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    Chapter 1   

 Cell Cycle-Regulated Transcription: Effectively Using 
a Genomics Toolbox 

           Sara     L.     Bristow    ,     Adam     R.     Leman    , and     Steven     B.     Haase    

    Abstract 

   The cell cycle comprises a series of temporally ordered events that occur sequentially, including DNA 
 replication, centrosome duplication, mitosis, and cytokinesis. What are the regulatory mechanisms that 
ensure proper timing and coordination of events during the cell cycle? Biochemical and genetic screens 
have identifi ed a number of cell-cycle regulators, and it was recognized early on that many of the genes 
encoding cell-cycle regulators, including cyclins, were transcribed only in distinct phases of the cell cycle. 
Thus, “just in time” expression is likely an important part of the mechanism that maintains the proper 
temporal order of cell cycle events. New high-throughput technologies for measuring transcript levels have 
revealed that a large percentage of the  Saccharomyces cerevisiae  transcriptome (~20 %) is cell cycle regu-
lated. Similarly, a substantial fraction of the mammalian transcriptome is cell cycle-regulated. Over the past 
25 years, many studies have been undertaken to determine how gene expression is regulated during the 
cell cycle. In this review, we discuss contemporary models for the control of cell cycle-regulated transcrip-
tion, and how this transcription program is coordinated with other cell cycle events in  S. cerevisiae . In 
addition, we address the genomic approaches and analytical methods that enabled contemporary models 
of cell cycle transcription. Finally, we address current and future technologies that will aid in further under-
standing the role of periodic transcription during cell cycle progression.  
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1      Introduction 

 Successful cell division requires complete duplication of genetic 
material followed by equal segregation into two cell bodies, result-
ing in two identical daughter cells. Historically, the cell cycle has 
been divided into four phases—Gap 1 (G1), Synthesis (S), Gap 2 
(G2), and Mitosis (M)—that describe the chronological order of 
different events observed in normally cycling cells. The bulk of 
duplication and segregation events occur in S and M phases. 
During S phase, both DNA and centrosomes are duplicated 
(Fig.  1 ). Duplicated centrosomes separate in order to form the 
poles of the mitotic spindle responsible for segregating sister 
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 chromatids (Fig.  1 ). Sister chromatid segregation is initiated during 
M phase, or mitosis (Fig.  1 ).

   G1 and G2 were termed “gap” phases, as they separate the 
 visibly observable events of S and M phase. Although no overt 
 cellular changes or events are observed during G1 and G2, cells are 
interpreting signals from their extracellular and intracellular envi-
ronments to ensure that conditions are appropriate for cellular 
division events. In early G1, cells interpret extracellular signals 
(e.g., nutrient abundance, mating pheromone) to decide whether 
to commit to a new cell cycle. Following this point of commitment 
(called START in  Saccharomyces cerevisiae ), cells prepare for entry 
into S phase by activating the expression of genes required for 
duplicating DNA and centrosomes (Fig.  1 ). In G2, cells interpret 
intracellular signals from checkpoint pathways that monitor 
whether duplication events have been completed with fi delity, and 
whether the mitotic spindle apparatus is functional. 

 Each cell cycle event—such as DNA replication, centrosome 
duplication, and chromosome segregation—is a complex process 
that requires the coordination of many different proteins acting 
together to complete the task at hand. In turn, each of these com-
plex events must be coordinately controlled with the other events. 
What, then, are the mechanisms that orchestrate the complex set of 
events required for cellular division? Over the past three decades, an 
overwhelming number of studies have identifi ed and characterized 
two proteins that act in a complex to trigger cell cycle events: 
cyclins and cyclin-dependent kinases (CDKs). Both biochemical 
and genetic approaches have shown that, throughout the cell cycle, 
CDKs are activated by different cyclins, whose role is to activate 
and inhibit different events at the proper time and in the proper 
order (reviewed in [ 1 – 3 ]). More recently, it has been shown that up 
to a fi fth of the  S. cerevisiae  genome, including cyclins themselves, 

  Fig. 1    Cell-cycle progression in  Saccharomyces cerevisiae . Budding yeast serves 
as an excellent model system to study the cell cycle. Timing and regulation of 
events are conserved across species. More importantly, the phase of the cell 
cycle can be deduced by observing the state and size of the bud, the future 
daughter cell       
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is transcribed once per cell cycle [ 4 – 7 ]. This set of genes is often 
referred to as the cell cycle-regulated transcriptional program. The 
precise nature of this temporal transcriptional program may serve 
as another mechanism to ensure proper timing and ordering of cell 
cycle events. 

 Historical models of cell-cycle regulation have proposed that 
cyclin/CDK activity directs transcription factors to initiate gene 
expression at the proper time [ 8 ] (reviewed in [ 9 – 11 ]). However, 
recent studies have shown that cell cycle-regulated transcription 
has the capacity to occur largely in the absence of CDKs [ 5 ,  12 ]. 
These fi ndings suggest that some other regulatory mechanism is 
responsible for controlling periodic transcription and coordinating 
cell cycle events. To better understand and characterize this con-
trol module, single gene studies have given way to genome-wide 
experimental approaches that measure global gene expression 
dynamics [ 4 – 7 ]. These studies require unbiased quantitative 
 analyses tailored both to the experimental method and to the over-
arching biological question. Here, we will discuss both current and 
future experimental and analytical methods used to address the 
seemingly simple questions: What portion of the genome is cell 
cycle-regulated? And how is this transcription program coordi-
nated with other cell cycle events?  

2    Cell Cycle-Regulated Transcription 

   With the advent of modern molecular biology, measuring mRNA 
levels in cells became a regular test to address whether genes are 
regulated at the transcriptional level. For genes involved in the cell 
cycle, understanding gene regulation at the transcriptional level 
requires measuring mRNA abundance over time in synchronous 
populations of cells as they progress through the cell cycle. Histones 
were the fi rst genes identifi ed whose expression oscillates periodi-
cally during the cell cycle [ 13 ]. Classifying histone gene expression 
as cell cycle-regulated was done by correlating the timing of his-
tone mRNA expression with the timing of DNA replication over 
the course of several cell cycles [ 13 ]. Over the following decade, 
ten more genes involved in cell cycle events were also identifi ed as 
being expressed in a periodic manner— HO  [ 14 ],  CDC21  [ 15 ], 
 CDC9  [ 16 ],  RAD6  [ 17 ],  SWI5  [ 18 ],  CDC8  [ 19 ],  POL1  [ 20 ], 
 DBF4  [ 21 ],  PRI1  [ 22 ], and  DBF2  [ 23 ]. For each of these genes, the 
defi nition of periodic is anchored to the correlation of gene expres-
sion with an observable cell cycle event that is known to occur only 
once per cycle. The periodic expression of these genes was discov-
ered while investigating the function of each gene during cell cycle 
events. Is periodic expression of cell cycle genes a global phenom-
enon or specifi c to just a small set of genes? In total, approximately 
100 periodically expressed budding yeast genes were identifi ed one 

2.1  Identifying 
Periodic Transcripts

Cell Cycle Transcription
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at a time using northern blots. However, a technology that is able 
to measure transcript dynamics at a genome- wide level was neces-
sary not only to quantify the proportion of genes that is periodi-
cally transcribed but also to understand how cell cycle-regulated 
transcription is coordinated with cell cycle progression. 

 The microarray is one method developed to measure mRNA 
levels of many genes in an organism [ 24 ]. Several genome-wide 
studies utilizing microarrays have been reported that focus on iden-
tifying periodic genes with respect to the cell cycle in synchronized 
populations of budding yeast cells. Cho and colleagues identifi ed 
416 genes as being cell cycle-regulated at the transcriptional level by 
visual inspection of transcript dynamics [ 4 ]. Spellman and colleagues 
identifi ed 800 genes that demonstrate oscillations in transcript levels 
during the cell cycle using quantitative methods including a Fourier 
transform and Pearson correlation [ 7 ]. Pramila and colleagues found 
991 cell cycle-regulated transcripts using a permutation-based 
method developed by de Lichtenberg and colleagues [ 6 ,  25 ]. 
Orlando and colleagues identifi ed 1,275 periodically expressed 
genes also using a permutation-based method [ 5 ,  25 ]. Overall, 
between the three studies using quantitative methods to identify 
periodic genes, 440 cell cycle-regulated genes are shared [ 5 – 7 ]. 

 Although each study identifi es slightly different sets of periodic 
genes, it is clear that many more genes are regulated at the transcrip-
tional level during the cell cycle than previously thought. Differences 
between periodic gene lists from each study result from a combina-
tion of experimental design and quantitative analysis. Further dis-
cussion of these differences is addressed in a later section. 

 Is the phenomenon of cell cycle-regulated transcription  specifi c 
only to budding yeast? Additional studies in fi ssion yeast and 
human cells have measured gene expression dynamics in synchro-
nized cells to determine the scope of periodic transcription in these 
organisms. In fi ssion yeast, three genome-wide studies identifi ed a 
limited number of periodic genes [ 26 – 28 ]. Unlike budding yeast, 
fewer genes were classifi ed as cell cycle-regulated; less than 800 
genes were identifi ed by each study. Similar to budding yeast, the 
consensus between studies is very low, with only 171 genes shared 
between all analyses [ 26 – 28 ]. Two studies in human cell lines have 
classifi ed fewer than 1,000 periodic genes [ 29 ,  30 ]. The low num-
bers of periodic genes may be due to the larger genome size, unde-
tected alternative splicing of introns, or the diffi culty involved in 
synchronizing fi ssion yeast or human cell lines. While budding 
yeast has the largest number of identifi ed periodic genes, cell cycle- 
regulated transcription is also clearly observed in fi ssion yeast and 
human cell lines, suggesting that this phenomenon is conserved 
between organisms. Moreover, the transcriptional regulation of some 
orthologs in the evolutionarily diverged yeast species  S. cerevisiae  
and  S. pombe  have been shown to be conserved [ 31 ]. With improved 
experimental approaches and mRNA measuring technology, the 
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characterization of periodic gene expression will become more 
tractable in other model systems. 

 Two questions arise from the fi nding that the transcriptional 
program is conserved across eukaryotes: (1) what is the signifi cance 
of cell cycle-regulated transcription and (2) what mechanisms coor-
dinate this large transcriptional program with cell cycle progression?  

  Many hypotheses have been posed to explain the importance of 
cell cycle-regulated transcription. The explanations can be general-
ized into three categories. While all are plausible reasons for 
 regulating gene expression timing during the cell cycle, it is not 
currently possible to discriminate between the multiple  hypotheses. 
Moreover, each potential hypothesis is not mutually exclusive and 
may be true for only a subset of cell cycle-regulated genes. 

 The fi rst category postulates that cell cycle-regulated transcrip-
tion is a mechanism to expend energy resources effi ciently, as tran-
scription and translation are energetically expensive. This concept 
is often referred to as “just in time” transcription, in which gene 
products that function at a specifi c cell cycle interval are expressed 
only when needed (Fig.  2a ) (reviewed in [ 10 ,  32 ,  33 ]). A variation 
on this fi rst explanation has been referred to as the “Sleeping 
Beauty” situation, which takes into account the full lifetime of a 

2.2  Signifi cance of 
Cell Cycle- Regulated 
Transcription

  Fig. 2    Signifi cance of the periodic transcription program. ( a ) Genes are expressed 
only during the cell-cycle phase needed. Genes required for DNA replication are 
expressed during S phase. ( b ) The temporal order of gene expression may aid in 
the construction of a protein complex only needed once per cycle. ( c ) While protein 
levels of cell-cycle regulators may remain constant, posttranslational modifi ca-
tions may alter the activity of the proteins       
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cell or tissue, rather than the completion of a single cell cycle ([ 7 ], 
reviewed in [ 9 ]). Whether it is a single budding yeast or a popula-
tion of cells that form tissues in an organism, active cellular division 
occurs during only a portion of a cell’s overall life cycle. Micro-
organisms are subject to environmental constraints and will divide 
when conditions (nutrients, temperature, growth factor signaling, 
etc.) permit, but not when the local environment is not amenable 
to cell division. Therefore, much of the life of a single cell is spent 
outside the cell cycle, in a state of rest or quiescence. However, 
once a signal is received to initiate cellular division, the cells are 
poised to complete cell cycle events with the proper genes expressed 
at the correct time.

   A second proposal for the importance of cell cycle-regulated 
transcription centers on building a required structure only once 
per cell cycle (Fig.  2b ) (reviewed in [ 32 ,  33 ]). For example, 
 proteins required for DNA replication are loaded onto DNA in 
different stages. The components of the replication complex are 
periodically transcribed themselves, lending to the temporal events 
that are required for DNA replication. A pre-initiation complex 
fi rst binds to DNA replication origins and is only activated when 
elements are phosphorylated by S-phase cyclin/CDK. Other com-
ponents required for replication are then synthesized, recruited to 
origins, and replicate DNA (reviewed in [ 34 ]). Further, mitotic 
cyclin/CDK activity inhibits the reformation of pre-initiation 
complexes until the following cell cycle [ 35 ]. This mechanism 
ensures that the complex required to trigger DNA replication is 
only built once and thus acts as a layer of control to prevent 
re-replication. 

 A third category of hypotheses centers on renewing pools of 
unmodifi ed protein. Gene products that are posttranslationally 
modifi ed may no longer be active or be responsive to additional 
signaling. Therefore, periodic transcription provides a pool of 
unmodifi ed product that is able to carry out cell cycle events 
(Fig.  2c ) (reviewed in [ 9 ]). For example, Swi6, a component of 
transcription factor complexes SBF and MBF, is phosphorylated in 
S phase after START to localize it to the cytoplasm [ 36 ]. Periodic 
transcription of  SWI6  may provide a new pool of the Swi6 protein 
to induce transcription at START. 

 Despite varying hypotheses on the physiological importance 
of the cell cycle-regulated transcriptional program, the underlying 
requirement for proper expression timing during the cell cycle has 
led to the development of a sophisticated program for cell cycle 
transcription control. Additionally, transcriptional regulation of 
these genes may represent only a single layer of control; post-
translational modifi cations such as cyclin/CDK phosphorylation 
have also been shown to play a critical role in proper coordination 
of cell cycle events. Understanding how periodic transcription is 
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regulated and is coordinated with other cell cycle events may lead 
to insight into the importance of such a substantial periodic tran-
scriptional program.  

  How does the cell generate a large and continuous program of 
temporally ordered gene transcription throughout the cell cycle? 
In order to understand how this is done, we need to understand 
the transcriptional regulators. As more and more transcripts were 
identifi ed as periodic during the cell cycle, focus turned to the reg-
ulators that activated or inhibited transcription—transcription 
 factors (TFs). To identify the regulators that control activation or 
repression of periodic transcription in budding yeast, researchers 
utilized genetic tools, promoter sequence information, and physi-
cal localization studies [ 37 – 39 ]. Not surprisingly, a number of TFs 
were found to regulate distinct subsets of periodic genes through-
out the cell cycle (reviewed in [ 9 – 11 ,  33 ]). A list of known TFs 
involved in cell cycle-regulated transcription and relevant informa-
tion on their activation timing and regulation by cyclin/CDKs is 
shown in Table  1 .

   The TFs identifi ed possess three striking qualities that suggest 
potential modes of regulation for the periodic transcription pro-
gram. First, many of the TFs that play a role in controlling cell 
cycle-regulated transcription are themselves periodically tran-
scribed (reviewed in [ 11 ]). For TFs that act in complexes, at least 
one TF is periodically expressed. This observation suggests that a 
portion of genes may be cell cycle-regulated due to the periodic 
expression of their regulators. Second, cyclin/CDK activity has 
been found to affect the activity of many of these transcription factors. 

2.3  What Are 
the Regulators 
of Periodic 
Transcription?

     Table 1  
  Transcription factors that are known to play a role in activating or repressing periodic transcription 
during the cell cycle   

 TF  Phase  Function  Representative target  CDK target?  CDK regulation 

 SBF  G1/S  Activator   CLN1   Yes [ 52 ]  Inhibitory 

 MBF  G1/S  Activator   POL1   Yes [ 98 ]  Unknown 

 Yhp1  G1/S  Repressor   CLN3   No  N/A 

 Yox1  G1/S  Repressor   SWI4   No  N/A 

 Nrm1  G1/S  Co-repressor  N/A  Yes [ 99 ]  Unknown 

 Hcm1  S  Activator   NDD1   No  N/A 

 SFF  G2/M  Activator   CLB2   Yes [ 61 ,  63 ]  Activating 

 Ace2  M/G1  Activator   NIS1   Yes [ 64 ]  Inhibitory 

 Swi5  M/G1  Activator   SIC1   Yes [ 65 ]  Inhibitory 

Cell Cycle Transcription
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In these cases, cyclins that are expressed during any of these phases 
have the capacity to affect TF activity (Table  1 ). Additionally, this 
regulation can be either activating or inhibitory depending on the 
TF (Table  1 ). These fi ndings, coupled with cyclin deletion experi-
ments, imply that cell cycle-regulated gene expression is also mod-
ulated by cyclin/CDK activity [ 40 – 42 ]. Finally, genome-wide 
binding data have shown that these TFs also bind to the promoters 
of other TFs shown to regulate periodic gene expression [ 8 ,  43 ,  44 ]. 
In fact, TFs expressed late in the cell cycle have been shown to bind 
to the promoters of TFs responsible for early periodic gene expres-
sion [ 45 ]. This fi nding demonstrates that the TFs controlling the last 
wave of periodic transcription may also activate the fi rst TFs in the 
following cycle. Taken together with global views of transcript 
dynamics from microarray experiments [ 7 ], it was proposed that a TF 
network could account for the periodic nature of the TFs themselves 
and the entire periodic transcription program ([ 8 ,  44 ], reviewed in 
[ 9 – 11 ]). Models for how the TF network is integrated with cyclin/
CDK activity and cell cycle events will be discussed below. 

 Several versions of TF networks that control cell cycle- regulated 
transcription have been proposed [ 5 ,  6 ,  8 ,  12 ,  44 ]. Understanding 
which TFs are included in the network is an important outstanding 
question. For the purposes of this review, we will focus on how a 
transcriptional signal is transmitted through a version of the tran-
scription network (Fig.  3 ).

   Concurrent with passage through START and the commitment 
to the cell cycle, the heterodimeric TFs SBF and MBF  activate a large 
program of periodic genes involved in budding, centrosome duplica-
tion, and DNA replication. SBF and MBF share a trans-activating 
subunit, Swi6 [ 46 ], and each have a distinct DNA-binding subunit, 
Swi4 and Mbp1, respectively [ 47 ,  48 ]. Activation of SBF and MBF 
centers on feedback loops that include G1 cyclin/CDKs and the 
transcriptional co-repressor Whi5 [ 40 ,  41 ,  49 ,  50 ] (Fig.  3 ). Activation 
begins when Cln3/Cdk1 phosphorylates Whi5, triggering its dis-
sociation from SBF complexes and the activation of transcription of 
SBF targets. Two of these targets are the genes encoding the 
G1-cyclins; Cln1 and Cln2. Cln1/Cdk1 and Cln2/Cdk1 kinase 
complexes also phosphorylate Whi5, triggering further dissociation 
from SBF complexes and export from the nucleus. Following activa-
tion, a series of transcriptional repressors and B-type cyclins inacti-
vate SBF and MBF in a series of negative feedback loops. SBF 
activates the  YOX1  and  YHP1  genes, and in turn, their gene prod-
ucts repress the transcription of the gene encoding the SBF compo-
nent, Swi4 [ 51 ]. Moreover, SBF transcriptional activity is repressed 
by Clb2 [ 52 ], after a cascade of transcriptional activation that trig-
gered the expression of the  CLB2  gene (Fig.  3 ). The transcriptional 
activity of MBF is modulated by its direct target and co-repressor 
 NRM1  [ 53 ] (Fig.  3 ). Thus, positive feedback loops contribute to 
the full activation of SBF and MBF, while negative feedback loops 
serve as the “OFF switch” for their activity. 
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 SBF and MBF transmit a transcriptional signal to activator 
Hcm1 [ 54 ] that is responsible for expression of genes required for 
chromosome segregation, centrosome dynamics, and budding 
during late S phase [ 6 ] (Fig.  3 ).  HCM1  is periodically transcribed, 
and its protein levels are also periodic, closely mirroring the behav-
ior of  HCM1  mRNA [ 6 ]. Moreover, Hcm1 activates the synthesis 
of the SBF co-repressor  WHI5  and Swi-fi ve factor (SFF) subunit 
 NDD1  [ 6 ] (Fig.  3 ). SFF, a TF complex composed of Fkh1, Fkh2, 
Ndd1, and Mcm1 [ 55 – 59 ], activates a set of periodic genes referred 
to as the “ CLB2  cluster” during G2/M phase ([ 7 ,  60 ], reviewed in 
[ 9 – 11 ]). SFF activity is modulated through a positive feedback 
loop with the B-type cyclin Clb2 [ 52 ]. SFF activates  CLB2  gene 
transcription [ 60 ], which in turn binds CDK and further stimulates 
components of SFF to increase its transcriptional activity [ 61 – 63 ] 
(Fig.  3 ). SFF transmits the periodic transcriptional signal by acti-
vating transcription of genes encoding TFs  ACE2  and  SWI5  [ 60 ] 
(Fig.  3 ). Ace2 and Swi5 share a number of targets (Ace2 also 
 activates a number of unique targets only in daughter cells) and 
activate periodic transcripts involved in the transition between late 
M phase and the beginning of early G1 of the subsequent cell cycle. 

  Fig. 3    Cell-cycle transcription network. An interconnected network of transcription factors that demonstrate 
how a transcriptional signal could be passed through the cell cycle. Note that this is just one representation of 
a TF network. Based on signifi cance cutoffs and TFs included, different networks may be constructed.  Boxes  
are nodes.  Green , transcriptional activators;  red , transcriptional repressors;  blue , posttranslational modifi ca-
tions.  Arrows  signify either an upstream promoter binding to the promoter of the downstream target ( black 
arrows ) or a posttranslational modifi cation that affects the activity of the TF ( blue arrows ). Nodes are placed on 
a cell-cycle timeline based on time of peak expression in wild-type cells (Color fi gure online)       
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While Ace2 and Swi5 are transcribed during G2/M, their activity 
is inhibited by Clb2/CDK-dependent cytoplasmic sequestration 
[ 64 ,  65 ]. Mitosis triggers the destruction of Clb2, and thus, Swi5 
and Ace2 can return to the nucleus and bind to the promoters of 
their target genes. Swi5 and Ace2 bind to the promoter of  CLN3  
to activate  CLN3  expression and thus begin a new cycle of tran-
scription [ 45 ] (Fig.  3 ). Currently, these TFs, in addition to other 
TFs that potentially regulate periodic transcription, are being fur-
ther studied to better understand the connections with each other 
and with cyclin/CDKs.  

  Although the periodic transcriptional program during the cell cycle 
could be explained by a network of sequentially activated transcrip-
tion factors, cyclin/CDK regulation of network TF activities could 
be critical for the proper execution of the program. 

 A series of studies have been carried out to determine the 
 relative contributions of cyclin/CDKs and the transcription factor 
network on periodic transcription during the cell cycle. The fi rst 
study to address this question measured the effect of S phase and 
mitotic cyclin/CDKs on periodic transcription by deleting all six of 
these cyclins ( clb1,2,3,4,5,6 ) in budding yeast. These cells are kept 
alive by the inducible overexpression of Clb1; in the absence of 
Clb1, cells arrest due to the absence of all S-phase and mitotic 
cyclin/CDK activity, resulting in their inability to initiate DNA 
replication, centrosome duplication, or mitosis. However, the 
arrested cells continue to carry out G1 events, including budding 
and G1-specifi c transcription [ 66 ]. What happens to the rest of the 
periodic transcriptional program in these cells? In a synchronous 
population of early G1 cells lacking all S-phase and mitotic cyclins 
(synchronized by centrifugal elutriation), global gene expression 
dynamics were measured by microarray. Strikingly, compared to 
the expression dynamics of genes normally periodic in wild-type 
cells, 70 % of genes remain periodic in the absence of both S-phase 
and mitotic cyclins and in the absence of cell cycle progression, 
with a period very similar to normally cycling cells [ 5 ]. These fi nd-
ings suggest that S-phase and mitotic CDKs are not required for 
the execution of the majority of the cell cycle-transcriptional 
 program, and that this program can continue to oscillate even in 
arrested cells. 

 How then is the periodic transcriptional program maintained 
in arrested cells? Included in the 70 % of genes that remain periodic 
in these cells are many of the TFs involved in modulating periodic 
transcription throughout the cell cycle [ 5 ,  8 ,  44 ]. Using these peri-
odic TFs and binding information, Orlando and colleagues were 
able to construct a mathematical model of the TF network. Model 
simulations indicated that the TF network itself could sustain oscil-
lation independent of S-phase and mitotic cyclin/CDKs and cell 
cycle progression [ 5 ]. This fi nding led to the proposal that a TF 

2.4  Roles of Cyclin/
CDKs and a 
Transcription Factor 
Network in Controlling 
the Periodic 
Transcriptional 
Program
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network may function as an underlying cell cycle oscillator that 
controls the periodic transcriptional program ([ 5 ], reviewed in [ 33 ]). 

 In yeast and somatic cells, several experiments have shown that 
cyclin/CDKs have the capacity to alter TF activity. What is the 
effect that cyclin/CDK feedback acting on TF activity has on 
 transcriptional oscillations? Comparing transcriptional dynamics 
reveals that the overall amplitude of periodic gene expression 
dynamics decreases as cyclin/CDK activity is removed [ 12 ]. 
Additionally, the period of transcriptional oscillations also increase 
with decreasing cyclin/CDK activity [ 12 ]. These observations 
suggest that cyclin/CDK activity plays an important role in regu-
lating the amplitude and period of transcriptional oscillations. In 
addition to cyclin/CDK feedback on the TF network, cyclins 
themselves are periodically transcribed (reviewed in [ 9 – 11 ,  33 ]). 
Yet in the absence of CDK activity, cell cycle progression is halted. 
A study showed that in the absence of all S-phase and mitotic 
cyclins, except for a single S-phase cyclin, periodic cycles of DNA 
replication occur together with transcriptional activation of the 
S-phase cyclin [ 12 ]. This observation implies that cyclin/CDK 
activity also acts as an effector of the TF network oscillator. 

 Taken together, these results led to the proposal of a new 
model of cell-cycle regulation (Fig.  4 ) [ 12 ]. A TF network acts as 
an oscillator that drives the timing of periodic transcription, includ-
ing transcription of cyclin genes. Cyclins (in complex with CDKs) 
then feedback onto the TF network via phosphorylation to con-
tribute robust transcriptional oscillations. Phosphorylation of a TF 
is capable of enhancing or reducing transactivation of the TF’s 
 target genes, thus “fi ne-tuning” the TF network output during the 
cell cycle. Additionally, cyclin/CDKs also act as effectors of the TF 
network to trigger cell cycle events in the proper order (Fig.  4 ). 
This model is different from previous cell cycle models in that a TF 

  Fig. 4    Model of cell-cycle regulation. A transcription factor network is responsible 
for regulating the timing of the periodic transcriptional program, including cyclins. 
Cyclins, in complex with CDKs, then act as effectors to trigger events at the 
proper time after periodic synthesis       
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network, rather than cyclin/CDK activity, acts as the oscillator that 
keeps the timing and ordering of cell cycle progression, and func-
tions to control the temporal program of transcription. Although 
the mechanism by which the timing of cell cycle oscillations is 
 different, the process by which cell cycle events are triggered by 
cyclin/CDKs is not different. The activation of different events in 
the proper order is dependent both on transcriptional oscillations 
and cyclin/CDK activity. However, it remains to be determined 
how a TF network oscillator is coupled to other cell cycle events 
and cyclin/CDK activity.

   An important factor in designing experiments to address 
 still- open questions is the use of technologies and analytical tools 
available to measure periodic transcription. Here we will discuss 
many of the technologies that have been used in the past as well 
as the computational tools that exist to identify periodic behaviors. 
Each technology and analytical tool has its own advantages and 
drawbacks, and it is critical to choose the right combination of the 
two in order to most completely distinguish between the models 
described above.   

3    Assaying Cell Cycle-Regulated Transcription 

 Over the past three decades, we have learned that periodic gene 
transcription is not simply a phenotype of a small subset of cell 
cycle-regulated genes. In fact, a large portion of the budding yeast 
genome is periodically transcribed [ 4 – 7 ]. Models of cell cycle- 
regulated transcription have evolved over the years and this evolu-
tion was enabled by new experimental approaches and analytical 
methods. First, single gene approaches demonstrated that a hand-
ful of genes were transcribed periodically. Then, with the advent of 
genome-wide approaches, a global view of transcript dynamics 
demonstrated that many more genes have the capacity to oscillate. 
The analytical methods used to defi ne periodicity also changed 
with each of these experimental approaches. Here, we will discuss 
the strengths and limitations of each. 

  The fi rst sets of periodic genes were identifi ed in budding yeast by 
northern blotting [ 67 ] (reviewed in [ 68 ,  69 ]). Although this 
method was able to classify a number of genes as periodically tran-
scribed, the major limitation of northern blotting is scalability. 
Northern blotting is limited to testing only a handful of genes at a 
time. So while it was useful for asking whether any specifi c gene 
might be cell cycle-regulated, it was not a particularly useful tool 
for discovering new periodic genes. Additionally, because only a 
small number of genes could be assayed on each blot, the temporal 
and quantitative relationships between all periodic genes could not be 
determined. Thus, a global view of the program and the regulatory 

3.1  Single Gene 
Approaches
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mechanisms that governed them could not be easily discerned by 
this approach. Often, a gene was defi ned as periodically transcribed 
if dynamics matched the period of observable events. For example, 
histones were shown to be transcribed in concert with DNA repli-
cation during every cell cycle [ 13 ]. 

 Quantitative real time PCR (qRT-PCR) is a more recent 
 technology developed to measure mRNA levels at a single gene 
level. While not many studies have utilized qRT-PCR to measure 
mRNA dynamics during the cell cycle, this approach is also able to 
provide transcript dynamics.  

  Transcription microarrays have proven to be very useful in reveal-
ing genome-wide transcriptional behaviors in a variety of different 
systems. Microarray approaches facilitated the discovery of new 
cell cycle-regulated genes. In fact, several studies demonstrated 
that a substantial portion of the budding yeast genome is periodi-
cally transcribed ([ 4 – 7 ], reviewed in [ 32 ]). This approach also 
revealed that transcripts rise and fall in a continuum throughout 
the budding yeast cell cycle, and that clusters of genes with similar 
behaviors were likely to be co-regulated [ 7 ]. 

 However, the substantial differences in periodic gene lists gen-
erated by these studies demonstrate that even global studies must 
be analyzed critically to understand methods used to defi ne cell 
cycle-regulated transcription. Several factors, including experimen-
tal methods and defi nition of periodicity, play a role in the different 
periodic gene lists generated by each report. 

 A series of differences in experimental approach may contrib-
ute to low agreement between the results of these studies. First, 
the methods to synchronize populations of cells varied between 
each study, resulting in starting populations that were released 
from a variety of cell cycle phases. Depending on the starting 
 population, periodic mRNAs expressed during cell cycle phases 
immediately following release may be more synchronous than 
those mRNAs in later cell-cycle phases as populations become 
more asynchronous. This observation may be due to the following 
factors: (1) normally cycling cells complete cellular division at dif-
ferent rates and (2) different synchronizations result in starting 
populations that vary in level of synchrony [ 31 ]. Second, each 
research group used different microarrays with different sets of oli-
gos to represent the budding yeast genome. These differences may 
play a role in discrepancies between mRNA measurements. Third, 
the method of labeling and hybridizing mRNAs to the chips varied 
between the groups, which may result in differences in the quanti-
fi cation of mRNA levels. Fourth, Spellman and colleagues and 
Pramila and colleagues hybridized mRNA from an asynchronous 
population of cells labeled with a different fl uorescent probe to 
each chip as a control in addition to the synchronized pools 
of labeled mRNA [ 6 ,  7 ]. This was meant as a way to control for 

3.2  Transcription 
Microarrays
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differences across different microarray chips. Alternatively, Cho 
and colleagues and Orlando and colleagues only hybridized the 
synchronized pools of mRNA to each chip [ 4 ,  5 ]. This approach 
generates a direct measure of mRNA levels relative to other time 
points from the synchronized time course. Finally, each group used 
different methods to normalize the microarrays with each other 
for  consistent measures of gene expression both within and across 
microarrays, which can affect the resulting dynamic range of 
expression measurements. An important factor to consider is the 
differences in experimental approaches that measure and quantify 
gene expression dynamics when comparing the various studies cen-
tered on identifying cell cycle-regulated transcription. 

 In addition to differences in experimental approaches, each 
study utilized different methods to classify genes as periodically 
transcribed. Similar yet distinct defi nitions of periodic are embed-
ded within each of the different methods applied to identify cell 
cycle-regulated transcripts. As described in Subheading  2.1 , these 
four groups exploited different methods to classify a set of periodic 
genes. Two features play prominent roles in describing periodicity; 
each method integrates these features differently. The fi rst feature 
addresses the oscillatory nature of gene expression dynamics. 
Whether by visual inspection or by some quantitative approach, a 
necessary component of any of these analyses requires identifying 
genes that are expressed once per cell cycle across multiple cycles. 
The second feature addresses the dynamic range of the queried 
genes. This attribute is much more subjective in nature, as it is 
unclear what minimum dynamic range is above stochastic noise 
within a synchronous population of cells. Additional quantitative 
methods exist to measure the periodicity of gene expression 
dynamics and defi ne periodic behavior in a variety of ways [ 70 ]. 
Therefore, it is important to have an understanding of how you 
want to defi ne periodic genes and select a computational algorithm 
that best matches your assumptions.  

  A more recent experimental approach to measuring gene expres-
sion in cells is RNA-Sequencing (RNA-seq). This method provides 
a new way to measure transcript levels in cells and can benefi t many 
biological systems when gene expression microarrays are not effi -
cient [ 71 ]. First, RNA-seq requires much less starting RNA. This 
is advantageous when studying a system in which cells are in short 
supply. Second, RNA-seq allows for measuring the abundance of 
multiple transcript isoforms. This benefi t is especially helpful in 
organisms that possess introns because microarrays usually do 
not distinguish between different splice variants of the same tran-
scribed gene. Finally, RNA-seq has a much larger dynamic range 
compared to gene expression microarrays [ 71 ]. A major drawback 
of current RNA-seq methodologies is the lack of standardized 
 normalization approaches, especially in time-series experiments. 

3.3  RNA Sequencing
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This drawback is critical when comparing time points across the 
cell cycle. While few groups have used RNA-seq to study cell cycle-
regulated transcription, with continued development of experi-
mental and analytical techniques, this technology may provide a 
way to gain a better insight into the scope of periodic gene 
expression.  

   The past 15 years have seen massive strides in the characterization 
of cell cycle gene expression. Many techniques have allowed us to 
elucidate the dynamics of cell cycle transcription (Table  2 ). 
However, much still needs to be done to understand the molecular 
mechanisms governing transcription dynamics during the cell cycle.

   One important method for developing regulatory models 
involves detecting the physical interaction between a TF and a 
 target gene promoter. Using Chromatin Immunoprecipitation 
approaches (ChIP) coupled with microarray or RNA-sequencing 
(ChIP-chip or ChIP-seq) provides information on where a particu-
lar TF binds genome-wide. Such localization studies enable the 
construction of global transcription factor networks that describe 
the regulatory interactions of the cell cycle transcription program 
[ 8 ,  39 ,  43 ,  44 ,  54 ,  72 ,  73 ]. 

 Most publicly available large-scale ChIP-chip datasets were 
derived from asynchronous populations of cells. Thus, these exper-
iments lack any temporal information about dynamic TF binding. 
Moreover, TFs that bind very strongly to a target gene promoter 
for only a short amount of time yield a “low” signal that resembles 
a regulator that only binds weakly to a promoter throughout the 
cell cycle. Thus, it is likely that short-lived TF/promoter interac-
tions are under-represented in these data sets. Both of these issues 
could be rectifi ed by performing ChIP approaches on synchro-
nized cells. However, performing a single replicate of a ChIP-chip 
or ChIP-seq experiment over 10 time points for all  S. cerevisiae  TFs 

3.4  Mapping 
Relationships Between 
Transcription Factors 
and Their Targets by 
Physical Interaction 
Approaches

   Table 2  
  A summary of approaches used to determine cell-cycle transcript abundance   

 Approach  Detection 
 Population/
single cell  Target measurement 

 Target 
amplifi cation 

 Northern blot  RNA  Population  Preselected probes  No 

 Microarray  RNA  Population  Preselected ORFs 
(all annotated genes) 

 Yes 

 RNA-sequencing  RNA  Population  Unbiased  Yes/no 

 RNA-FISH  RNA  Single cells  Preselected probes  No 

 Reverse 
transcription PCR 

 RNA  Population  Preselected primers  Yes 
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would require ~2,000 ChIP experiments followed by the same 
number of microarray hybridizations or sequencing runs. Presently, 
this is an effort that is currently beyond the capacity of most labs. 

 In budding yeast, ChIP-chip and associated computational 
studies have shown that many different TFs can bind within the 
promoter region of a single gene [ 8 ,  39 ,  43 ,  44 ,  54 ,  72 ,  73 ]. While 
ChIP studies have been informative in determining the physical 
association of a DNA-binding protein with a given promoter, these 
studies do not reveal the degree to which multiple TFs bind in a 
coordinated or exclusive fashion. Furthermore, binding studies do 
not reveal the functional relationships between multiple TFs bound 
at the same promoter. Since transcriptional regulators can promote 
or repress transcription (some TFs can perform both tasks), there 
are several different logical combinations that can defi ne the tran-
scription of a given gene (Fig.  5 ).

   A primary goal of the fi eld is to understand the functional 
 targets of cell cycle transcription factors. However, physical inter-
action data can only predict binding, and binding does not predict 
function. Therefore, to determine the downstream targets of TFs in 
vivo, one can use genetic approaches to observe changes in target 
gene behavior directly.  

  Gene knockout experiments are straightforward methods to begin 
characterizing TF-target relationships in budding yeast. Nonessential 
TFs may be deleted and, in theory, their targets should have altered 
expression. This method had been used  successfully to identify 
gene targets with altered expression upon deletion of cell cycle 
TFs [ 74 ]. The method can even be combined with microarray or 

3.5  Genetic 
Approaches 
to Transcriptional 
Target Discovery

  Fig. 5    Logics of multiple transcription factors regulating a single target affect its 
synthesis. Depending on the combinations of transcription factors that bind to 
the promoter of a single target, they may work together (AND logic) or may work 
separately (OR logic). Repressors most likely override any activators that may be 
bound at the same time (AND NOT logic). Depending on the number and combi-
nation of potential regulators, other logics may be possible       
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other whole-genome analysis to determine expression changes 
among large numbers of genes [ 75 ]. However, this method does 
not necessarily demonstrate direct TF-target relationships between 
the deleted TF and gene expression. In some instances, the deletion 
of TF1 could alter the expression of another TF2, resulting in 
expression changes for the targets of TF2. Therefore, these methods 
are often tied to physical interaction data to strengthen the argu-
ment for a direct relationship [ 74 ,  75 ]. 

 An alternative method to TF deletion is conditional TF expres-
sion. Using an inducible TF, one can determine the state of tran-
scription prior to and post TF induction, while controlling and 
monitoring the timescale of gene activation/repression. Budding 
yeast researchers have long relied on inducible promoter constructs 
to turn on gene expression and monitor the outcome. The replace-
ment of an endogenous promoter with the GAL promoter has 
allowed for induction of transcription via a shift to galactose- 
containing medium [ 76 ]. The use of the GAL-inducible promoter, 
among others, allows a researcher to turn on gene expression of a 
TF and then monitor the effect on target genes. However, after the 
shift to galactose medium, the TF must be expressed, translated, 
and then activate/repress gene expression of its targets. Thus, there 
is a desire to shorten the time from induction to the activation/
repression of target genes. 

 Instead of inducing TF expression, one can induce TF localiza-
tion to the nucleus using a hormone-induced localization. To con-
struct an estradiol-induction system, a Gal4-DNA binding domain 
was fused to the human estrogen receptor [ 77 ,  78 ]. The addition 
of estradiol hormone results in the localization of the fusion pro-
tein to the nucleus and binding to Gal4 transcriptional targets. 
This massive shift in localization leads to the rapid binding of Gal4 
targets without concern for protein level thresholds for transactiva-
tion. McIsaac and colleagues employed microarrays to monitor 
temporal changes in global transcription in asynchronous popula-
tions and found that the targets of Gal4 transactivation were 
quickly upregulated, as soon as 5 min after estradiol treatment 
[ 79 ]. By sampling mRNA levels at several time points after induc-
tion, one can determine direct transcriptional targets and observe 
the activation/repression dynamics. Using a similar system, one 
can identify the targets of many of the yeast cell-cycle TFs employ-
ing an induction system in asynchronous populations of cells and 
monitoring the fi rst genes to respond, thus identifying the direct 
targets of the TF. The forced expression of these targets should 
be readily detectable over the background expression in an asyn-
chronous population (low amplitude changes may require cell 
cycle synchronization to be observed). 

 As mentioned for physical interactions in Subheading  3.4 , tem-
poral dynamics are important for determining fi rst-order targets of 
a TF. A systematic analysis of cell cycle TFs would be possible, using 
4–5 time points after induction, thus reducing the time and cost of 
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such an experiment compared to ChIP analysis of TFs throughout 
the cell cycle. Combining the identifi cation of TF targets with exist-
ing data on expression dynamics of the TFs themselves will help 
to build a temporal network of transcription regulation during the 
cell cycle. 

 Ideally, data from physical interaction studies can be combined 
with data from genetic experiments in order to develop high con-
fi dence molecular models. Additional information can be gained 
by approaches that identify global changes in chromatin structure, 
such as nucleosome dynamics. Nucleosome positioning experi-
ments identify chromatin that is accessible to TFs. However, recent 
work on temporal dynamics of nucleosome binding at promoters 
suggests that TFs can actually induce nucleosome position changes 
once they bind a site, while some sites which are “accessible” to 
TFs remain transcriptionally inactive [ 80 ]. These experiments help 
to build a model describing the transactions at a promoter. By cor-
relation, this information can be associated with expression timing 
and provide additional information to describe mechanisms of 
gene activation and repression during the cell cycle. As these 
experiments do not directly probe the activation/repression of 
genes, expression analysis upon induction of TF localization to the 
nucleus remains a more direct observation of transcriptional activ-
ity at TF targets. 

 Much stands to be gained from leveraging both physical 
and genetic approaches. The data eventually yielded from these 
approaches will ultimately allow us to develop quantitative meth-
ods to integrate and interpret present and future “big data.” 
Designing future experiments in the context of cell cycle dynamics 
and with the understanding that several regulators may contribute 
to target gene regulation will provide the information necessary for 
the challenging analyses to come. The use of genetic experiments 
may direct the strategic implementation of physical interaction 
studies that may prove too costly on a larger scale (or vice versa). 
Thus, collection of physical and genetic data will only strengthen 
our ability to understand cell-cycle TF regulation.  

  The ability to quantify the levels of RNA in a cell at any given 
moment, in an unbiased manner, is the Holy Grail for developing 
a precise understanding of cell cycle-regulated transcription. The 
fi eld has come a long way from original expression studies, and 
new technologies are continuously being developed to address 
issues with sensitivity, noisy data, and population effects. However, 
in overcoming some of the current obstacles, one must understand 
potential pitfalls and biases introduced by the various methods 
used to measure transcript levels, which are especially important 
while implementing methods that measure expression over time. 
Improving current approaches and developing novel assays will 
allow the fi eld to continue to move forward. 

3.6  Gaps 
in Knowledge 
and the Future
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 One of the key improvements needed in cell cycle gene expression 
analysis is the removal of amplifi cation bias. Microarray analysis 
and RNA sequencing protocols typically use a reverse transcription 
step to produce a complementary DNA or RNA, which is then 
amplifi ed to add a fl uorophore to the nucleic acid. The introduc-
tion of these amplifi cation steps during any RNA detection assay 
increases the risk that some RNA species are preferentially ampli-
fi ed over others. To prepare libraries representing an mRNA popu-
lation, the use of poly-thymidine primers to amplify cDNA from 
purifi ed RNA leads to a preference for mRNAs with longer poly-
adenine tails, altering the representative population in the ampli-
fi ed pool. 

 One possible solution is the use of single-molecule sequencing 
technologies to eliminate the amplifi cation steps of RNA-seq 
and microarray methods [ 71 ]. So-called third-generation single- 
molecule sequencing removes the requirement for RNA amplifi ca-
tion from the assay [ 81 ,  82 ]. These sequencing technologies have 
longer read lengths than current deep-sequencing technologies, 
making sequencing of an entire mRNA possible. Critically, a formi-
dable problem for these technologies is the improvement of the 
sequencing accuracy which currently sits at ~85 % for PacBio 
sequencing and ~75–90 % for Nanopore sequencing [ 83 ,  84 ]. 
With these accuracy rates, the possibility that a read does not iden-
tify the correct gene is substantial. Recently, it has been shown that 
aligning single molecule sequencing with reads from amplifi cation 
based sequencing (such as Illumina) greatly enhances the accuracy 
of single molecule sequencing while still allowing for quantitation 
to be performed in a no-amplifi cation manner, increasing the 
 viability of the technology, but increasing the cost and effort 
involved [ 85 ,  86 ]. With the introduction of these technologies to 
RNA- Seq, the biases of amplifi cation-based methods should be 
greatly reduced. 

 While great advances have been made in removing artifacts 
and biases from microarray and sequencing methods, they do not 
address a main concern that many researchers harbor: the fact that 
these methods detect average transcript levels in a population. To 
eliminate this problem, many have made use of RNA fl uorescence 
in situ hybridization, or RNA-FISH [ 87 ]. RNA-FISH uses a 
fl uorophore- conjugated nucleotide probe to detect target RNAs in 
fi xed cells. The foci generated by the probe are visualized by 
microscopy, and each focus represents an mRNA contained within 
a cell at that moment. Barcoding FISH probes and ultraresolution 
microscopy has lead to the potential for identifying and quantify-
ing more transcripts than available fl uorophore colors [ 88 ,  89 ]. 
Using RNA-FISH, one can determine the actual number of tran-
scripts at a time point in a single cell. Observing multiple cells, one 
can determine the range of transcript abundance at a given time in 
a collection of single cells, which helps understand the distribution 
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of RNA abundance in a population in a way that cannot be 
 determined using methods that rely on purifi ed RNA from a popu-
lation of cells (microarray, RNA-seq, etc.). 

 The drawbacks to this method are also inherent to working 
with single cells. For each time point, many cells must be labeled 
and analyzed to obtain statistically signifi cant results. Furthermore, 
the method requires cells to be fi xed. Hence, transcript dynamics 
cannot be measured in the same cells over a period of time. 
Therefore, a time course using an RNA-FISH approach still sam-
ples a population, albeit in a manner that allows for individual 
mRNA molecules to be quantifi ed. The ability to determine the 
number of mRNA transcripts in cells at a time point serves as a 
complementary approach to the whole transcriptome approaches 
described above. 

 Methods for tracking RNA in live cells have been developed to 
expand temporal observations and localization behavior [ 90 ]. 
These methods rely on inserting hairpin-forming sequences to the 
noncoding regions of the mRNA. These hairpin constructs are rec-
ognized by virus-derived hairpin-recognition proteins. The best 
characterized of these systems is the MS2 reporter [ 91 ,  92 ]. The 
hairpin-binding protein domain can be detected as they are typi-
cally fused to a fl uorescent reporter. MS2 stem-loop repeats are 
integrated into the mRNA of interest and co-expressed in a cell 
with the bacteriophage derived MS2-binding protein fused to a 
fl uorescent reporter. When the mRNA is expressed, the stem-loop 
structures fold and are recognized by the MS2-binding domain, 
generating fl uorescent foci that can be tracked within a living cell. 

 The system was originally described in yeast, where it was used 
to follow  ASH1  mRNA as it was traffi cked from the nucleus to the 
bud [ 93 ]. Since the introduction of the system, it has been effec-
tively used in a variety of eukaryotes and expanded to a two-color 
system [ 94 ,  95 ]. Still, live-cell imaging using reporters has typically 
shied away from quantitation and has been used more extensively 
for localization experiments. The RNA hairpin-binding approach 
is, so far, relatively unproven in systems where mRNA levels are 
dynamically regulated over time (though some efforts have been 
made to quantify mRNA by foci in prokaryotes [ 96 ,  97 ]). For 
example, the  ASH1  experiment described above observed mRNA 
localization dynamics, not abundance. A major limitation of prob-
ing mRNAs by FISH or by hairpin-binding proteins is the intro-
duction of bias to the analysis while limiting scale. Using these 
methods, an experimenter can only determine the transcript levels 
of the specifi c mRNAs that they have targeted for analysis. 
Therefore, examining correlation or coherence with other tran-
scripts is not yet possible with this approach. In time, the ability to 
multiplex probes may expand the experimental arsenal of probe 
targets. Certainly, with advances in fl uorescent probe development 
and live cell imaging, the potential remains for RNA binding 
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probes to yield fruitful results in the fi eld of cell cycle transcription. 
Currently, the fi eld still benefi ts from data collected at the popula-
tion level as well as in single cells. 

 Presently, there does not appear to be a “cure-all” experiment 
that generally addresses the concerns of those studying cell-cycle 
transcription. The most benefi t appears to come from integrating 
the data the fi eld has already collected. Using a growing body of 
correlative data can increase the confi dence in understanding the 
coordination of periodic transcription with other cell cycle events 
and the coordination of two major regulators: a TF network and 
cyclin/CDKs. Quantitative methods that integrate existing data 
with an understanding of all possible limitations will greatly increase 
our current knowledge and help direct specifi c experiments to 
address new hypotheses in cell-cycle transcription.      
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