p.309, line 1 below (4.105); read: $" \boldsymbol{\Omega}=(\operatorname{det} \mathbf{Q}) \mathbf{Q} \boldsymbol{\Omega}^{*}$ "
p.316, line 3 below (4.138b); replace bold \mathbf{t}_{Φ} with t_{Φ}
p.331, Problem 4.40; the respective \mathbf{E}, \mathbf{N} directions in the figure are the x, y axes
p.342, Problem 4.84, last line; read: " $\psi=\left\{Q ; \mathbf{i}_{k}\right\}$ "
p.343, Problem 4.88, line 2; change 4.12 to 4.10

Appendix B.

p.375, line 1 after (B.24); read: "The transposed matrix $C^{T} \ldots$...
p.376, line 1 delete - "adjoint"
p.379, Problem B.16, lines 1 and 2; change C to C^{T}
p. 380 , Problem B. 25 , line 1; change C to C^{T}

Answers to Selected Problems.

p.381, answer to 1.21 ; amend to read: $" \dot{s}(2)=\frac{\pi}{4} \sqrt{5} \mathrm{~cm} / \mathrm{sec}, \quad \mathbf{x}(P, 4)=2 \mathbf{J} \mathrm{~cm} . "$
p. 383 , answer to 3.23 ; amend to read: "(a) $\alpha=-\frac{\sqrt{7(4+\sqrt{2})}}{14}[\mathbf{i}+(1-\sqrt{2}) \mathbf{j}-$ $2 \mathbf{k}$],
(b) $\mathbf{d}(P)=-3 \mathbf{i}+(1+\sqrt{2}) \mathbf{j}-2 \mathbf{k}$."
p.384, answer to 4.21 ; amend to read: " $\dot{\omega}_{30}=0.014 \mathbf{I}+0.1 \mathbf{J}-0.21 \mathbf{K ~ r a d} / \mathrm{sec}^{2}$ "

