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    Chapter 8   

 Systems Medicine for Lung Diseases: Phenotypes 
and Precision Medicine in Cancer, Infection, and Allergy       

     Bernd     Schmeck     ,     Wilhelm     Bertrams     ,     Xin     Lai    , and     Julio     Vera     

  Abstract 

   Lung diseases cause an enormous socioeconomic burden. Four of them are among the ten most important 
causes of deaths worldwide: Pneumonia has the highest death toll of all infectious diseases, lung cancer kills 
the most people of all malignant proliferative disorders, chronic obstructive pulmonary disease (COPD) 
ranks third in mortality among the chronic noncommunicable diseases, and tuberculosis is still one of the 
most important chronic infectious diseases. Despite all efforts, for example, by the World Health 
Organization and clinical and experimental researchers, these diseases are still highly prevalent and harm-
ful. This is in part due to the specifi c organization of tissue homeostasis, architecture, and immunity of the 
lung. Recently, several consortia have formed and aim to bring together clinical and molecular data from 
big cohorts of patients with lung diseases with novel experimental setups, biostatistics, bioinformatics, and 
mathematical modeling. This “systems medicine” concept will help to match the different disease modali-
ties with adequate therapeutic and possibly preventive strategies for individual patients in the sense of 
precision medicine.  
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1      Introduction 

 Among the ten most common causes of death worldwide, there 
are four pulmonary diseases, killing 9.5 million people per year 
(Fig.  1    ) [ 1 ]. In addition, pneumonia, COPD, tuberculosis, and 
lung cancer are also among the ten most common causes of 
disability- adjusted life years (DALYs) lost worldwide. Pneumonia 
alone is the single most important cause of DALYs lost, more 
important than HIV/AIDS, ischemic heart disease, cerebrovascu-
lar disease, or diarrhea [ 2 ]. The total cost of lung diseases in the 
European Union amounts to more than €380 billion annually. In 
addition to the abovementioned diseases, asthma alone causes 
costs of over €72 billion, consisting of €19.5 billion for direct med-
ical costs, €14.4 billion for lost productivity (work absence, early 



120

retirement, etc.), and €38.3 billion for monetized value of DALYs. 
Lung cancer causes the greatest socioeconomical loss from disability 
and premature mortality. Because of late diagnosis and limited 
treatment options, most treatment costs are concentrated within 
the year of the diagnosis. Therefore, the total annual costs per case 
are calculated as €364,000 for lung cancer [ 2 ].

   The lung  and airways   provide many unique features in terms of 
anatomy, physiology, and immunology. This paves the way for 
manifold pathologies and presents challenges for pulmonary clini-
cians and researchers. The lung is the body’s largest organ, but 
contains about four liters of air and only about half a liter of tissue 
and the same amount of blood [ 3 ]. Therefore, the organ tissue has 
to be organized in a sophisticated and delicate way. The main func-
tion of the lung is the exchange of two gases, O 2  and CO 2 , between 
the air that we breathe and the bloodstream. Three main processes 
are involved in this: ventilation of air along the bronchial tree, pas-
sive diffusion of gases, and perfusion of blood through the alveolar 
capillaries [ 4 ]. These processes are tightly regulated, and not every 
part of the lung is equally ventilated and perfused. Every day, about 
10,000 l of air—containing pollutants, allergens, pathogens, etc.—
is ventilated through the about 23 generations of dichotomically 
dividing airways and over a lung surface of about 130 m 2  that is 
condensed mainly in over 300 million alveoli. The capillary surface 
has about the same size. Diffusion of oxygen critically depends on 

  Fig. 1    Frequent lung diseases and related  systems medicine consortia  . Depicted are the four lung diseases 
with the highest mortality worldwide, including death worldwide 2011, disability-adjusted life-years (DALYs) 
lost 2008, aggregated annual total (direct and indirect) costs and the value of DALYs lost for EU countries 2011, 
and related systems medicine projects according to internet and database research [ 1 ,  2 ]       
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a short diffusion distance over the air–blood barrier [ 3 ]. In healthy 
lungs, the mean thickness of this tissue barrier is about 0.6 μm, 
consisting of very thin parts of alveolar epithelial type I cells and 
capillary endothelial cells sharing one single layer of basement 
membrane [ 5 ]. This delicate architecture is only possible due to 
the surfactant layer that lines the alveolar surface, reduces its surface 
tension, and is released by alveolar epithelial type II cells.  

2    Clinical Challenges 

   Community-acquired pneumonia is a high incidence disease which 
results in more hospital admissions per year in some industrialized 
countries than myocardial infarction [ 6 ,  7 ]. It has the highest mor-
tality rate worldwide of all infectious diseases. Its lethality ranges 
from 1 % in outpatient settings to 35 % in high-risk patients [ 8 ]. 
UNICEF (the United Nations Children’s Fund) data suggest that 
pneumonia kills more children under the age of 5 than malaria, 
AIDS, and measles together [ 9 ]. Notorious problems are emerg-
ing new pathogens that may combine a high mortality with an easy 
transmission, e.g., the SARS and MERS coronaviruses or certain 
pandemic infl uenza strains [ 10 ]. Severe pneumonia can lead to 
sepsis and septic shock requiring intensive care treatment with arti-
fi cial organ support, causing extremely high costs [ 11 ]. Recently, it 
has been observed that pneumonia patients face an increased death 
risk for several months after the acute infection [ 8 ].  

   Asthma is classically defi ned as an infl ammatory chronic airway 
disease characterized by reversible airway obstruction and airway 
hyperresponsiveness [ 12 ]. This disease affects 200–300 million 
people worldwide, and its prevalence has been increasing over the 
last decades [ 13 ]. Up to 10 % of asthmatics are considered as severe 
cases. Typically, the infl ammation in asthma is described to be aller-
gic, eosinophilic, IgE dependent, and Th2 driven [ 14 ]. Therefore, 
therapy besides bronchodilation targets mainly this eosinophilic 
infl ammation, either unspecifi c with topical or systemic glucocorti-
coids, with antileukotriene drugs, or with “biological therapies” 
specifi cally addressing IgE, or probably in the future IL-13, IL-5, 
and others [ 15 ]. However, suffi cient control of asthma symptoms 
is impossible in many patients, in part due to more than 50 % of 
asthma patients that do not show a persistent eosinophilic infl am-
mation [ 16 ], and this seriously challenges the classical pathophysi-
ological concepts. Systems-based approaches can help to stratify 
patients to their phenotypes and respective available therapies and 
to identify new targets for the treatment of patients that are unre-
sponsive to existing drugs [ 17 ].  

2.1  Acute Infection: 
Pneumonia

2.2  Chronic 
Infl ammation: Asthma
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   Chronic obstructive pulmonary disease ( COPD  )    is the third most 
common noncommunicable disease with a very high prevalence 
worldwide. It causes signifi cant disability, mortality, and health- 
care costs, e.g., for lifelong medication, lung transplantation, or 
mechanical ventilation. The most common causes for the develop-
ment of COPD are long-term exposure to primary or secondary 
tobacco smoke, combustion of biomass, e.g., by open-fi re cooking 
in developing countries, or genetic predisposition. Increasing evi-
dence indicates that COPD is rather a syndrome than a solitary 
disease. The pathophysiological hallmarks are (1) chronic, 
cortisone- insensitive infl ammation which causes mucus hyperse-
cretion and fi xed bronchoconstriction and remodeling as well as 
(2) irreversible tissue destruction in terms of bronchiectasis and 
emphysema [ 18 ]. They result in respiratory and ventilatory failure. 
An aggravating aspect is the vicious circle of impaired innate immu-
nity, chronic bacterial colonization, and recurrent viral or bacterial 
infections called exacerbations and often resulting in hospitaliza-
tion [ 19 ]. Besides substance avoidance and exercise training, 
COPD symptoms are typically treated by long-acting airway dila-
tors on a lifelong basis. The underlying pathophysiology of chronic 
airway infl ammation can be targeted by either topic or systemic 
glucocorticoids or phosphodiesterase inhibitors. However, these 
treatments are hampered by side effects and low effectivity. 
Increasing numbers of patients with severe ventilatory insuffi ciency 
receive lifelong mechanical ventilation, which is expensive and 
requires special infrastructure. On the other hand, the chances of 
COPD patients to receive lung transplantation are decreasing due 
to high risk of, e.g., cardiovascular or metabolic  comorbidities     .  

   Pulmonary hypertension is a disease of the lung vasculature. 
Hallmarks are a deregulated proliferation of different vascular cell 
types and a progressive obliteration of vessels [ 20 ]. This often 
results in an increased pulmonary vascular resistance, increased 
right heart afterload, and  cor pulmonale . Pulmonary hypertension 
is caused by a combination of genetic and environmental factors. It 
occurs in a variety of clinical situations and heterogeneous pheno-
types. Several histological patterns of abnormalities have been 
described. Despite signifi cant progress that has been made in 
understanding the pathogenesis and the development of new 
methods for delaying the progression of the disease, there is still no 
cure for it [ 21 ].  

   Lung cancer displays the highest neoplasia-related mortality in 
man. Over the last years, its mortality is also increasing in women. 
Cure rates and prognosis are generally poor due to late diagnosis. 
Therefore, a major focus lies on screening and early diagnosis [ 22 ]. 
Another important challenge is the correct molecular diagnosis for 
a targeted therapy. Up to now, lung cancer is subdivided in 

2.3  Chronic 
Infl ammation: COPD

2.4  Pulmonary 
Hypertension

2.5   Cancer  
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so- called small cell lung cancer (SCLC, of neuroendocrine origin) 
and non-small cell lung cancer (NSCLC, e.g., squamous cell cancer, 
adenocarcinoma). Recently, certain mutations have been found to 
be predictive for the sensitivity to new targeted therapies [ 23 ]. 
Therefore, cancer might be the fi rst entity of lung diseases match-
ing the concept of precision medicine [ 24 ]. Lung cancer is mainly 
caused by exposure to primary or secondary tobacco smoke, 
biomass combustion, or naturally occurring  radon   [ 25 ].   

3    Methodological Challenges: “The Mouse Trap” 

 The basic aim of systems medicine is to model human pathophysi-
ology and disease to advance our understanding and to improve 
 clinical diagnosis and treatment  . Therefore, it is a logical and 
straightforward strategy to establish big and well-characterized 
patient cohorts to collect as many clinical and molecular data as 
possible—and suitable—as a solid base for this modeling process. 
However, certain processes or features cannot be observed or 
tested neither in healthy volunteers nor in patients. This includes 
the early origins of disease, e.g., environmental infl uence on asthma 
predisposition that may be epigenetically transferred from mother 
to child, the initial pathophysiological events in the alveolus during 
development of an infl uenza virus-induced pneumonia, and many 
more. In part, these problems can be resolved by the use of cell 
culture or tissue culture models [ 26 ]. However, some aspects can 
only be addressed in a living organism. In the past, for academic 
experimental research as well as for drug candidate studies for sub-
sequent human trials, mice have been used to model human dis-
eases because of the practical convenience (easy handling and low 
costs), the possibility to generate transgenic or gene knockout ani-
mals, and the availability of molecular and immunological tools 
[ 27 ]. However, certain caveats have to be kept in mind: Firstly, 
some of the lung diseases, e.g., asthma, are unique to humans and 
do not occur naturally in mice. Secondly, the anatomy and (patho-)
physiology may differ signifi cantly between mice and humans. 
Besides the obvious size difference—the human lung has a volume 
of 5 l, and the murine lung has a volume of 1 ml—there are also 
signifi cant anatomical and physiological differences. For instance, 
the  human airways   have 23 generations, and the murine has only 
13–16, the human airway division is dichotomic, and the murine 
airway division is monopod; mice do not have respiratory bron-
chioli, and the cellular composition and vascularization of the lung 
are different for both species [ 5 ,  27 ,  28 ]. Moreover, mice strains 
differ in their likelihood to react to stressors with certain patho-
physiological events. In addition, there is increasing evidence that 
the immune systems of mice and men differ signifi cantly. For 
trauma, burns, and endotoxemia, Seok and co-workers compared 
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gene response patterns between human subjects and corresponding 
mouse models: They found that these stressors resulted in highly 
similar patterns in humans, whereas the responses in correspond-
ing mouse models showed only poor correlations with human con-
ditions and also among each other [ 29 ]. Accordingly, there are 
several examples where the reliance on animal models misguided 
the pathophysiological understanding [ 28 ], led to unsuccessful 
clinical trials [ 29 ], or even resulted in disastrous outcomes of clini-
cal studies [ 30 ]. This may be in part due to differences in the 
molecular repertoire of immune cells in mice and humans: For 
example, the inherent versatility of macrophages harbors the 
potential for a plethora of different activation subtypes [ 31 ]. 
Inappropriate polarization can be detrimental to the host, as mac-
rophages can potentiate an inapt immune response and thus 
aggravate a pathological condition: In rodents,  alveolar macro-
phages   have been found to play an important role for the develop-
ment of airway hyperresponsiveness in allergic animals [ 32 ,  33 ]. In 
mice, solid markers for macrophage polarization are established, as 
is exemplifi ed by the well-described induction of NOS2 in 
M1(IFNγ) and of ArgI in M2 (IL-4) macrophages. Corresponding 
functional markers in the human system are yet to be found, and 
there are notable differences between human and murine macro-
phage activation patterns on the transcriptional level [ 34 ]. 
Accordingly, a comparative study of M2 (IL-4) polarization in 
mouse and man shows very limited interspecies consistency, as only 
transglutaminase 2 (TGM2) was found to be a functional marker 
shared by both [ 35 ].  

4    Case Studies 

   The most frequent cause of community-acquired pneumonia is 
pneumococcal infection. Smith and co-workers established a math-
ematical model to predict the outcome of  pneumococcal pneumo-
nia   with the two possible states (1) bacterial clearance, or (2) 
sustained bacterial growth [ 36 ]. The model is based on data of 
pulmonary bacterial replication from a mouse model of 
 pneumococcal pneumonia. Using ordinary differential equations 
(ODEs), it describes three lines of barrier defense: First, the initial 
alveolar macrophage response mounts a fast but weak defense and 
is described by only one equation for the bacterial population. 
Second, the early recruitment of  neutrophils   consist of cytokine 
release by different populations of alveolar macrophages and epi-
thelial cells, the infl ux of neutrophils, neutrophil apoptosis, and 
debris removal by alveolar macrophages. Third, a subsequent 
recruitment of monocyte-derived macrophages has been included 
that contributes to bacterial killing. This model provides some 
interesting insights and suffi cient accuracy for certain questions, 

4.1  Modeling Lung 
Infection
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although it is of moderate complexity and based on limited experi-
mental data. Some more data from previously published mouse 
studies have been included in another effort to model pneumococ-
cal pneumonia: Bacterial numbers in the lung and the blood and 
also neutrophil levels from infection experiments with four differ-
ently susceptible mouse strains [ 37 ] have been used to calibrate 
this ODE model. It consists of four equations describing the time 
evolution of the number of pathogens in the lung and in the blood, 
damaged lung epithelial cells, and total activated phagocytes. The 
model has been validated on other published data sets, and its pre-
dictions are consistent with most experimental observations. 
However, no study so far has modeled pneumonia dynamics in 
patients. Therefore, a new consortium (“Medical Systems Biology 
of Pulmonary Barrier Failure in Community Acquired Pneumonia; 
e:Med CAPSYS” [ 38 ]) aims at multiscale modeling of pulmonary 
barrier failure in bacterial  pneumonia   based on comprehensive 
physiological, proteomic, and transcriptomic data sets from clinical 
cohorts, complex mouse models, and human cell culture models 
(Fig.  1 ). It will include three cohorts: 10,000 well-phenotyped 
pneumonia patients of the CAPNETZ study (clinical, biochemical, 
and genetic data) [ 39 ], more than 1000 patients with uncompli-
cated or severe pneumonia or pneumogenic sepsis (several visits, 
data from genotyping, expression profi ling, and proteomics), and 
a newly recruited deep-phenotyping cohort of about 100 patients 
that will undergo, e.g., bronchoscopy for microbiome and exo-
some analysis. 

 Several mathematical models have been developed to study 
and understand host immune response mechanisms in  pulmonary 
 Mycobacterium tuberculosis  (Mtb) infection  . Marino and Kirschner 
[ 40 ] used a two compartment model to investigate the human 
immune response to Mtb in the lung. By performing bifurcation 
analysis of the model, the authors identifi ed key processes of cel-
lular activation and priming that occur between the lung and the 
nearest draining lymph node that have the potential to determine 
different outcomes of the Mtb infection. To identify control mech-
anisms of granuloma formation during Mtb infection in the lung, 
Segovia-Juarez et al. [ 41 ] built a complex agent-based model 
which accounts for interactions between Mtb, immune effectors 
such as chemokines and cytokines, and immune cells like macro-
phages, CD4 + , and CD8 +  T cells. With the help of the model, the 
authors identifi ed several issues that are crucial for granuloma for-
mation during the course of Mtb infection, including effi ciency of 
chemokine diffusion, prevention of macrophage overcrowding 
within the granuloma, arrival time, location, and number of T cells 
within the granuloma, as well as overall host ability to activate mac-
rophages. To investigate the contribution of CD8 +  T cells to con-
trol Mtb infection, Sud et al. [ 42 ] built an ODE model of the 
immune response to Mtb in the lung. Using the model, the authors 
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examined the importance of CD8 +  T cells in the control of the 
infection and determined putative minimum T cell levels providing 
effective protection following vaccination. A model of differential 
equations was also developed to investigate the different roles 
played by alternatively activated macrophages ( AAM  )    versus classi-
cally activated macrophages ( CAM  )    in the early stages of Mtb 
infection in the lung. The model described the interactions among 
cells, bacteria, and cytokines involved in the activation of AAM and 
 CAM   and was a useful tool to analyze strategies for reducing the 
switching time (i.e., when CAM become more dominant than 
AAM), which ensures an adequate immune response to the patho-
gen [ 43 ]. Similarly, Kirschner’s group built two ODE models to 
investigate the function of macrophage (CAM)-activating cyto-
kines (i.e., TNF α  and IFN γ ) in Mtb infection. One model was used 
to test the ability of macrophages to kill Mtb under different sce-
narios, in which the macrophage activation is characterized by the 
timing of  IFNγ and TNF α  signaling   relative to the infection [ 44 ]. 
The model simulations unraveled a preferred host strategy for 
mycobacterial control that is implemented via the direct entry of 
macrophages into a granuloma site from lung vascular sources. 
The other model was used to predict the contribution of multiple 
TNF α  activities to the control of Mtb infection within the granu-
loma, with the assumption that macrophage activation is a key 
effector mechanism for controlling bacterial growth in the lung. 
The simulation results suggested that bacterial numbers are a 
strong contributing factor to granuloma structure with TNF, and 
TNF-dependent apoptosis can reduce infl ammation at the cost of 
impairing mycobacterial clearance [ 45 ]. 

 One of the fundamental challenges in the control of  pulmo-
nary Mtb infection   is to understand molecular mechanisms involved 
in the onset of latency and/or reactivation of Mtb after the initial 
infection. Magombedze and Mulder [ 46 ] built a mathematical 
model to simulate all possible Mtb latency occurrence scenarios in 
the lung based on the profi le of differentially expressed genes. 
Their ODE model was used to simulate observed gene expression 
changes in in vitro latency models which allow for illustrating all 
possible latency/dormancy occurrence scenarios and latency reac-
tivation. In a subsequent study, the same author used a systems 
biology approach combing both bioinformatics and mathematical 
modeling to identify potential drug target genes in the Mtb latency 
program. Boolean modeling of the data-driven regulatory network 
related to mycobacterial latency in the lung revealed a bistable 
switch between latent and actively replicating phases of Mtb [ 46 ].  

   Multiscale models of the lung have been developed and applied to 
gain a better understanding of asthma in several aspects. These 
models incorporate and couple multiple spatial scales (molecules, 
cells, tissues, and the lung) underlying airway hyperresponsiveness 
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to simulate the complex physiological response to, e.g., allergens 
in asthma. Venegas et al. carried out a study that probed the scale 
of ventilation heterogeneity in asthmatic subjects using positron 
emission tomography imaging and that modeled complex interde-
pendent behavior in the lung [ 47 ]. The authors found that ventila-
tion is not uniform within bronchoconstricted regions, and within 
the ventilation defects themselves, there is considerable ventilation 
heterogeneity. Brook et al. developed an axisymmetric two-layer 
model of an airway wall to represent both lung slices and an intact 
airway in vivo, which resolves connective tissue and muscle cell 
properties within a composite muscle layer [ 48 ]. The model pre-
dicted that different types of airway remodeling in asthma lead to 
signifi cantly different contractile responses and stress environ-
ments. For better understanding of airway hyperresponsiveness in 
asthmatic airways, a multiscale model of partial and ordinary dif-
ferential equations was developed, which linked regulatory pro-
cesses occurring at molecular and cellular level (Ca 2+  and crossbridge 
dynamics) with physiological phenomena occurring at the organ 
level (lung deformation) [ 49 ,  50 ]. Chernyavsky et al. developed a 
mathematical model that qualitatively describes the growth dynam-
ics of airway smooth muscle cells (ASM)    over short and long terms 
in the normal and infl ammatory environments typically observed 
in asthma [ 51 ]. This model allowed possible  ASM   accumulation 
scenarios to be explored and suggested possible new targets for 
diagnosis and prevention of ASM re modeling in asthma  . 

 Recently, new consortia have started to apply systems biology 
strategies to asthma in a clinical context: Within the Innovative 
Medicines Initiative, a European project aims at a personalized 
management approach for patients with severe asthma (Unbiased 
Biomarkers for the Prediction of Respiratory Disease Outcome 
Consortium;  U-BIOPRED     ) [ 52 ]. It involves scientists from uni-
versities, research institutes, the pharmaceutical industry, and small 
companies and plans to defi ne phenotypes with respect to 
 therapeutic effi cacy by integrating -omics data from invasively and 
noninvasively obtained patient material and modeling of the under-
lying pathologies [ 53 ]. Another project aims to develop validated 
models that predict disease progression and response to treatment 
in asthma and COPD by integrating expertise in physiology, radi-
ology, image analysis, bioengineering, data harmonization, secu-
rity and ethics, computational modeling, and systems biology 
(Airway Disease Predicting Outcomes through Patient Specifi c 
Computational Modeling Consortium;  AirPROM     ) [ 54 ]. This 
project is funded by the European Union 7th Framework 
Programme. Recently, the German Center for Lung Research 
(DZL) has established a systems biology platform [ 55 ] to integrate 
patient data from its cohorts for childhood wheezing and severe 
asthma in adults with experimental models by means of multiscale 
 modeling  .  
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   To investigate airway disease resulting from  infl ammation and 
fi brosis   following particulate exposure, Brown et al. used an agent- 
based model, which focuses on a limited number of relevant inter-
actions, specifi cally those among macrophages, fi broblasts, 
pro-infl ammatory (TNFα) and anti-infl ammatory cytokines 
(TGFβ1), collagen deposition, and tissue damage [ 56 ]. The model 
predicted three distinct states of infl ammation whose develop-
ments depend primarily on the degree and duration of particulate 
exposure. The predictions were consistent with in vivo experimen-
tal observations obtained after exposing mice lung tissue to par-
ticulate matter. 

 A mathematical model composed of partial differential equa-
tions that describe the interactions among immune cells and cyto-
kines related to sarcoidosis in the lung was built by Hao et al. [ 57 ]. 
The model was calibrated and validated using clinical data on cyto-
kine levels in healthy and diseased lung tissues and further used to 
explore the effect of potential treatments (such as anti-TNFα, anti-
IL- 12, anti-IFNγ, and TGFβ enhancement) that may reduce the 
disease activity through decreasing the size of  sarcoid granulomas  . 
Taken together, the constructed model is a step toward a more 
comprehensive study of sarcoidosis and its treatment. 

 Many end-stage respiratory diseases require lung transplanta-
tion as a last resort. However, with 27 % overall 10-year survival, 
this procedure shows the poorest long-term survival of all solid 
organ transplantations [ 58 ]. The main reason for this is the devel-
opment of chronic lung allograft dysfunction (CLAD) by over 50 
% of all lung transplant recipients within 5 years. Therefore, 14 
lung transplantation centers teamed up to build a computational 
model to estimate the personal recipient risk to develop CLAD 
within 3 years after the transplantation (systems biology of CLAD, 
SysCLAD). They will analyze clinical, environmental, and immu-
nological data, the microbiome and different -omics data both 
from donors and recipients [ 59 ]. 

 One question that is still unsolved in lung cancer is how circu-
lating tumor cells can develop at the primary site and traverse the 
circulatory systems. Having in mind the diffi culties to generate 
suitable in vivo data to elucidate this question, mathematical mod-
eling under the systems biology paradigm seems to be a good 
methodological option. In line with this, Kuhn’s group used a 
Markov chain Monte Carlo model that describes cancer progres-
sion to identify and quantify the multidirectional pathways and 
timescales associated with metastatic spread from primary lung 
cancer [ 60 ,  61 ]. In contrast to the traditional view of cancer metas-
tasis as a unidirectional process starting at the primary site and 
spreading to distant sites as time progresses, the authors quantifi ed 
three types of multidirectional mechanisms of cancer  progression   
based on large autopsy data sets: (1) self-seeding of the primary 
tumor, (2) reseeding of the primary tumor from a metastatic site, 
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and (3) reseeding of metastatic tumors [ 61 ]. By simulating the 
model, the authors showed that for lung cancer, the main spread-
ers (i.e., the distant site that has higher probability of transmitting 
than keeping circulating tumor cells from the primary site) are the 
adrenal gland and kidney, whereas the main sponges (i.e., the dis-
tant site that has lower probability of transmitting than keeping 
circulating tumor cells from the primary site) are regional lymph 
nodes, the liver, and bone.  

   Mathematical models have been utilized not only for a system-level 
understanding of the whole respiratory system but also for a 
detailed understanding of several functions that contribute to gas 
exchange within the lung (reviewed by Ben-Tal and Tawhai [ 62 ]). 
Particularly, two studies have been carried out to investigate the 
effect of ventilation/perfusion mismatch on hepatopulmonary 
syndrome and lung infl ammation, respectively. Chakraborty et al. 
developed a differential equation model of pulmonary oxygen 
uptake by considering three disparate scales, namely, micro (red 
blood cell), meso (capillary and alveolus), and macro (lung) [ 63 ]. 
The authors used the model to quantify the oxygen uptake abnor-
malities in patients with hepatopulmonary syndrome as a result of 
functional intrapulmonary right to left shunting of pulmonary 
blood fl ow, as well as spatial heterogeneity of ventilation/perfusion 
mismatch in the lung. Furthermore, the quantifi ed pulmonary gas 
exchange abnormalities in the patients were used for stratifying 
them into two categories—those who are oxygen responsive and 
those who are oxygen nonresponsive with intractable hypoxemia. 
Reynolds et al. [ 64 ] developed a multi-compartment model of 
ODEs for gas exchange with focus on infl ammation in acute lung 
injury. Using the model, the authors explored effects of infl amma-
tion on ventilation/perfusion distribution and the resulting pul-
monary venous partial pressure oxygen level during systemic 
infl ammatory stresses. 

 In the last years, a number of compartment-based pharmaco-
kinetic (PK) models accounting for the kinetics of inhaled pharma-
ceuticals have been published. For instance, Sturm [ 65 ] developed 
a stochastic model describing mucociliary clearance in cystic fi bro-
sis patients and its development with progressing course of the 
disease. The model showed that patients with cystic fi brosis have a 
higher risk of inhaled particle accumulation and related particle 
overload in specifi c lung compartments than healthy subjects. 
Markovetz et al. built a more complex model to describe the 
mucociliary clearance and absorption of aerosolized radiolabeled 
particles and small molecular probes from human subjects with and 
without cystic fi brosis [ 66 ]. This model captured the mucociliary 
clearance and liquid dynamics of the hyperabsorptive state in cystic 
fi brosis airways and the mitigation of that state by hypertonic saline 
 treatment  .   

4.4  Modeling Gas 
Exchange 
within the Lung 
and the Dynamics 
of Inhaled 
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for Lung Diseases
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5    Perspectives 

 Despite all clinical and scientifi c efforts so far, lung diseases cause 
an enormous suffering and death toll from patients and socioeco-
nomical costs for our societies and health-care systems, especially 
in the fi elds of infection, malignancies, chronic noncommunicable 
diseases, and allergy. This may be in part due to complicated, even 
prenatal, timelines, and heterogeneous clinical phenotypes. On the 
other hand, new scientifi c insights, e.g., in the role of the microbi-
ome and noncoding RNA, and new technological developments, 
e.g., the new sequencing technologies, may help us to improve our 
clinical performance in future. But these tremendous amounts of 
clinical and molecular data require a new way of organizational, 
technological, and intellectual cooperation between many clinical, 
experimental, and theoretical disciplines, called “systems medi-
cine.” Many questions remain to be answered: What type and 
amount of clinical data do we need and can we afford to collect 
and analyze? What will be the role of animal models, human tissue 
models, complex cell culture models, or even artifi cial organs on a 
chip? How can we bring all these complex and multilevel data 
together by means of mathematics and computer science? 
Improving clinical practice in respiratory medicine will require 
enthusiasm and hard work from all participating physicians and 
scientists, as well as sustained support by our governments, fund-
ing agencies, and all stakeholders of our health-care systems.     
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