tissues (bone marrow, lymph nodes, 
CNS, spleen), as well as “unrelated” control tissues may be 
helpful in follow-up studies, following transcriptional analysis 
or mapping. Also consider exploring other CC-related in vitro 
resources (cell-culture, such as mouse embryonic fibroblasts 
from CC-related mice) that would be useful for your study, 
especially in the follow-up stages.

	 7.	Conduct genetic mapping. Once phenotypes with high herita-
bility and sufficiently large variation have been identified, genetic 
mapping can be carried out. A number of software packages 
exist for multiparent mapping, including Bagpipe (http://valdar-
lab.unc.edu/software.html), HAPPY (http://www.well.ox.
ac.uk/happy/) [19], and DOQTL, a package for the R statisti-
cal computing environment [24], which also works for mapping 
in the CC. We currently recommend using the DOQTL pack-
age, as it is stably supported on Bioconductor (https://www.
bioconductor.org/packages/release/bioc/html/DOQTL.
html), and also has features to integrate SNP and gene variant 
features based on the Sanger Institute’s resequencing of the 
eight founder strains of the CC, as described in refs. [17, 24]. 
For mapping in the CC or the DO, one uses a file(s) to describe 
the founder haplotype probabilities in the mapping population. 
This is used both for fully inbred lines, where probabilities 
should theoretically be 1.0 or 0.0 for any given founder haplo-
type at each locus, as well as for heterozygous populations, with 
fractional probabilities and haplotype uncertainties due to 
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recombination. A separate file is used, containing the transformed 
phenotypes and any covariates one might consider important 
(e.g., batch, sex, starting weight). The software uses a linear 
regression approach, asking whether there is a significant asso-
ciation between phenotypes and haplotype probabilities at each 
haplotype block along the genome. Significance thresholds are 
determined using permutation or false discovery rate approaches, 
both of which take into account the distribution of genotypes 
and phenotypes within the test population.

Covariates that can be included in the model may take a 
variety of forms, including demographic (age, sex), experimen-
tal (batches), and genetic (e.g., genes of major effect, previ-
ously discovered QTL). Proper accounting for these covariates 
often increases one’s power to detect causative genetic poly-
morphisms underlying virus-induced disease. However, care 
must be taken in the analysis procedure to ensure that inclu-
sion of covariates does not mask true genetic effects. For exam-
ple, consider the scenario where two batches of CC lines are 
tested. In batch 1, all of the lines with a polymorphism enhanc-
ing viral titer are tested. In batch 2, all of the lines with a poly-
morphism repressing viral titer are tested. In this case, including 
a batch covariate will cause much of the polymorphism’s effects 
to be attributed, incorrectly, to differences between experi-
mental batches. We suggest that QTL scans are run both with 
and without inclusion of such covariates, with the investigator 
carefully examining the mapping results (maximum signifi-
cance scores, significance thresholds, etc.) from all situations. 
Furthermore, if there are QTL that appear when scans are run 
without a covariate, but are absent when a covariate is included, 
we suggest follow-up studies that replicate some of the lines 
and timepoints that were previously split by covariates. Where 
possible, such studies will confirm and validate such QTL 
without the confounding of covariates. Additional, more rig-
orous model selection protocols for determining the inclu-
sion/exclusion of covariates may be considered, but they are 
beyond the scope of this chapter.

	 8.	Identify causative polymorphisms. Once QTL are identified, a 
number of approaches may be utilized to determine specific 
causative genetic variants. Toward this end, most multiparent 
mapping tools will generate allele effect plots. These plots display 
the estimated scaled effects of each founder allele on a trait of 
interest within a given genomic locus. In this way, one can dis-
tinguish groups of haplotypes that enhance, suppress, or have no 
effect on disease. By identifying SNPs and other genetic variants 
within the QTL that follow the allele effects patterns, one can 
narrowly focus on subsets of candidate genes or features that are 
likely to be causative for the phenotype of interest. For example, 
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at a given SNP, if both “high” and “low” phenotype groups 
share a founder allele, it is unlikely to be causative, whereas SNPs 
that contain alleles that segregate between the high- and low-
responder strains are much more likely to be causative. Further 
integration of already available whole-genome expression data, 
or post-hoc gene expression analysis (e.g., qPCR) can help to 
narrow and refine candidates. For example, genes underneath a 
QTL locus which are differentially expressed between high and 
low groups, in a relevant tissue or compartment and at a relevant 
timepoint, will help lead to potential candidate genes and/or 
pathways impacting disease outcomes.

	 9.	Consider alternate studies and experimental approaches. In the 
preceding text, we highlighted a case where follow-up studies 
might be useful in identifying genetic variants, i.e., where initial 
QTL scans suggested a locus, but the effect of that locus was 
confounded by a covariate such as experimental batch. 
Following the collection of initial data, there are a variety of 
other experiments which can help clarify and enhance the initial 
studies. One possibility is that only one or two CC lines show a 
desired or extreme disease response [37, 45]. Such outcomes 
may indicate either complex gene–gene interactions (epistasis) 
or de novo mutations arising in lines. In both cases, one should 
consider either a tailored follow-up genetic cross, such as an F2, 
as in refs. [45], or follow-up intensive expression analysis, as in 
refs. [37], to focus on likely causative loci or networks driving 
these unique disease responses. Another possible outcome is 
that a gene of major effect has been discovered. This would be 
a case where a QTL explains a large fraction (e.g., 50 %) of trait 
variation for one or more of the pathology traits of interest. In 
these cases, it may be useful to either (as recommended above) 
redo analysis with the QTL of major effect as a covariate in the 
main QTL scans OR to subset your set of lines into those with 
the high versus low haplotypes at the QTL. These subpopula-
tion style analyses can help in identifying further genetic vari-
ants that affect disease only in the context of a gene of major 
effect. For example, if a variant impacts viral dissemination from 
a primary tissue, its effect can be masked if there is an additional 
polymorphism that abrogates the viral receptor within the 
CC.  Only by mapping with the receptor positive population 
will it be possible to identify the dissemination variant.

3  �Expected Results

Given that there are a variety of possible genetic architectures 
underlying host responses to multiple aspects of viral infection, it is 
difficult to precisely predict outcomes for any given study type. 
However, based on the breadth of work conducted so far within 
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the CC, the DO, and related populations, one can expect that 
there are genetic variants segregating within the CC system that 
will have impact on pathogenesis for any given virus. Indeed, for at 
least four viral pathogens, as well as for a variety of other bacterial 
and fungal pathogens, QTL have been identified that contribute to 
differential disease responses and pathogenesis. Taken as a whole, 
these QTL typically have shown modest effects on pathogenic 
traits (e.g., a summary of the results of [38, 40] show most QTL 
explaining 25 % of phenotypic variance for each trait). Furthermore, 
it is likely that transgressive segregation operates within the recom-
bined genomes of the CC. That is, alleles driving extreme responses 
may come from a founder strain(s) that exhibits a mild or sup-
pressed phenotype. Thus, only when the genetic structure of the 
founder strains has been rearranged will the true effects of alleles 
be identifiable. Lastly, it is likely that once QTL are identified, it 
will be possible to identify a set of high priority SNPs, based on the 
founder strain sequences, which act as the causative variants. 
Additional pathological and molecular phenotyping will be 
required for validation, but the integration of multiple allele effects, 
as well as sequence data, is a substantial improvement over classical 
positional cloning for identifying causal variants.

4  �Lessons Learned

The use of the Collaborative Cross and related populations in 
studying infectious diseases is still in its nascent stages. Nevertheless, 
there are several important considerations, gleaned from the stud-
ies to date, that can specifically inform future studies and analysis 
of determinants of infectious disease susceptibility.

One clear lesson learned from virus infection studies in the 
CC and preCC so far is that phenotypic correlations present 
within any set of characterized founder strains or knockouts are 
likely to be broken apart within the CC, unless there are strong 
causal relationships between the correlated phenotypes. For 
example, a complete disassociation was seen between different 
aspects of SARS-coronavirus (SARS-CoV) induced pathology 
and disease within the preCC population [40]. Furthermore, 
QTL mapping will often show that distinct loci affect individual, 
distinct pathologic traits, as seen in both the influenza preCC and 
SARS-CoV preCC studies [38, 40]. These results highlight one 
main impetus for utilizing GRPs such as the CC (i.e., the discov-
ery of novel phenotypic relationships and distinct genetic mark-
ers), but they also point to a critical consideration in the design 
and analysis of studies in these systems. Namely, the assessment of 
a wide variety of phenotypes, even those classically thought to be 
redundant, will be highly useful and enable a better understand-
ing of disease pathogenesis.
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It is well known that susceptibility and resistance genes of 
major effect are predominant within host–pathogen systems. These 
genes of major effect include, for example Cmv1 for murine cyto-
megalovirus [46, 47]; Oas1b for flaviviruses [48]; and Mx1 for 
influenza [49, 50]. Indeed, both functional and defective Oas1b 
and Mx1 alleles circulate within the CC/DO [38, 39]. Given the 
genetic diversity present within the CC and DO, it is likely that 
other genes of major effect for specific pathogens will be found 
segregating within these populations. Although the presence of 
genes and alleles of major effect may appear to be an obstacle for 
discovery of novel regulators of disease, obscuring the contribu-
tion of genes or alleles of lesser effect size, new biological insight 
can still be obtained in the presence of these large effect alleles. For 
example, given the potential for up to eight alleles segregating 
within the CC at any locus, there may be several alleles, isoforms 
and/or transcriptional variants at a given causal locus. This was 
observed clearly in the influenza challenge of the preCC, where the 
antiviral and clinically protective effects of Mx1 were disassociated 
via the presence of three unique alleles at the Mx1 locus [38].

Furthermore, epistasis and transgressive segregation are at 
work within the CC population. Such segregation can most com-
monly reveal previously “hidden” genetic variation. For example, 
in the preCC study of SARS, the wild-derived founder strains 
(CAST, PWK, and WSB) all die of SARS-CoV infection at low 
doses [40]. In contrast, for the preCC lines that survived SARS-
CoV infection, causative alleles at a variety of QTL are driven by 
wild derived parental alleles, and were therefore hidden in the con-
text of super-susceptible parent founders. Thus, the allelic variants 
that affect immunopathology, viral replication, and immune infil-
tration were identified only in the context of disruption of founder 
haplotypes through recombination. Alternately, recombination 
driving reassortment of alleles may cause emergent phenotypes by 
introducing evolutionarily distinct allelic combinations. For exam-
ple, it is only via this genetic reassortment across the CC that a 
severe Ebola virus (EBOV)-induced hemorrhagic fever was 
identified in mice, as this phenotype was not present in any of the 
CC founder strains [37].

There are several reasons for emphasizing the thoughtful use 
of mock controls in infectious disease studies in the CC. Firstly, 
given the novelty of the genetic backgrounds generated in the CC, 
the response to mock treatment in some lines may differ substan-
tially from that of common inbred lines. Additionally, genetic loci 
that regulate baseline immune phenotypes may be quite distinct 
from those that regulate immune phenotypes after infection-
induced pathways are upregulated or downregulated, hence QTL 
may be mapped for untreated or mock-treated animals as a com-
plement to QTL mapped for infection response.
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Finally, it should be noted that characterizing the variability or 
variance in a disease phenotype, both within-strain and between-
strain, is worthwhile and may be critical for identifying genetic 
causes of differential disease. Identifying a strain or set of strains 
with increased variance may lead you to identifying a novel genetic 
factor or latent environmental variable that causes a substantial 
change in the phenotype of interest [51]. During the characteriza-
tion of within-strain variation, you may be able to identify experi-
mental issues that ought to be modeled or corrected (e.g., batch 
effects), or rare de novo genetic variants that substantially modu-
late your phenotype, which can be identified with additional geno-
typing or sequencing. In one recent study, using a diallel of the 
wild-derived CC founder mice and their F1 reciprocal crosses, 
gene expression was substantially altered in two mice, including 
one which was found to have a de novo duplication [25]. Thus, 
having well-characterized within- and between-strain variance esti-
mates are critical for identifying novel genetic variants, for estimat-
ing statistical power, and for successful experimental design and 
analysis in the CC.

5  �Further Considerations and Limitations

Although systems genetics approaches and genetically diverse 
study populations provide a powerful combination of tools to 
identify host genetic variants driving infectious disease, there are 
several caveats that ought to be considered in optimizing study 
design and analysis approaches: namely appropriate molecular phe-
notyping, disentangling complex phenotypic networks, and mech-
anistic insight into variant loci.

Omics analysis (transcriptomics, proteomics, metabolomics, 
etc.) is a cornerstone of the systems biology approach to research. 
One strong caveat for omics analysis is the dependence of these 
approaches on accurate assessment of genome sequences for uti-
lized strains. The C57BL/6J genome has formed the backbone of 
mouse sequence analysis and annotation, however we know that 
the other CC founder strains, and therefore the CC themselves 
contain large numbers of polymorphisms, and more importantly 
structural variants and large insertion/deletions [52] (http://www.
sanger.ac.uk/science/data/mouse-genomes-project). As described 
in more detail in this volume in a chapter by Green et al., integra-
tion of imputed genome sequences (pseudogenomes) for CC lines 
or DO animals [27] will substantially improve integration of these 
omics data within these GRPs.

A variety of factors, such as prior immune history, opportunis-
tic coinfection, and microbiome influences on the immune system 
[53, 54] can influence host responses to viral infections. 
Furthermore, there is evidence for genetic variants within the CC 
affecting basal variation in immune populations [34]. Given the 
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potential for host genetic variation to impact a variety of immune 
phenotype and the microbiome, it is likely that there will be com-
plex causal networks underlying variation in the direct viral patho-
gen traits of interest of a researcher. While dissection of these 
networks may provide many years of fruitful study, they may pres-
ent daunting obstacles to study within the CC. Careful design of 
experiments (e.g., cohousing animals from different CC lines; anti-
biotic pretreatment to limit bacterial coinfection) can help to ame-
liorate and control some of these effects and improve the ability to 
identify genetic variants directly affecting host responses to viral 
pathogens of interest.

Finally, we note that identification of genetic variants with a 
GRP affecting host responses to viral infection do little to identify 
the mechanisms and processes through which these variants act. 
While integration of a variety of phenotypes (e.g., pathological, 
immunological, and molecular responses) can help to highlight 
mechanisms and pathways of activity, it is only through classical 
(and phenotype-specific) manipulation and experimentation that a 
true understanding of these variants can be elucidated. Such 
approaches, often deemed “reductionist,” are critically useful in 
transitioning broad systems-based responses with clear and action-
able mechanistic processes.

6  �Outlook

Small animal models for the host response to infectious disease 
pathogens are critical tools for the study of human susceptibility to 
disease, as well as for the development of novel prophylactics and 
therapeutics. Indeed, the utility of these systems for studying host–
pathogen interactions appears to be persistent and critical. Notably, 
by varying the host genetic background in the study of infectious 
disease, we enable the detection of genetic variants that are 
important for disease across a population of genetically diverse 
individuals, improving our chances that variants are reproducible 
across experiments and, it is hoped, across species. Importantly, 
not only can these systems be used for identifying genetic suscep-
tibility loci, but they can also be used to identify and develop of 
novel infectious disease models, using specific strains of CC mice as 
new resources for understanding severe disease, such as has been 
done in the recent development of CC mouse models of Ebola 
virus pathogenesis [37].

The CC is also useful for better understanding the genetic 
architecture of the host response to infection. It has been recog-
nized that nonadditive genetic effects, such as dominance, epista-
sis, and parent-of-origin effects, may contribute substantially to 
quantitative traits, including the host immune system and infec-
tious disease responses. In order to estimate, quantify, and explore 
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such complex genetic interactions, and to quantify broad and 
narrow-sense heritability, future directions include characterizing 
infection phenotypes in F1 reciprocal crosses of the eight founder 
lines and of the CC lines (using CC-F1s). Such experiments will 
add to our knowledge about how disease susceptibility and resis-
tance may be expressed and transmitted from parents to offspring, 
and this work may reveal important genetic complexities, hard to 
uncover in human studies. These complex genetic effects may be 
responsible for inhibiting our ability, at present, to identify candi-
date genes through GWAS and linkage mapping studies, which less 
often include rigorous screens for nonadditive effects. Finally, the 
experimental designs and phenotypic data sets that are being gen-
erated for systems genetics in the Collaborative Cross lend them-
selves to innovative statistical and quantitative genetics models. 
These new models and quantitative tools advance our understand-
ing of human disease, and complement the variety of experimental 
tools being developed for the CC. Thus, infectious disease research 
in CC promises to advance our knowledge about complex host–
pathogen interactions, and to enhance our ability to unravel and 
interpret increasingly complex biological networks in order to 
improve human health.
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