
111
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_8

CHAPTER 8

libpmemobj-cpp:
The Adaptable Language -
C++ and Persistent
Memory
�Introduction
The Persistent Memory Development Kit (PMDK) includes several separate libraries;

each is designed with a specific use in mind. The most flexible and powerful one is

libpmemobj. It complies with the persistent memory programming model without

modifying the compiler. Intended for developers of low-level system software and

language creators, the libpmemobj library provides allocators, transactions, and a way

to automatically manipulate objects. Because it does not modify the compiler, its API is

verbose and macro heavy.

To make persistent memory programming easier and less error prone, higher-

level language bindings for libpmemobj were created and included in PMDK. The C++

language was chosen to create new and friendly API to libpmemobj called libpmemobj-

cpp, which is also referred to as libpmemobj++. C++ is versatile, feature rich, has a

large developer base, and it is constantly being improved with updates to the C++

programming standard.

The main goal for the libpmemobj-cpp bindings design was to focus modifications to

volatile programs on data structures and not on the code. In other words, libpmemobj-

cpp bindings are for developers, who want to modify volatile applications, provided with

a convenient API for modifying structures and classes with only slight modifications to

functions.

https://doi.org/10.1007/978-1-4842-4932-1_8

112

This chapter describes how to leverage the C++ language features that support

metaprogramming to make persistent memory programming easier. It also describes

how to make it more C++ idiomatic by providing persistent containers. Finally, we

discuss C++ standard limitations for persistent memory programming, including an

object’s lifetime and the internal layout of objects stored in persistent memory.

�Metaprogramming to the Rescue
Metaprogramming is a technique in which computer programs have the ability to treat

other programs as their data. It means that a program can be designed to read, generate,

analyze or transform other programs, and even modify itself while running. In some

cases, this allows programmers to minimize the number of lines of code to express a

solution, in turn reducing development time. It also allows programs greater flexibility to

efficiently handle new situations without recompilation.

For the libpmemobj-cpp library, considerable effort was put into encapsulating

the PMEMoids (persistent memory object IDs) with a type-safe container. Instead of a

sophisticated set of macros for providing type safety, templates and metaprogramming

are used. This significantly simplifies the native C libpmemobj API.

�Persistent Pointers
The persistent memory programming model created by the Storage Networking Industry

Association (SNIA) is based on memory-mapped files. PMDK uses this model for its

architecture and design implementation. We discussed the SNIA programming model in

Chapter 3.

Most operating systems implement address space layout randomization (ASLR).

ASLR is a computer security technique involved in preventing exploitation of memory

corruption vulnerabilities. To prevent an attacker from reliably jumping to, for example,

a particular exploited function in memory, ASLR randomly arranges the address space

positions of key data areas of a process, including the base of the executable and the

positions of the stack, heap, and libraries. Because of ASLR, files can be mapped at

different addresses of the process address space each time the application executes.

As a result, traditional pointers that store absolute addresses cannot be used. Upon

each execution, a traditional pointer might point to uninitialized memory for which

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_3

113

dereferencing it may result in a segmentation fault. Or it might point to a valid memory

range, but not the one that the user expects it to point to, resulting in unexpected and

undetermined behavior.

To solve this problem in persistent memory programming, a different type of pointer

is needed. libpmemobj introduced a C struct called PMEMoid, which consists of an

identifier of the pool and an offset from its beginning. This fat pointer is encapsulated

in libpmemobj C++ bindings as a template class pmem::obj::persistent_ptr. Both

the C and C++ implementations have the same 16-byte footprint. A constructor

from raw PMEMoid is provided so that mixing the C API with C++ is possible. The

pmem::obj::persistent_ptr is similar in concept and implementation to the smart

pointers introduced in C++11 (std::shared_ptr, std::auto_ptr, std::unique_ptr, and

std::weak_ptr), with one big difference – it does not manage the object’s life cycle.

Besides operator*, operator->, operator[], and typedefs for compatibility with

std::pointer_traits and std::iterator_traits, the pmem::obj::persistent_ptr

also has defined methods for persisting its contents. The pmem::obj::persistent_ptr

can be used in standard library algorithms and containers.

�Transactions
Being able to modify more than 8 bytes of storage at a time atomically is imperative for

most nontrivial algorithms one might want to use in persistent memory. Commonly, a

single logical operation requires multiple stores. For example, an insert into a simple list-

based queue requires two separate stores: a tail pointer and the next pointer of the last

element. To enable developers to modify larger amounts of data atomically, with respect

to power-fail interruptions, the PMDK library provides transaction support in some of

its libraries. The C++ language bindings wrap these transactions into two concepts: one,

based on the resource acquisition is initialization (RAII) idiom and the other based on

a callable std::function object. Additionally, because of some C++ standard issues,

the scoped transactions come in two flavors: manual and automatic. In this chapter we

only describe the approach with std::function object. For information about RAII-

based transactions, refer to libpmemobj-cpp documentation (https://pmem.io/pmdk/

cpp_obj/).

The method which uses std::function is declared as

void pmem::obj::transaction::run(pool_base &pop,

 std::function<void ()> tx, Locks&... locks)

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

https://pmem.io/pmdk/cpp_obj/
https://pmem.io/pmdk/cpp_obj/

114

The locks parameter is a variadic template. Thanks to the std::function, a myriad

of types can be passed in to run. One of the preferred ways is to pass a lambda function

as the tx parameter. This makes the code compact and easier to analyze. Listing 8-1

shows how lambda can be used to perform work in a transaction.

Listing 8-1.  Function object transaction

 45 // execute a transaction

 46 pmem::obj::transaction::run(pop, [&]() {

 47 // do transactional work

 48 });

Of course, this API is not limited to just lambda functions. Any callable target can

be passed as tx, such as functions, bind expressions, function objects, and pointers

to member functions. Since run is a normal static member function, it has the benefit

of being able to throw exceptions. If an exception is thrown during the execution of

a transaction, it is automatically aborted, and the active exception is rethrown so

information about the interruption is not lost. If the underlying C library fails for any

reason, the transaction is also aborted, and a C++ library exception is thrown. The

developer is no longer burdened with the task of checking the status of the previous

transaction.

libpmemobj-cpp transactions provide an entry point for persistent memory resident

synchronization primitives such as pmem::obj::mutex, pmem::obj::shared_mutex and

pmem::obj::timed_mutex. libpmemobj ensures that all locks are properly reinitialized

when one attempts to acquire a lock for the first time. The use of pmem locks is

completely optional, and transactions can be executed without them. The number of

supplied locks is arbitrary, and the types can be freely mixed. The locks are held until

the end of the given transaction, or the outermost transaction in the case of nesting. This

means when transactions are enclosed by a try-catch statement, the locks are released

before reaching the catch clause. This is extremely important in case some kind of

transaction abort cleanup needs to modify the shared state. In such a case, the necessary

locks need to be reacquired in the correct order.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

115

�Snapshotting
The C library requires manual snapshots before modifying data in a transaction. The

C++ bindings do all of the snapshotting automatically, to reduce the probability of

programmer error. The pmem::obj::p template wrapper class is the basic building block

for this mechanism. It is designed to work with basic types and not compound types

such as classes or PODs (Plain Old Data, structures with fields only and without any

object-oriented features). This is because it does not define operator->() and there is

no possibility to implement operator.(). The implementation of pmem::obj::p is based

on the operator=(). Each time the assignment operator is called, the value wrapped

by p will be changed, and the library needs to snapshot the old value. In addition to

snapshotting, the p<> template ensures the variable is persisted correctly, flushing data if

necessary. Listing 8-2 provides an example of using the p<> template.

Listing 8-2.  Using the p<> template to persist values correctly

 39 struct bad_example {

 40 int some_int;

 41 float some_float;

 42 };

 43

 44 struct good_example {

 45 pmem::obj::p<int> pint;

 46 pmem::obj::p<float> pfloat;

 47 };

 48

 49 struct root {

 50 bad_example bad;

 51 good_example good;

 52 };

 53

 54 int main(int argc, char *argv[]) {

 55 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "p");

 56

 57 auto r = pop.root();

 58

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

116

 59 pmem::obj::transaction::run(pop, [&]() {

 60 r->bad.some_int = 10;

 61 r->good.pint = 10;

 62

 63 r->good.pint += 1;

 64 });

 65

 66 return 0;

 67 }

•	 Lines 39-42: Here, we declare a bad_example structure with two

variables – some_int and some_float. Storing this structure on

persistent memory and modifying it are dangerous because data is

not snapshotted automatically.

•	 Lines 44-47: We declare the good_example structure with two p<>

type variables – pint and pfloat. This structure can be safely stored

on persistent memory as every modification of pint or pfloat in a

transaction will perform a snapshot.

•	 Lines 55-57: Here, we open a persistent memory pool, created

already using the pmempool command, and obtain a pointer to the

root object stored within the root variable.

•	 Line 60: We modify the integer value from the bad_example structure.

This modification is not safe because we do not add this variable to

the transaction; hence it will not be correctly made persistent if there

is an unexpected application or system crash or power failure.

•	 Line 61: Here, we modify integer value wrapped by p<> template. This

is safe because operator=() will automatically snapshot the element.

•	 Line 63: Using arithmetic operators on p<> (if the underlying type

supports it) is also safe.

�Allocating
As with std::shared_ptr, the pmem::obj::persistent_ptr comes with a set of allocating

and deallocating functions. This helps allocate memory and create objects, as well as

destroy and deallocate the memory. This is especially important in the case of persistent

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

117

memory because all allocations and object construction/destruction must be done

atomically with respect to power-fail interruptions. The transactional allocations use

perfect forwarding and variadic templates for object construction. This makes object

creation similar to calling the constructor and identical to std::make_shared. The

transactional array creation, however, requires the objects to be default constructible.

The created arrays can be multidimensional. The pmem::obj::make_persistent and

pmem::obj::make_persistent_array must be called within a transaction; otherwise, an

exception is thrown. During object construction, other transactional allocations can be

made, and that is what makes this API very flexible. The specifics of persistent memory

required the introduction of the pmem::obj::delete_persistent function, which

destroys objects and arrays of objects. Since the pmem::obj::persistent_ptr does not

automatically handle the lifetime of pointed to objects, the user is responsible for disposing

of the ones that are no longer in use. Listing 8-3 shows example of transaction allocation.

Atomic allocations behave differently as they do not return a pointer. Developers

must provide a reference to one as the function’s argument. Because atomic allocations

are not executed in the context of a transaction, the actual pointer assignment must be

done through other means. For example, by redo logging the operation. Listing 8-3 also

provides an example of atomic allocation.

Listing 8-3.  Example of transactional and atomic allocations

 39 struct my_data {

 40 my_data(int a, int b): a(a), b(b) {

 41

 42 }

 43

 44 int a;

 45 int b;

 46 };

 47

 48 struct root {

 49 pmem::obj::persistent_ptr<my_data> mdata;

 50 };

 51

 52 int main(int argc, char *argv[]) {

 53 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

118

 54

 55 auto r = pop.root();

 56

 57 pmem::obj::transaction::run(pop, [&]() {

 58 r->mdata = pmem::obj::make_persistent<my_data>(1, 2);

 59 });

 60

 61 pmem::obj::transaction::run(pop, [&]() {

 62 pmem::obj::delete_persistent<my_data>(r->mdata);

 63 });

 64 �pmem::obj::make_persistent_atomic<my_data>(pop, r->mdata,

2, 3);

 65

 66 return 0;

 67 }

•	 Line 58: Here, we allocate my_data object transactionally. Parameters

passed to make_persistent will be forwarded to my_data constructor.

Note that assignment to r->mdata will perform a snapshot of old

persistent pointer’s value.

•	 Line 62: Here, we delete the my_data object. delete_persistent will

call the object’s destructor and free the memory.

•	 Line 64: We allocate my_data object atomically. Calling this function

cannot be done inside of a transaction.

�C++ Standard limitations
The C++ language restrictions and persistent memory programming paradigm imply

serious restrictions on objects which may be stored on persistent memory. Applications

can access persistent memory with memory-mapped files to take advantage of its byte

addressability thanks to libpmemobj and SNIA programming model. No serialization

takes place here, so applications must be able to read and modify directly from the

persistent memory media even after the application was closed and reopened or after a

power failure event.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

119

What does the preceding mean from a C++ and libpmemobj’s perspective? There are

four major problems:

	 1.	 Object lifetime

	 2.	 Snapshotting objects in transactions

	 3.	 Fixed on-media layout of stored objects

	 4.	 Pointers as object members

These four problems will be described in next four sections.

�An Object’s Lifetime
The lifetime of an object is described in the [basic.life] section of the C++ standard

(https://isocpp.org/std/the-standard):

The lifetime of an object or reference is a runtime property of the object or
reference. A variable is said to have vacuous initialization if it is default-
initialized and, if it is of class type or a (possibly multi-dimensional) array
thereof, that class type has a trivial default constructor. The lifetime of an
object of type T begins when:

(1.1) storage with the proper alignment and size for type T is obtained, and

(1.2) its initialization (if any) is complete (including vacuous initializa-
tion) ([dcl.init]), except that if the object is a union member or subobject
thereof, its lifetime only begins if that union member is the initialized mem-
ber in the union ([dcl.init.aggr], [class.base.init]), or as described in [class.
union]. The lifetime of an object of type T ends when:

(1.3) if T is a non-class type, the object is destroyed, or

(1.4) if T is a class type, the destructor call starts, or

(1.5) the storage which the object occupies is released, or is reused by an
object that is not nested within o ([intro.object]).

The standard states that properties ascribed to objects apply for a given object only

during its lifetime. In this context, the persistent memory programming problem is

similar to transmitting data over a network, where the C++ application is given an array

of bytes but might be able to recognize the type of object sent. However, the object was

not constructed in this application, so using it would result in undefined behavior.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

https://isocpp.org/std/the-standard

120

This problem is well known and is being addressed by the WG21 C++ Standards

Committee Working Group (https://isocpp.org/std/the-committee and http://

www.open-std.org/jtc1/sc22/wg21/).

Currently, there is no possible way to overcome the object-lifetime obstacle and

stop relying on undefined behavior from C++ standard’s point of view. libpmemobj-cpp

is tested and validated with various C++11 compliant compilers and use case scenarios.

The only recommendation for libpmemobj-cpp users is that they must keep this

limitation in mind when developing persistent memory applications.

�Trivial Types
Transactions are the heart of libpmemobj. That is why libpmemobj-cpp was implemented

with utmost care while designing the C++ versions so they are as easy to use as possible.

Developers do not have to know the implementation details and do not have to worry about

snapshotting modified data to make undo log–based transaction works. A special semi-

transparent template property class has been implemented to automatically add variable

modifications to the transaction undo log, which is described in the “Snapshotting” section.

But what does snapshotting data mean? The answer is very simple, but the

consequences for C++ are not. libpmemobj implements snapshotting by copying data of

given length from a specified address to another address using memcpy(). If a transaction

aborts or a system power loss occurs, the data will be written from the undo log when the

memory pool is reopened. Consider a definition of the following C++ object, presented

in Listing 8-4, and think about the consequences that a memcpy() has on it.

Listing 8-4.  An example showing an unsafe memcpy() on an object

 35 class nonTriviallyCopyable {

 36 private:

 37 int* i;

 38 public:

 39 nonTriviallyCopyable (const nonTriviallyCopyable & from)

 40 {

 41 /* perform non-trivial copying routine */

 42 i = new int(*from.i);

 43 }

 44 };

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

https://isocpp.org/std/the-committee
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/

121

Deep and shallow copying is the simplest example. The gist of the problem is that

by copying the data manually, we may break the inherent behavior of the object which

may rely on the copy constructor. Any shared or unique pointer would be another great

example – by simple copying it with memcpy(), we break the "deal" we made with that

class when we used it, and it may lead to leaks or crashes.

The application must handle many more sophisticated details when it manually

copies the contents of an object. The C++11 standard provides a <type_traits>

type trait and std::is_trivially_copyable, which ensure a given type satisfies the

requirements of TriviallyCopyable. Referring to C++ standard, an object satisfies the

TriviallyCopyable requirements when

A trivially copyable class is a class that:

— has no non-trivial copy constructors (12.8),

— has no non-trivial move constructors (12.8),

— has no non-trivial copy assignment operators (13.5.3, 12.8),

— has no non-trivial move assignment operators (13.5.3, 12.8), and

— has a trivial destructor (12.4).

A trivial class is a class that has a trivial default constructor (12.1) and is
trivially copyable.

[Note: In particular, a trivially copyable or trivial class does not have vir-
tual functions or virtual base classes.]

The C++ standard defines nontrivial methods as follows:

A copy/move constructor for class X is trivial if it is not user-provided and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1),
and

— the constructor selected to copy/move each direct base class subobject is
trivial, and

— for each non-static data member of X that is of class type (or array
thereof), the constructor selected to copy/move that member is trivial;

otherwise, the copy/move constructor is non-trivial.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

122

This means that a copy or move constructor is trivial if it is not user provided.

The class has nothing virtual in it, and this property holds recursively for all the members

of the class and for the base class. As you can see, the C++ standard and libpmemobj

transaction implementation limit the possible objects type to store on persistent

memory to satisfy requirements of trivial types, but the layout of our objects must be

taken into account.

�Object Layout
Object representation, also referred to as the layout, might differ between compilers,

compiler flags, and application binary interface (ABI). The compiler may do some

layout-related optimizations and is free to shuffle order of members with same specifier

type – for example, public then protected, then public again. Another problem related

to unknown object layout is connected to polymorphic types. Currently there is no

reliable and portable way to implement vtable rebuilding after reopening the memory

pool, so polymorphic objects cannot be supported with persistent memory.

If we want to store objects on persistent memory using memory-mapped files and

to follow the SNIA NVM programming model, we must ensure that the following casting

will be always valid:

someType A = *reinterpret_cast<someType*>(mmap(...));

The bit representation of a stored object type must be always the same, and our

application should be able to retrieve the stored object from the memory-mapped file

without serialization.

It is possible to ensure that specific types satisfy the aforementioned requirements.

C++11 provides another type trait called std::is_standard_layout. The standard

mentions that it is useful for communicating with other languages, such as for creating

language bindings to native C++ libraries as an example, and that's why a standard-

layout class has the same memory layout of the equivalent C struct or union. A general

rule is that standard-layout classes must have all non-static data members with the same

access control. We mentioned this at the beginning of this section – that a C++ compliant

compiler is free to shuffle access ranges of the same class definition.

When using inheritance, only one class in the whole inheritance tree can have non-

static data members, and the first non-static data member cannot be of a base class type

because this could break aliasing rules. Otherwise, it is not a standard-layout class.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

123

The C++11 standard defines std::is_standard_layout as follows:

A standard-layout class is a class that:

— has no non-static data members of type non-standard-layout class (or
array of such types) or reference,

— has no virtual functions (10.3) and no virtual base classes (10.1),

— has the same access control (Clause 11) for all non-static data members,

— has no non-standard-layout base classes,

— either has no non-static data members in the most derived class and at
most one base class with non-static data members, or has no base classes
with non-static data members, and

— has no base classes of the same type as the first non-static data member.

A standard-layout struct is a standard-layout class defined with the class-
key struct or the class-key class.

A standard-layout union is a standard-layout class defined with the class-
key union.

[Note: Standard-layout classes are useful for communicating with code
written in other programming languages. Their layout is specified in 9.2.]

Having discussed object layouts, we look at another interesting problem with pointer

types and how to store them on persistent memory.

�Pointers
In previous sections, we quoted parts of the C++ standard. We were describing the limits

of types which were safe to snapshot and copy and which we can binary-cast without

thinking of fixed layout. But what about pointers? How do we deal with them in our

objects as we come to grips with the persistent memory programming model? Consider

the code snippet presented in Listing 8-5 which provides an example of a class that uses

a volatile pointer as a class member.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

124

Listing 8-5.  Example of class with a volatile pointer as a class member

 39 struct root {

 40 int* vptr1;

 41 int* vptr2;

 42 };

 43

 44 int main(int argc, char *argv[]) {

 45 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");

 46

 47 auto r = pop.root();

 48

 49 int a1 = 1;

 50

 51 pmem::obj::transaction::run(pop, [&](){

 52 auto ptr = pmem::obj::make_persistent<int>(0);

 53 r->vptr1 = ptr.get();

 54 r->vptr2 = &a1;

 55 });

 56

 57 return 0;

 58 }

•	 Lines 39-42: We create a root structure with two volatile pointers as

members.

•	 Lines 51-52: Our application is assigning, transactionally, two virtual

addresses. One to an integer residing on the stack and the second to

an integer residing on persistent memory. What will happen if the

application crashes or exits after execution of the transaction and we

execute the application again? Since the variable a1 was residing on

the stack, the old value vanished. But what is the value assigned to

vptr1? Even if it resides on persistent memory, the volatile pointer

is no longer valid. With ASLR we are not guaranteed to get the same

virtual address again if we call mmap(). The pointer could point to

something, nothing, or garbage.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

125

As shown in the preceding example, it is very important to realize that storing

volatile memory pointers in persistent memory is almost always a design error.

However, using the pmem::obj::persistent_ptr<> class template is safe. It provides

the only way to safely access specific memory after an application crash. However,

the pmem::obj::persistent_ptr<> type does not satisfy TriviallyCopyable

requirements because of explicitly defined constructors. As a result, an object with a

pmem::obj::persistent_ptr<> member will not pass the std::is_trivially_copyable

verification check. Every persistent memory developer should always check whether

pmem::obj::persistent_ptr<> could be copied in that specific case and that it will

not cause errors and persistent memory leaks. Developers should realize that std::is_

trivially_copyable is a syntax check only and it does not test the semantics. Using

pmem::obj::persistent_ptr<> in this context leads to undefined behavior. There is no

single solution to the problem. At the time of writing this book, the C++ standard does

not yet fully support persistent memory programming, so developers must ensure that

copying pmem::obj::persistent_ptr<> is safe to use in each case.

�Limitations Summary
C++11 provides several very useful type traits for persistent memory programming.

These are

•	 template <typename T>

struct std::is_pod;

•	 template <typename T>

struct std::is_trivial;

•	 template <typename T>

struct std::is_trivially_copyable;

•	 template <typename T>

struct std::is_standard_layout;

They are correlated with each other. The most general and restrictive is the definition

of a POD type shown in Figure 8-1.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

126

We mentioned previously that a persistent memory resident class must satisfy the

following requirements:

•	 std::is_trivially_copyable

•	 std::is_standard_layout

Persistent memory developers are free to use more restrictive type traits if required.

If we want to use persistent pointers, however, we cannot rely on type traits, and we

must be aware of all problems related to copying objects with memcpy() and the layout

representation of objects. For persistent memory programming, a format description or

standardization of the aforementioned concepts and features needs to take place within

the C++ standards body group such that it can be officially designed and implemented.

Until then, developers must be aware of the restrictions and limitations to manage

undefined object-lifetime behavior.

�Persistence Simplified
Consider a simple queue implementation, presented in Listing 8-6, which stores

elements in volatile DRAM.

Listing 8-6.  An implementation of a volatile queue

 33 #include <cstdio>

 34 #include <cstdlib>

 35 #include <iostream>

 36 #include <string>

 37

Figure 8-1.  Correlation between persistent memory–related C++ type traits

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

127

 38 struct queue_node {

 39 int value;

 40 struct queue_node *next;

 41 };

 42

 43 struct queue {

 44 void

 45 push(int value)

 46 {

 47 auto node = new queue_node;

 48 node->value = value;

 49 node->next = nullptr;

 50

 51 if (head == nullptr) {

 52 head = tail = node;

 53 } else {

 54 tail->next = node;

 55 tail = node;

 56 }

 57 }

 58

 59 int

 60 pop()

 61 {

 62 if (head == nullptr)

 63 throw std::out_of_range("no elements");

 64

 65 auto head_ptr = head;

 66 auto value = head->value;

 67

 68 head = head->next;

 69 delete head_ptr;

 70

 71 if (head == nullptr)

 72 tail = nullptr;

 73

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

128

 74 return value;

 75 }

 76

 77 void

 78 show()

 79 {

 80 auto node = head;

 81 while (node != nullptr) {

 82 std::cout << "show: " << node->value << std::endl;

 83 node = node->next;

 84 }

 85

 86 std::cout << std::endl;

 87 }

 88

 89 private:

 90 queue_node *head = nullptr;

 91 queue_node *tail = nullptr;

 92 };

•	 Lines 38-40: We declare layout of the queue_node structure. It stores

an integer value and a pointer to the next node in the list.

•	 Lines 44-57: We implement push() method which allocates new

node and sets its value.

•	 Lines 59-75: We implement pop() method which deletes the first

element in the queue.

•	 Lines 77-87: The show() method walks the list and prints the contents

of each node to standard out.

The preceding queue implementation stores values of type int in a linked list and

provides three basic methods: push(), pop(), and show().

In this section, we will demonstrate how to modify your volatile structure to store

elements in persistent memory with libpmemobj-cpp bindings. All the modifier methods

should provide atomicity and consistency properties which will be guaranteed by the

use of transactions.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

129

Changing a volatile application to start taking advantage of persistent memory

should rely on modifying structures and classes with only slight modifications to

functions. We will begin by modifying the queue_node structure by changing its layout as

shown in Listing 8-7.

Listing 8-7.  A persistent queue implementation – modifying the queue_node struct

 38 #include <libpmemobj++/make_persistent.hpp>

 39 #include <libpmemobj++/p.hpp>

 40 #include <libpmemobj++/persistent_ptr.hpp>

 41 #include <libpmemobj++/pool.hpp>

 42 #include <libpmemobj++/transaction.hpp>

 43

 44 struct queue_node {

 45 pmem::obj::p<int> value;

 46 pmem::obj::persistent_ptr<queue_node> next;

 47 };

 48

 49 struct queue {

 ...

 100 private:

 101 pmem::obj::persistent_ptr<queue_node> head = nullptr;

 102 pmem::obj::persistent_ptr<queue_node> tail = nullptr;

 103 };

As you can see, all the modifications are limited to replace the volatile pointers with

pmem:obj::persistent_ptr and to start using the p<> property.

Next, we modify a push() method, shown in Listing 8-8.

Listing 8-8.  A persistent queue implementation – a persistent push() method

 50 void

 51 push(pmem::obj::pool_base &pop, int value)

 52 {

 53 pmem::obj::transaction::run(pop, [&]{

 54 auto node = pmem::obj::make_persistent<queue_node>();

 55 node->value = value;

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

130

 56 node->next = nullptr;

 57

 58 if (head == nullptr) {

 59 head = tail = node;

 60 } else {

 61 tail->next = node;

 62 tail = node;

 63 }

 64 });

 65 }

All the modifiers methods must be aware on which persistent memory pool they

should operate on. For a single memory pool, this is trivial, but if the application

memory maps files from different file systems, we need to keep track of which pool has

what data. We introduce an additional argument of type pmem::obj::pool_base to solve

this problem. Inside the method definition, we are wrapping the code with a transaction

by using a C++ lambda expression, [&], to guarantee atomicity and consistency of

modifications. Instead of allocating a new node on the stack, we call pmem::obj::make_

persistent<>() to transactionally allocate it on persistent memory.

Listing 8-9 shows the modification of the pop() method.

Listing 8-9.  A persistent queue implementation – a persistent pop() method

 67 int

 68 pop(pmem::obj::pool_base &pop)

 69 {

 70 int value;

 71 pmem::obj::transaction::run(pop, [&]{

 72 if (head == nullptr)

 73 throw std::out_of_range("no elements");

 74

 75 auto head_ptr = head;

 76 value = head->value;

 77

 78 head = head->next;

 79 pmem::obj::delete_persistent<queue_node>(head_ptr);

 80

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

131

 81 if (head == nullptr)

 82 tail = nullptr;

 83 });

 84

 85 return value;

 86 }

The logic of pop() is wrapped within a libpmemobj-cpp transaction. The only

additional modification is to exchange call to volatile delete with transactional

pmem::obj::delete_persistent<>().

The show() method does not modify anything on either volatile DRAM or persistent

memory, so we do not need to make any changes to it since the pmem:obj::persistent_

ptr implementation provides operator->.

To start using the persistent version of this queue example, our application can

associate it with a root object. Listing 8-10 presents an example application that uses our

persistent queue.

Listing 8-10.  Example of application that uses a persistent queue

 39 #include "persistent_queue.hpp"

 40

 41 enum queue_op {

 42 PUSH,

 43 POP,

 44 SHOW,

 45 EXIT,

 46 MAX_OPS,

 47 };

 48

 49 const char *ops_str[MAX_OPS] = {"push", "pop", "show", "exit"};

 50

 51 queue_op

 52 parse_queue_ops(const std::string &ops)

 53 {

 54 for (int i = 0; i < MAX_OPS; i++) {

 55 if (ops == ops_str[i]) {

 56 return (queue_op)i;

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

132

 57 }

 58 }

 59 return MAX_OPS;

 60 }

 61

 62 int

 63 main(int argc, char *argv[])

 64 {

 65 if (argc < 2) {

 66 �std::cerr << "Usage: " << argv[0] << " path_to_pool"

<< std::endl;

 67 return 1;

 68 }

 69

 70 auto path = argv[1];

 71 pmem::obj::pool<queue> pool;

 72

 73 try {

 74 pool = pmem::obj::pool<queue>::open(path, "queue");

 75 } catch(pmem::pool_error &e) {

 76 std::cerr << e.what() << std::endl;

 77 �std::cerr << "To create pool run: pmempool create obj

--layout=queue -s 100M path_to_pool" << std::endl;

 78 }

 79

 80 auto q = pool.root();

 81

 82 while (1) {

 83 std::cout << "[push value|pop|show|exit]" << std::endl;

 84

 85 std::string command;

 86 std::cin >> command;

 87

 88 // parse string

 89 auto ops = parse_queue_ops(std::string(command));

 90

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

133

 91 switch (ops) {

 92 case PUSH: {

 93 int value;

 94 std::cin >> value;

 95

 96 q->push(pool, value);

 97

 98 break;

 99 }

 100 case POP: {

 101 std::cout << q->pop(pool) << std::endl;

 102 break;

 103 }

 104 case SHOW: {

 105 q->show();

 106 break;

 107 }

 108 case EXIT: {

 109 exit(0);

 110 }

 111 default: {

 112 std::cerr << "unknown ops" << std::endl;

 113 exit(0);

 114 }

 115 }

 116 }

 117 }

�The Ecosystem
The overall goal for the libpmemobj C++ bindings was to create a friendly and less

error-prone API for persistent memory programming. Even with persistent memory

pool allocators, a convenient interface for creating and managing transactions,

auto-snapshotting class templates and smart persistent pointers, and designing

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

134

an application with persistent memory usage may still prove challenging without

a lot of niceties that the C++ programmers are used to. The natural step forward to

make persistent programming easier was to provide programmers with efficient and

useful containers.

�Persistent Containers
The C++ standard library containers collection is something that persistent memory

programmers may want to use. Containers manage the lifetime of held objects

through allocation/creation and deallocation/destruction with the use of allocators.

Implementing custom persistent allocator for C++ STL (Standard Template Library)

containers has two main downsides:

•	 Implementation details:

•	 STL containers do not use algorithms optimal for a persistent

memory programming point of view.

•	 Persistent memory containers should have durability and

consistency properties, while not every STL method guarantees

strong exception safety.

•	 Persistent memory containers should be designed with an

awareness of fragmentation limitations.

•	 Memory layout:

•	 The STL does not guarantee that the container layout will remain

unchanged in new library versions.

Due to these obstacles, the libpmemobj-cpp contains the set of custom,

implemented-from-scratch, containers with optimized on-media layouts and

algorithms to fully exploit the potential and features of persistent memory. These

methods guarantee atomicity, consistency, and durability. Besides specific internal

implementation details, libpmemobj-cpp persistent memory containers have a well-

known STL-like interface, and they work with STL algorithms.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

135

�Examples of Persistent Containers
Since the main goal for the libpmemobj-cpp design is to focus modifications to volatile

programs on data structures and not on the code, the use of libpmemobj-cpp persistent

containers is almost the same as for their STL counterparts. Listing 8-11 shows a

persistent vector example to showcase this.

Listing 8-11.  Allocating a vector transactionally using persistent containers

 33 #include <libpmemobj++/make_persistent.hpp>

 34 #include <libpmemobj++/transaction.hpp>

 35 #include <libpmemobj++/persistent_ptr.hpp>

 36 #include <libpmemobj++/pool.hpp>

 37 #include "libpmemobj++/vector.hpp"

 38

 39 using vector_type = pmem::obj::experimental::vector<int>;

 40

 41 struct root {

 42 pmem::obj::persistent_ptr<vector_type> vec_p;

 43 };

 44

 ...

 63

 64 /* creating pmem::obj::vector in transaction */

 65 pmem::obj::transaction::run(pool, [&] {

 66 �root->vec_p = pmem::obj::make_persistent<vector_type>

(/* optional constructor arguments */);

 67 });

 68

 69 vector_type &pvector = *(root->vec_p);

Listing 8-11 shows that a pmem::obj::vector must be created and allocated in

persistent memory using transaction to avoid an exception being thrown. The vector

type constructor may construct an object by internally opening another transaction.

In this case, an inner transaction will be flattened to an outer one. The interface and

semantics of pmem::obj::vector are similar to that of std::vector, as Listing 8-12

demonstrates.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

136

Listing 8-12.  Using persistent containers

 71 pvector.reserve(10);

 72 assert(pvector.size() == 0);

 73 assert(pvector.capacity() == 10);

 74

 75 pvector = {0, 1, 2, 3, 4};

 76 assert(pvector.size() == 5);

 77 assert(pvector.capacity() == 10);

 78

 79 pvector.shrink_to_fit();

 80 assert(pvector.size() == 5);

 81 assert(pvector.capacity() == 5);

 82

 83 for (unsigned i = 0; i < pvector.size(); ++i)

 84 assert(pvector.const_at(i) == static_cast<int>(i));

 85

 86 pvector.push_back(5);

 87 assert(pvector.const_at(5) == 5);

 88 assert(pvector.size() == 6);

 89

 90 pvector.emplace(pvector.cbegin(), pvector.back());

 91 assert(pvector.const_at(0) == 5);

 92 for (unsigned i = 1; i < pvector.size(); ++i)

 93 assert(pvector.const_at(i) == static_cast<int>(i - 1));

Every method that modifies persistent memory containers does so inside an implicit

transaction to guarantee full exception safety. If any of these methods are called inside

the scope of another transaction, the operation is performed in the context of that

transaction; otherwise, it is atomic in its own scope.

Iterating over pmem::obj::vector works exactly the same as std::vector. We can

use the range-based indexing operator for loops or iterators. The pmem::obj::vector

can also be processed using std::algorithms, as shown in Listing 8-13.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

137

Listing 8-13.  Iterating over persistent container and compatibility with STD

algorithms

 95 std::vector<int> stdvector = {5, 4, 3, 2, 1};

 96 pvector = stdvector;

 97

 98 try {

 99 pmem::obj::transaction::run(pool, [&] {

 100 for (auto &e : pvector)

 101 e++;

 102 /* 6, 5, 4, 3, 2 */

 103

 104 �for (auto it = pvector.begin();

it != pvector.end(); it++)

 105 *it += 2;

 106 /* 8, 7, 6, 5, 4 */

 107

 108 for (unsigned i = 0; i < pvector.size(); i++)

 109 pvector[i]--;

 110 /* 7, 6, 5, 4, 3 */

 111

 112 std::sort(pvector.begin(), pvector.end());

 113 for (unsigned i = 0; i < pvector.size(); ++i)

 114 �assert(pvector.const_at(i) == static_cast<int>

(i + 3));

 115

 116 pmem::obj::transaction::abort(0);

 117 });

 118 } catch (pmem::manual_tx_abort &) {

 119 /* expected transaction abort */

 120 } catch (std::exception &e) {

 121 std::cerr << e.what() << std::endl;

 122 }

 123

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

138

 124 �assert(pvector == stdvector); /* pvector element's value was

rolled back */

 125

 126 try {

 127 pmem::obj::delete_persistent<vector_type>(&pvector);

 128 } catch (std::exception &e) {

 129 }

If an active transaction exists, elements accessed using any of the preceding methods

are snapshotted. When iterators are returned by begin() and end(), snapshotting

happens during the iterator dereferencing phase. Note that snapshotting is done only

for mutable elements. In the case of constant iterators or constant versions of indexing

operator, nothing is added to the transaction. That is why it is essential to use const

qualified function overloads such as cbegin() or cend() whenever possible. If an object

snapshot occurs in the current transaction, a second snapshot of the same memory

address will not be performed and thus will not have performance overhead. This will

reduce the number of snapshots and can significantly reduce the performance impact

of transactions. Note also that pmem::obj::vector does define convenient constructors

and compare operators that take std::vector as an argument.

�Summary
This chapter describes the libpmemobj-cpp library. It makes creating applications less

error prone, and its similarity to standard C++ API makes it easier to modify existing

volatile programs to use persistent memory. We also list the limitations of this library

and the problems you must consider during development.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

139

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 8 libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 8: libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory
	Introduction
	Metaprogramming to the Rescue
	Persistent Pointers
	Transactions
	Snapshotting
	Allocating

	C++ Standard limitations
	An Object’s Lifetime
	Trivial Types
	Object Layout
	Pointers
	Limitations Summary

	Persistence Simplified
	The Ecosystem
	Persistent Containers
	Examples of Persistent Containers

	Summary

