
523

CHAPTER 19

Memory Model
and Atomics
Memory consistency is not an esoteric concept if we want to be parallel

programmers. It helps us to ensure that data is where we need it, when we

need it, and that its values are what we are expecting. This chapter brings

to light key things we need to master to ensure our program hums along

correctly. This topic is not unique to SYCL.

Having a basic understanding of the memory (consistency) model of

a programming language is necessary for any programmer who wants to

allow concurrent updates to memory (whether those updates originate

from multiple work-items in the same kernel, multiple devices, or both).

This is true regardless of how memory is allocated, and the content of this

chapter is equally important to us whether we choose to use buffers or

USM allocations.

In previous chapters, we have focused on the development of simple

kernels, where work-items either operate on completely independent data or

share data using structured communication patterns that can be expressed

directly using language and/or library features. As we move toward

writing more complex and realistic kernels, we are likely to encounter

situations where work-items may need to communicate in less structured

ways—understanding how the memory model relates to SYCL language

features and the capabilities of the hardware we are targeting is a necessary

precondition for designing correct, portable, and efficient programs.

© Intel Corporation 2023
J. Reinders et al., Data Parallel C++, https://doi.org/10.1007/978-1-4842-9691-2_19

https://doi.org/10.1007/978-1-4842-9691-2_19#DOI

524

THREADS OF EXECUTION

C++17 introduced the concept of a “thread of execution” (often referred

to simply as a “thread”) to help describe the behaviors of library features

related to parallelism and concurrency (e.g., the parallel algorithms). The C++

memory consistency model and execution model are defined entirely in terms

of interactions between these “threads.”

To simplify comparison between SYCL and C++, this chapter often uses

the term “thread” to mean “thread of execution.” A SYCL work-item is

equivalent to a C++ thread of execution with weakly parallel forward

progress guarantees, and so it is safe to use these terms interchangeably—

occasionally, we may still use “work-item” to highlight when we are

discussing SYCL-specific concepts.

The memory consistency model of C++ is sufficient for writing

applications that execute entirely on the host, but it is modified by SYCL

in order to address complexities that may arise when programming

heterogeneous systems. Specifically, we need to be able to

• Reason about which types of memory allocation

(buffers and USM) can be accessed by which devices in

the system

• Prevent unsafe concurrent memory accesses (data

races) during the execution of our kernels by using

barriers and atomics

• Enable safe communication between work-items

using barriers, fences, atomics, memory orders, and

memory scopes

ChApTer 19 MeMorY ModeL And AToMiCS

525

• Prevent optimizations that may unexpectedly alter the

behavior of parallel applications—while still allowing

other optimizations—using barriers, fences, atomics,

memory orders, and memory scopes

Memory models are a complex topic, but for a good reason—processor

architects care about making processors and accelerators execute our

codes as efficiently as possible! We have worked hard in this chapter

to break down this complexity and highlight the most critical concepts

and language features. This chapter starts us down the path of not only

knowing the memory model inside and out but also enjoying an important

aspect of parallel programming that many people do not know exists. If

questions remain after reading the descriptions and example codes here,

we highly recommend visiting the websites listed at the end of this chapter

or referring to the C++ and SYCL specifications.

 What’s in a Memory Model?
This section expands upon the motivation for programming languages to

contain a memory model and introduces a few core concepts that parallel

programmers should familiarize themselves with:

• Data races and synchronization

• Barriers and fences

• Atomic operations

• Memory ordering

Understanding these concepts at a high level is necessary to appreciate

their expression and usage in C++ with SYCL. Readers with extensive

experience in parallel programming, especially using C++, may wish to

skip ahead.

ChApTer 19 MeMorY ModeL And AToMiCS

526

 Data Races and Synchronization
The operations that we write in our programs typically do not map directly

to a single hardware instruction or micro-operation. A simple addition

operation such as data[i] += x may be broken down into a sequence of

several instructions or micro-operations:

• Load data[i] from memory into a temporary

(register).

• Compute the result of adding x to data[i].

• Store the result back to data[i].

This is not something that we need to worry about when developing

sequential applications—the three stages of the addition will be executed

in the order that we expect, as depicted in Figure 19-1.

Figure 19-1. Sequential execution of data[i] += x broken into three
separate operations

ChApTer 19 MeMorY ModeL And AToMiCS

527

Switching to parallel application development introduces an extra

level of complexity: if we have multiple operations being applied to the

same data concurrently, how can we be certain that their view of that data

is consistent? Consider the situation shown in Figure 19-2, where two

executions of data[i] += x have been interleaved on two threads. If the

two threads use different values of i, the application will execute correctly.

If they use the same value of i, both load the same value from memory,

and one of the results is overwritten by the other! This is just one of many

ways in which their operations could be scheduled, and the behavior of

our application depends on which thread gets to which data first—our

application contains a data race.

Figure 19-2. One possible interleaving of data[i] += x executed
concurrently

The code in Figure 19-3 and its output in Figure 19-4 show how easily

this can happen in practice. If M is greater than or equal to N, the value of

j used by each thread is unique; if it is not, values of j will conflict, and

updates may be lost. We say may be lost because a program containing

a data race could still produce the correct answer some or all the time

(depending on how work is scheduled by the implementation and

hardware). Neither the compiler nor the hardware can possibly know

ChApTer 19 MeMorY ModeL And AToMiCS

528

what this program is intended to do or what the values of N and M may be at

runtime—it is our responsibility as programmers to understand whether

our programs may contain data races and whether they are sensitive to

execution order.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
data[j] += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-3. Kernel containing a data race

N = 2, M = 2:
data [0] = 1
data [1] = 1

N = 2, M = 1:
data [0] = 1
data [1] = 0

Figure 19-4. Sample output of the code in Figure 19-3 for small
values of N and M

In general, when developing massively parallel SYCL applications,

we should not concern ourselves with the exact order in which individual

work-items execute—there are hopefully hundreds (or thousands!) of

work-items in each of our kernels, and trying to impose a specific ordering

upon them will negatively impact both scalability and performance.

Rather, our focus should be on developing portable applications that

execute correctly, which we can achieve by providing the compiler

(and hardware) with information about when work-items share data,

what guarantees are needed when sharing occurs, and which execution

orderings are legal.

ChApTer 19 MeMorY ModeL And AToMiCS

529

Massively parallel applications should not be concerned with the
exact order in which individual work-items execute!

 Barriers and Fences
One way to prevent data races between work-items in the same group is

to introduce synchronization across different threads using work-group

barriers and appropriate memory fences. We could use a work-group

barrier to order our updates of data[i] as shown in Figure 19-5, and an

updated version of our example kernel is given in Figure 19-6. Note that

because a work-group barrier does not synchronize work-items in different

groups, our simple example is only guaranteed to execute correctly if we

limit ourselves to a single work-group!

Figure 19-5. Two executions of data[i] += x separated by a barrier

ChApTer 19 MeMorY ModeL And AToMiCS

530

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

// Launch exactly one work-group
// Number of work-groups = global / local
range<1> global{N};
range<1> local{N};

q.parallel_for(nd_range<1>{global, local},
[=](nd_item<1> it) {

int i = it.get_global_id(0);
int j = i % M;
for (int round = 0; round < N; ++round) {

// Allow exactly one work-item update
// per round
if (i == round) {
data[j] += 1;

}
group_barrier(it.get_group());

}
})

.wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-6. Avoiding a data race using a barrier

Although using a barrier to implement this pattern is possible, it is

not typically encouraged—it forces the work-items in a group to execute

sequentially and in a specific order, which may lead to long periods of

inactivity in the presence of load imbalance. It may also introduce more

synchronization than is strictly necessary—if the different work-items

happen to use different values of i, they will still be forced to synchronize

at the barrier.

Barrier synchronization is a useful tool for ensuring that all work-items

in a work-group or sub-group complete some stage of a kernel before

proceeding to the next stage, but is too heavy-handed for fine-grained

(and potentially data-dependent) synchronization. For more general

synchronization patterns, we must look to atomic operations.

ChApTer 19 MeMorY ModeL And AToMiCS

531

 Atomic Operations
Atomic operations enable concurrent access to a memory location without

introducing a data race. When multiple atomic operations access the same

memory, they are guaranteed not to overlap. Note that this guarantee

does not apply if only some of the accesses use atomics and that it is our

responsibility as programmers to ensure that we do not concurrently

access the same data using operations with different atomicity guarantees.

Mixing atomic and non-atomic operations on the same memory
location(s) at the same time results in undefined behavior!

If our simple addition is expressed using atomic operations, the result

may look like Figure 19-8—each update is now an indivisible chunk of

work, and our application will always produce the correct result. The

corresponding code is shown in Figure 19-7—we will revisit the atomic_

ref class and the meaning of its template arguments later in the chapter.

int* data = malloc_shared<int>(N, q);
std::fill(data, data + N, 0);

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

for (int i = 0; i < N; ++i) {
std::cout << "data [" << i << "] = " << data[i] << "\n";

}

Figure 19-7. Avoiding a data race using atomic operations

ChApTer 19 MeMorY ModeL And AToMiCS

532

Figure 19-8. An interleaving of data[i] += x executed concurrently
with atomic operations

However, it is important to note that this is still only one possible

execution order. Using atomic operations guarantees that the two updates

do not overlap (if both threads use the same value of i), but there is still

no guarantee as to which of the two threads will execute first. Even more

importantly, there are no guarantees about how these atomic operations

are ordered with respect to any non-atomic operations in different threads.

 Memory Ordering
Even within a sequential application, optimizing compilers and the

hardware are free to reorder operations if they do not change the

observable behavior of an application. In other words, the application

must behave as if it ran exactly as it was written by the programmer.

ChApTer 19 MeMorY ModeL And AToMiCS

533

Unfortunately, this as-if guarantee is not strong enough to help us

reason about the execution of parallel programs. We now have two sources

of reordering to worry about: the compiler and hardware may reorder the

execution of statements within each sequential thread, and the threads

themselves may be executed in any (possibly interleaved) order. To design

and implement safe communication protocols between threads, we need

to be able to constrain this reordering. By providing the compiler with

information about our desired memory order, we can prevent reordering

optimizations that are incompatible with the intended behavior of our

applications.

Three commonly available memory orderings are:

 1. A relaxed memory ordering

 2. An acquire-release or release-acquire memory

ordering

 3. A sequentially consistent memory ordering

Under a relaxed memory ordering, memory operations can be

reordered without any restrictions. The most common usage of a relaxed

memory model is incrementing shared variables (e.g., a single counter, an

array of values during a histogram computation).

Under an acquire-release memory ordering, one thread releasing an

atomic variable and another thread acquiring the same atomic variable

acts as a synchronization point between those two threads and guarantees

that any prior writes to memory issued by the releasing thread are visible

to the acquiring thread. Informally, we can think of atomic operations

releasing side effects from other memory operations to other threads or

acquiring the side effects of memory operations on other threads. Such

a memory model is required if we want to communicate values between

pairs of threads via memory, which may be more common than we would

think. When a program acquires a lock, it typically goes on to perform

some additional calculations and modify some memory before eventually

ChApTer 19 MeMorY ModeL And AToMiCS

534

releasing the lock—only the lock variable is ever updated atomically, but

we expect memory updates guarded by the lock to be protected from

data races. This behavior relies on an acquire-release memory ordering

for correctness, and attempting to use a relaxed memory ordering to

implement a lock will not work.

Under a sequentially consistent memory ordering, the guarantees

of acquire-release ordering still hold, but there additionally exists a

single global order of all atomic operations. The behavior of this memory

ordering is the most intuitive of the three and the closest that we can get to

the original as-if guarantee we are used to relying upon when developing

sequential applications. With sequential consistency, it becomes

significantly easier to reason about communication between groups

(rather than pairs) of threads, since all threads must agree on the global

ordering of all atomic operations.

Understanding which memory orders are supported by a combination

of programming model and device is a necessary part of designing

portable parallel applications. Being explicit in describing the memory

order required by our applications ensures that they fail predictably

(e.g., at compile time) when the behavior we require is unsupported and

prevents us from making unsafe assumptions.

 The Memory Model
The chapter so far has introduced the concepts required to understand the

memory model. The remainder of the chapter explains the memory model

in detail, including

• How to express the memory ordering requirements of

our kernels

• How to query the memory orders supported by a

specific device

ChApTer 19 MeMorY ModeL And AToMiCS

535

• How the memory model behaves with respect to

disjoint address spaces and multiple devices

• How the memory model interacts with barriers, fences,

and atomics

• How using atomic operations differs between

buffers and USM

The memory model is based on the memory model of C++ but differs

in some important ways. These differences reflect our long-term vision

that SYCL should help inform the future of C++: the default behaviors and

naming of classes are closely aligned with the C++ standard library and are

intended to extend C++ functionality rather than to restrict it.

The table in Figure 19-9 summarizes how different memory model

concepts are exposed as language features in C++ (C++11, C++14, C++17,

C++20) vs. SYCL. The C++14, C++17, and C++20 standards additionally

include some clarifications that impact implementations of C++. These

clarifications should not affect the application code that we write, so we do

not cover them here.

ChApTer 19 MeMorY ModeL And AToMiCS

536

Feature C++ SYCL
Atomic Objects std::atomic Not available.

Atomic

References
std::atomic_ref (C++20 onwards) sycl::atomic_ref

Memory Orders

relaxed
consume
acquire
release
acq_rel
seq_cst

relaxed

acquire
release
acq_rel
seq_cst

Memory Scopes

Not available.

Behavior of atomics and fences

matches SYCL system scope.

work_item
sub_group
work_group
device
system

std::atomic_thread_fence sycl::atomic_fence
std::barrier sycl::group_barrier

Figure 19-9. Comparing C++ and SYCL memory models

 The memory_order Enumeration Class
The memory model exposes different memory orders through five

values of the memory_order enumeration class (note: C++ “consume”

is not part of SYCL), which can be supplied as arguments to fences and

atomic operations. Supplying a memory order argument to an operation

tells the compiler what memory ordering guarantees are required for all

other memory operations (to any address) relative to that operation, as

explained in the following:

• memory_order::relaxed

Read and write operations can be reordered before

or after the operation with no restrictions. There are

no ordering guarantees.

ChApTer 19 MeMorY ModeL And AToMiCS

537

• memory_order::acquire

Read and write operations appearing after the

operation in the program must occur after it (i.e.,

they cannot be reordered before the operation).

• memory_order::release

Read and write operations appearing before the

operation in the program must occur before it (i.e.,

they cannot be reordered after the operation),

and preceding write operations are guaranteed to

be visible to other work-items which have been

synchronized by a corresponding acquire operation

(i.e., an atomic operation using the same variable

and memory_order::acquire or a barrier function).

• memory_order::acq_rel

The operation acts as both an acquire and a release.

Read and write operations cannot be reordered

around the operation, and preceding writes must

be made visible as previously described for memory_

order::release.

• memory_order::seq_cst

The operation acts as an acquire, release, or

both depending on whether it is a read, write, or

read–modify–write operation, respectively. All

operations with this memory order are observed in a

sequentially consistent order.

There are several restrictions on which memory orders are supported

by each operation. The table in Figure 19-10 summarizes which

combinations are valid.

ChApTer 19 MeMorY ModeL And AToMiCS

538

Figure 19-10. Supporting atomic operations with memory_order

Load operations do not write values to memory and are therefore

incompatible with release semantics. Similarly, store operations do not

read values from memory and are therefore incompatible with acquire

semantics. The remaining read–modify–write atomic operations and

fences are compatible with all memory orderings.

MEMORY ORDER IN C++

The C++ memory model additionally includes memory_order::consume,

with similar behavior to memory_order::acquire. however, C++17

discourages its use, noting that its definition is being revised. its inclusion in

SYCL has therefore been left to consider for a future specification.

 The memory_scope Enumeration Class
The C++ memory model assumes that applications execute on a single

device with a single address space. Neither of these assumptions holds for

SYCL applications: various parts of the application execute on different

ChApTer 19 MeMorY ModeL And AToMiCS

539

devices (i.e., a host and one or more accelerator devices); each device has

multiple address spaces (i.e., private, local, and global); and the global

address space of each device may or may not be disjoint (depending on

USM support).

To address this, SYCL extends the C++ notion of memory order to

include the scope of an atomic operation, denoting the minimum set of

work-items to which a given memory ordering constraint applies. The set

of scopes are defined by way of a memory_scope enumeration class:

• memory_scope::work_item

The memory ordering constraint applies only to

the calling work-item. This scope is only useful for

image operations, as all other operations within

a work-item are already guaranteed to execute in

program order.

• memory_scope::sub_group, memory_scope::work_group

The memory ordering constraint applies only to

work- items in the same sub-group or work-group as

the calling work-item.

• memory_scope::device

The memory ordering constraint applies only to

work- items executing on the same device as the

calling work-item.

• memory_scope::system

The memory ordering constraint applies to all work-

items in the system.

ChApTer 19 MeMorY ModeL And AToMiCS

540

Barring restrictions imposed by the capabilities of a device, all memory

scopes are valid arguments to all atomic and fence operations. However, a

scope argument may be automatically demoted to a narrower scope in one

of three situations:

 1. If an atomic operation updates a value in work-

group local memory, any scope broader than

memory_scope::work_group is narrowed (because

local memory is only visible to work-items in the

same work-group).

 2. If a device does not support USM, specifying

memory_scope::system is always equivalent to

memory_scope::device (because buffers cannot be

accessed concurrently by multiple devices).

 3. If an atomic operation uses memory_order::relaxed,

there are no ordering guarantees, and the memory

scope argument is effectively ignored.

 Querying Device Capabilities
To ensure compatibility with devices supported by previous versions of

SYCL and to maximize portability, SYCL supports OpenCL 1.2 devices

and other hardware that may not be capable of supporting the full C++

memory model (e.g., certain classes of embedded devices). SYCL provides

device queries to help us reason about the memory order(s) and memory

scope(s) supported by the devices available in a system:

• atomic_memory_order_capabilities

Return a list of all memory orderings supported

by atomic operations on a specific device.

All devices are required to support at least

memory_order::relaxed.

ChApTer 19 MeMorY ModeL And AToMiCS

541

• atomic_fence_order_capabilities

Return a list of all memory orderings supported

by fence operations on a specific device.

All devices are required to support at least

memory_order::relaxed, memory_order::acquire,

memory_order::release, and memory_order::acq_rel.

Note that the minimum requirement for fences is

stronger than the minimum requirement for atomic

operations, since such fences are essential for

reasoning about memory order in the presence of

barriers.

• atomic_memory_scope_capabilities

 atomic_fence_scope_capabilities

Return a list of all memory scopes supported by

atomic and fence operations on a specific device.

All devices are required to support at least

memory_order::work_group.

It may be difficult at first to remember which memory orders and

scopes are supported for which combinations of function and device

capability. In practice, we can avoid much of this complexity by following

one of the two development approaches outlined in the following:

 1. Develop applications with sequential consistency
and system fences.

Only consider adopting less strict memory orders

during performance tuning.

ChApTer 19 MeMorY ModeL And AToMiCS

542

 2. Develop applications with relaxed consistency
and work- group fences.

Only consider adopting more strict memory orders

and broader memory scopes where required for

correctness.

The first approach ensures that the semantics of all atomic operations

and fences match the default behavior of C++. This is the simplest and

least error-prone option but has the worst performance and portability

characteristics.

The second approach is more aligned with the default behavior of

previous versions of SYCL and languages like OpenCL. Although more

complicated—since it requires that we become more familiar with the

different memory orders and scopes—it ensures that the majority of the

SYCL code we write will work on any device without performance penalties.

 Barriers and Fences
All previous usages of barriers and fences in the book so far have ignored

the issue of memory order and scope, by relying on default behavior.

By default, every group barrier in SYCL acts as an acquire-release

fence to all address spaces accessible by the calling work-item and makes

preceding writes visible to at least all other work-items in the same group

(as defined by the group’s fence_scope member variable). This ensures

memory consistency within a group of work-items after a barrier, in line

with our intuition of what it means to synchronize (and the definition of

the synchronizes-with relation in C++). It is possible to override this default

behavior by passing an explicit memory_scope argument to the group_

barrier function.

The atomic_fence function gives us even more fine-grained control

than this, allowing work-items to execute fences specifying both a memory

order and scope.

ChApTer 19 MeMorY ModeL And AToMiCS

543

 Atomic Operations in SYCL
SYCL provides support for many kinds of atomic operations on a variety

of data types. All devices are guaranteed to support atomic versions of

common operations (e.g., loads, stores, arithmetic operators), as well as

the atomic compare-and-swap operations required to implement lock-free

algorithms. The language defines these operations for all fundamental

integer, floating-point, and pointer types—all devices must support these

operations for 32-bit types, but 64-bit-type support is optional.

 The atomic Class

The std::atomic class from C++11 provides an interface for creating and

operating on atomic variables. Instances of the atomic class own their

data, cannot be moved or copied, and can only be updated using atomic

operations. These restrictions significantly reduce the chances of using the

class incorrectly and introducing undefined behavior. Unfortunately, they

also prevent the class from being used in SYCL kernels—it is impossible to

create atomic objects on the host and transfer them to the device! We are

free to continue using std::atomic in our host code, but attempting to use

it inside of device kernels will result in a compiler error.

ATOMIC CLASS DEPRECATED IN SYCL 2020

The SYCL 1.2.1 specification included a cl::sycl::atomic class that

is loosely based on the std::atomic class from C++11. We say loosely

because there are some differences between the interfaces of the two classes,

most notably that the SYCL 1.2.1 version does not own its data and defaults to

a relaxed memory ordering.

The cl::sycl::atomic class is deprecated in SYCL 2020. The

atomic_ref class (covered in the next section) should be used in its place.

ChApTer 19 MeMorY ModeL And AToMiCS

544

 The atomic_ref Class

The std::atomic_ref class from C++20 provides an alternative interface

for atomic operations which provides greater flexibility than std::atomic.

The biggest difference between the two classes is that instances of

std::atomic_ref do not own their data but are instead constructed from

an existing non-atomic variable. Creating an atomic reference effectively

acts as a promise that the referenced variable will only be accessed

atomically for the lifetime of the reference. These are exactly the semantics

needed by SYCL, since they allow us to create non-atomic data on the host,

transfer that data to the device, and treat it as atomic data only after it has

been transferred. The atomic_ref class used in SYCL kernels is therefore

based on std::atomic_ref.

We say based on because the SYCL version of the class includes three

additional template arguments as shown in Figure 19-11.

template <typename T, memory_order DefaultOrder,
memory_scope DefaultScope,
access::address_space AddressSpace>

class atomic_ref {
public:
using value_type = T;
static constexpr size_t required_alignment =

/* implementation-defined */;
static constexpr bool is_always_lock_free =

/* implementation-defined */;
static constexpr memory_order default_read_order =

memory_order_traits<DefaultOrder>::read_order;
static constexpr memory_order default_write_order =

memory_order_traits<DefaultOrder>::write_order;
static constexpr memory_order

default_read_modify_write_order = DefaultOrder;
static constexpr memory_scope default_scope =

DefaultScope;

explicit atomic_ref(T& obj);
atomic_ref(const atomic_ref& ref) noexcept;

};

Figure 19-11. Constructors and static members of the atomic_ref class

ChApTer 19 MeMorY ModeL And AToMiCS

545

As discussed previously, the capabilities of different SYCL devices

are varied. Selecting a default behavior for the atomic classes of SYCL is a

difficult proposition: defaulting to C++ behavior (i.e., memory_order::seq_

cst, memory_scope::system) limits code to executing only on the most

capable of devices; on the other hand, breaking with C++ conventions

and defaulting to the lowest common denominator (i.e., memory_

order::relaxed, memory_scope::work_group) could lead to unexpected

behavior when migrating existing C++ code. The design adopted by SYCL

offers a compromise, allowing us to define our desired default behavior

as part of an object’s type (using the DefaultOrder and DefaultScope

template arguments). Other orderings and scopes can be provided as

runtime arguments to specific atomic operations as we see fit—the

DefaultOrder and DefaultScope only impact operations where we do

not or cannot override the default behavior (e.g., when using a shorthand

operator like +=). The final (optional) template argument denotes the

address space in which the referenced object is allocated. Note that if the

final template argument is not specified, the referenced variable can be

allocated in any address space—although specifying an address space

here is optional, we recommend providing explicit address spaces (where

possible) to give compilers more information and to avoid unwanted

performance overheads.

An atomic reference provides support for different operations

depending on the type of object that it references. The basic operations

supported by all types are shown in Figure 19-12, providing the ability to

atomically move data to and from memory.

ChApTer 19 MeMorY ModeL And AToMiCS

546

void store(
T operand, memory_order order = default_write_order,
memory_scope scope = default_scope) const noexcept;

T operator=(
T desired) const noexcept; // equivalent to store

T load(memory_order order = default_read_order,
memory_scope scope = default_scope) const noexcept;

operator T() const noexcept; // equivalent to load

T exchange(
T operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_weak(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired, memory_order success,
memory_order failure,
memory_scope scope = default_scope) const noexcept;

bool compare_exchange_strong(
T &expected, T desired,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Figure 19-12. Basic operations with atomic_ref for all types

Atomic references to objects of integral and floating-point types extend

the set of available atomic operations to include arithmetic operations, as

shown in Figure 19-13 and Figure 19-14. Devices are required to support

atomic floating-point types irrespective of whether they feature native

support for floating-point atomics in hardware, and many devices are

expected to emulate atomic floating-point addition using an atomic

compare exchange. This emulation is an important part of providing

ChApTer 19 MeMorY ModeL And AToMiCS

547

performance and portability in SYCL, and we should feel free to use

floating-point atomics anywhere that an algorithm requires them—the

resulting code will work correctly everywhere and will benefit from future

improvements in floating-point atomic hardware without any modification!

Integral fetch_add(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_sub(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_and(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_or(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_min(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral fetch_max(
Integral operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Integral operator++(int) const noexcept;
Integral operator--(int) const noexcept;
Integral operator++() const noexcept;
Integral operator--() const noexcept;
Integral operator+=(Integral) const noexcept;
Integral operator-=(Integral) const noexcept;
Integral operator&=(Integral) const noexcept;
Integral operator|=(Integral) const noexcept;

Figure 19-13. Additional operations with atomic_ref only for
integral types

ChApTer 19 MeMorY ModeL And AToMiCS

548

Floating fetch_add(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_sub(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_min(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating fetch_max(
Floating operand,
memory_order order = default_read_modify_write_order,
memory_scope scope = default_scope) const noexcept;

Floating operator+=(Floating) const noexcept;
Floating operator-=(Floating) const noexcept;

Figure 19-14. Additional operations with atomic_ref only for
floating-point types

 Using Atomics with Buffers
As discussed in the previous section, there is no way in SYCL to allocate

atomic data and move it between the host and device. To use atomic

operations in conjunction with buffers, we must create a buffer of non-

atomic data to be transferred to the device and then access that data

through an atomic reference.

ChApTer 19 MeMorY ModeL And AToMiCS

549

q.submit([&](handler& h) {
accessor acc{buf, h};
h.parallel_for(N, [=](id<1> i) {

int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_acc(acc[j]);
atomic_acc += 1;

});
});

Figure 19-15. Accessing a buffer via an explicitly created atomic_ref

The code in Figure 19-15 is an example of expressing atomicity in

SYCL using an explicitly created atomic reference object. The buffer stores

normal integers, and we require an accessor with both read and write

permissions. We can then create an instance of atomic_ref for each data

access, using the += operator as a shorthand alternative for the fetch_add

member function.

This pattern is useful if we want to mix atomic and non-atomic

accesses to a buffer within the same kernel, to avoid paying the

performance overheads of atomic operations when they are not required.

If we know that only a subset of the memory locations in the buffer will

be accessed concurrently by multiple work-items, we only need to use

atomic references when accessing that subset. Or, if we know that work-

items in the same work-group only concurrently access local memory

during one stage of a kernel (i.e., between two work-group barriers),

we only need to use atomic references during that stage. When mixing

atomic and non-atomic accesses like this, it is important to pay attention

to object lifetimes—while any atomic_ref referencing a specific object

exists, all accesses to that object must occur (atomically) via an instance of

atomic_ref.

ChApTer 19 MeMorY ModeL And AToMiCS

550

 Using Atomics with Unified Shared Memory
As shown in Figure 19-16 (reproduced from Figure 19-7), we can construct

atomic references from data stored in USM in exactly the same way as we

could for buffers. Indeed, the only difference between this code and the

code shown in Figure 19-15 is that the USM code does not require buffers

or accessors.

q.parallel_for(N, [=](id<1> i) {
int j = i % M;
atomic_ref<int, memory_order::relaxed,

memory_scope::system,
access::address_space::global_space>

atomic_data(data[j]);
atomic_data += 1;

}).wait();

Figure 19-16. Accessing a USM allocation via an explicitly created
atomic_ref

 Using Atomics in Real Life
The potential usages of atomics are so broad and varied that it would be

impossible for us to provide an example of each usage in this book. We

have included two representative examples, with broad applicability across

domains:

 1. Computing a histogram

 2. Implementing device-wide synchronization

ChApTer 19 MeMorY ModeL And AToMiCS

551

 Computing a Histogram
The code in Figure 19-17 demonstrates how to use relaxed atomics in

conjunction with work-group barriers to compute a histogram. The kernel

is split by the barriers into three phases, each with their own atomicity

requirements. Remember that the barrier acts both as a synchronization

point and an acquire-release fence—this ensures that any reads and writes

in one phase are visible to all work-items in the work-group in later phases.

The first phase sets the contents of some work-group local memory to

zero. The work-items in each work-group update independent locations in

work-group local memory by design—race conditions cannot occur, and

no atomicity is required.

The second phase accumulates partial histogram results in local

memory. Work-items in the same work-group may update the

same locations in work-group local memory, but synchronization

can be deferred until the end of the phase—we can satisfy the

atomicity requirements using memory_order::relaxed and memory_

scope::work_group.

The third phase contributes the partial histogram results to the

total stored in global memory. Work-items in the same work-group are

guaranteed to read from independent locations in work-group local

memory, but may update the same locations in global memory—we

no longer require atomicity for the work-group local memory and can

satisfy the atomicity requirements for global memory using memory_

order::relaxed and memory_scope::system as before.

ChApTer 19 MeMorY ModeL And AToMiCS

552

q.submit([&](handler& h) {
auto local = local_accessor<uint32_t, 1>{B, h};
h.parallel_for(

nd_range<1>{num_groups * num_items, num_items},
[=](nd_item<1> it) {
auto grp = it.get_group();

// Phase 1: Work-items co-operate to zero local
// memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
local[b] = 0;

}
group_barrier(grp); // Wait for all to be zeroed

// Phase 2: Work-groups each compute a chunk of
// the input. Work-items co-operate to compute
// histogram in local memory
const auto [group_start, group_end] =

distribute_range(grp, N);
for (int i = group_start + it.get_local_id(0);

i < group_end; i += it.get_local_range(0)) {
int32_t b = input[i] % B;
atomic_ref<uint32_t, memory_order::relaxed,

memory_scope::work_group,
access::address_space::local_space>(local[b])++;

}
group_barrier(

grp); // Wait for all local histogram
// updates to complete

// Phase 3: Work-items co-operate to update
// global memory
for (int32_t b = it.get_local_id(0); b < B;

b += it.get_local_range(0)) {
atomic_ref<uint32_t, memory_order::relaxed, memory_scope::system,

access::address_space::global_space>(histogram[b]) +=
local[b];

}
});

}).wait();

Figure 19-17. Computing a histogram using atomic references in
different memory spaces

ChApTer 19 MeMorY ModeL And AToMiCS

553

 Implementing Device-Wide Synchronization
Back in Chapter 4, we warned against writing kernels that attempt to

synchronize work-items across work-groups. However, we fully expect

several readers of this chapter will be itching to implement their own

device-wide synchronization routines atop of atomic operations and that

our warnings will be ignored.

device-wide synchronization is currently not portable and is best left
to expert programmers. Future versions of SYCL will address this.

The code discussed in this section is dangerous and should not be

expected to work on all devices, because of potential differences in device

hardware features and SYCL implementations. The memory ordering

guarantees provided by atomics are orthogonal to forward progress

guarantees, and, at the time of writing, work-group scheduling in SYCL

is completely implementation-defined. Formalizing the concepts and

terminology required to describe SYCL’s ND-range execution model and

the forward progress guarantees associated with work-items, sub-groups,

and work-groups is currently an area of active academic research—future

versions of SYCL are expected to build on this work to provide additional

scheduling queries and controls. For now, these topics should be

considered expert-only.

Figure 19-18 shows a simple implementation of a device-wide latch (a

single-use barrier), and Figure 19-19 shows a simple example of its usage.

Each work-group elects a single work-item to signal arrival of the group

at the latch and await the arrival of other groups using a naïve spin-loop,

while the other work-items wait for the elected work-item using a work-

group barrier. It is this spin-loop that makes device-wide synchronization

unsafe; if any work-groups have not yet begun executing or the currently

executing work-groups are not scheduled fairly, the code may deadlock.

ChApTer 19 MeMorY ModeL And AToMiCS

https://doi.org/10.1007/978-1-4842-9691-2_4

554

relying on memory order alone to implement synchronization
primitives may lead to deadlocks in the absence of sufficiently strong
forward progress guarantees!

For the code to work correctly, the following three conditions

must hold:

 1. The atomic operations must use memory orders at

least as strict as those shown, to guarantee that the

correct fences are generated.

 2. The elected leader of each work-group in the ND-

range must make progress independently of the

leaders in other work-groups, to avoid a single

work-item spinning in the loop from starving other

work-items that have yet to increment the counter.

 3. The device must be capable of executing all work-

groups in the ND- range simultaneously, with strong

forward progress guarantees, in order to ensure that

the elected leaders of every work-group in the ND-

range eventually reach the latch.

ChApTer 19 MeMorY ModeL And AToMiCS

555

struct device_latch {
 explicit device_latch(size_t num_groups)
 : counter(0), expected(num_groups) {}

 template <int Dimensions>
 void arrive_and_wait(nd_item<Dimensions>& it) {
 auto grp = it.get_group();
 group_barrier(grp);
 // Elect one work-item per work-group to be involved in
 // the synchronization. All other work-items wait at the
 // barrier after the branch.
 if (grp.leader()) {
 atomic_ref<size_t, memory_order::acq_rel,
 memory_scope::device,
 access::address_space::global_space>
 atomic_counter(counter);

 // Signal arrival at the barrier.
 // Previous writes should be visible to all work-items
 // on the device.
 atomic_counter++;

 // Wait for all work-groups to arrive.
 // Synchronize with previous releases by all
 // work-items on the device.
 while (atomic_counter.load() != expected) {
 }
 }
 group_barrier(grp);
 }

 size_t counter;
 size_t expected;
};

Figure 19-18. Building a simple device-wide latch on top of atomic
references

ChApTer 19 MeMorY ModeL And AToMiCS

556

Figure 19-19. Using the device-wide latch from Figure 19-18

Although this code is not guaranteed to be portable, we have included

it here to highlight two key points: (1) SYCL is expressive enough to enable

device-specific tuning, sometimes at the expense of portability; and (2)

SYCL already contains the building blocks necessary to implement higher-

level synchronization routines, which may be included in a future version

of the language.

 Summary
This chapter provided a high-level introduction to memory model and

atomic classes. Understanding how to use (and how not to use!) these

classes is key to developing correct, portable, and efficient parallel programs.

Memory models are an overwhelmingly complex topic, and our

focus here has been on establishing a base for writing real applications. If

more information is desired, there are several websites, books, and talks

dedicated to memory models referenced in the following.

ChApTer 19 MeMorY ModeL And AToMiCS

557

 For More Information
• A. Williams, C++ Concurrency in Action: Practical

Multithreading, Manning, 2012, 978-1933988771

• H. Sutter, “atomic<> Weapons: The C++ Memory Model

and Modern Hardware”, herbsutter.com/2013/02/11/

atomic-weapons-the-c-memory-model-and-modern-

hardware/

• H-J. Boehm, “Temporarily discourage memory_order_

consume,” wg21.link/p0371

• C++ Reference, “std::atomic,” en.cppreference.com/w/

cpp/atomic/atomic

• C++ Reference, “std::atomic_ref,” en.cppreference.

com/w/cpp/atomic/atomic_ref

Open Access This chapter is licensed under the terms of

the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits use,

sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

ChApTer 19 MeMorY ModeL And AToMiCS

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
https://wg21.link/p0371
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://creativecommons.org/licenses/by/4.0/

	Chapter 19: Memory Model and Atomics
	What’s in a Memory Model?
	Data Races and Synchronization
	Barriers and Fences
	Atomic Operations
	Memory Ordering

	The Memory Model
	The memory_order Enumeration Class
	The memory_scope Enumeration Class
	Querying Device Capabilities
	Barriers and Fences
	Atomic Operations in SYCL
	The atomic Class
	The atomic_ref Class

	Using Atomics with Buffers
	Using Atomics with Unified Shared Memory

	Using Atomics in Real Life
	Computing a Histogram
	Implementing Device-Wide Synchronization

	Summary
	For More Information

