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CHAPTER 8

libpmemobj-cpp: 
The Adaptable Language -  
C++ and Persistent 
Memory
�Introduction
The Persistent Memory Development Kit (PMDK) includes several separate libraries; 

each is designed with a specific use in mind. The most flexible and powerful one is 

libpmemobj. It complies with the persistent memory programming model without 

modifying the compiler. Intended for developers of low-level system software and 

language creators, the libpmemobj library provides allocators, transactions, and a way 

to automatically manipulate objects. Because it does not modify the compiler, its API is 

verbose and macro heavy.

To make persistent memory programming easier and less error prone, higher-

level language bindings for libpmemobj were created and included in PMDK. The C++ 

language was chosen to create new and friendly API to libpmemobj called libpmemobj-

cpp, which is also referred to as libpmemobj++. C++ is versatile, feature rich, has a 

large developer base, and it is constantly being improved with updates to the C++ 

programming standard.

The main goal for the libpmemobj-cpp bindings design was to focus modifications to 

volatile programs on data structures and not on the code. In other words, libpmemobj-

cpp bindings are for developers, who want to modify volatile applications, provided with 

a convenient API for modifying structures and classes with only slight modifications to 

functions.
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This chapter describes how to leverage the C++ language features that support 

metaprogramming to make persistent memory programming easier. It also describes 

how to make it more C++ idiomatic by providing persistent containers. Finally, we 

discuss C++ standard limitations for persistent memory programming, including an 

object’s lifetime and the internal layout of objects stored in persistent memory.

�Metaprogramming to the Rescue
Metaprogramming is a technique in which computer programs have the ability to treat 

other programs as their data. It means that a program can be designed to read, generate, 

analyze or transform other programs, and even modify itself while running. In some 

cases, this allows programmers to minimize the number of lines of code to express a 

solution, in turn reducing development time. It also allows programs greater flexibility to 

efficiently handle new situations without recompilation.

For the libpmemobj-cpp library, considerable effort was put into encapsulating 

the PMEMoids (persistent memory object IDs) with a type-safe container. Instead of a 

sophisticated set of macros for providing type safety, templates and metaprogramming 

are used. This significantly simplifies the native C libpmemobj API.

�Persistent Pointers
The persistent memory programming model created by the Storage Networking Industry 

Association (SNIA) is based on memory-mapped files. PMDK uses this model for its 

architecture and design implementation. We discussed the SNIA programming model in 

Chapter 3.

Most operating systems implement address space layout randomization (ASLR). 

ASLR is a computer security technique involved in preventing exploitation of memory 

corruption vulnerabilities. To prevent an attacker from reliably jumping to, for example, 

a particular exploited function in memory, ASLR randomly arranges the address space 

positions of key data areas of a process, including the base of the executable and the 

positions of the stack, heap, and libraries. Because of ASLR, files can be mapped at 

different addresses of the process address space each time the application executes. 

As a result, traditional pointers that store absolute addresses cannot be used. Upon 

each execution, a traditional pointer might point to uninitialized memory for which 
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dereferencing it may result in a segmentation fault. Or it might point to a valid memory 

range, but not the one that the user expects it to point to, resulting in unexpected and 

undetermined behavior.

To solve this problem in persistent memory programming, a different type of pointer 

is needed. libpmemobj introduced a C struct called PMEMoid, which consists of an 

identifier of the pool and an offset from its beginning. This fat pointer is encapsulated 

in libpmemobj C++ bindings as a template class pmem::obj::persistent_ptr. Both 

the C and C++ implementations have the same 16-byte footprint. A constructor 

from raw PMEMoid is provided so that mixing the C API with C++ is possible. The 

pmem::obj::persistent_ptr is similar in concept and implementation to the smart 

pointers introduced in C++11 (std::shared_ptr, std::auto_ptr, std::unique_ptr, and 

std::weak_ptr), with one big difference – it does not manage the object’s life cycle.

Besides operator*, operator->, operator[], and typedefs for compatibility with 

std::pointer_traits and std::iterator_traits, the pmem::obj::persistent_ptr 

also has defined methods for persisting its contents. The pmem::obj::persistent_ptr 

can be used in standard library algorithms and containers.

�Transactions
Being able to modify more than 8 bytes of storage at a time atomically is imperative for 

most nontrivial algorithms one might want to use in persistent memory. Commonly, a 

single logical operation requires multiple stores. For example, an insert into a simple list-

based queue requires two separate stores: a tail pointer and the next pointer of the last 

element. To enable developers to modify larger amounts of data atomically, with respect 

to power-fail interruptions, the PMDK library provides transaction support in some of 

its libraries. The C++ language bindings wrap these transactions into two concepts: one, 

based on the resource acquisition is initialization (RAII) idiom and the other based on 

a callable std::function object. Additionally, because of some C++ standard issues, 

the scoped transactions come in two flavors: manual and automatic. In this chapter we 

only describe the approach with std::function object. For information about RAII-

based transactions, refer to libpmemobj-cpp documentation (https://pmem.io/pmdk/

cpp_obj/).

The method which uses std::function is declared as

void pmem::obj::transaction::run(pool_base &pop,

    std::function<void ()> tx, Locks&... locks)
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The locks parameter is a variadic template. Thanks to the std::function, a myriad 

of types can be passed in to run. One of the preferred ways is to pass a lambda function 

as the tx parameter. This makes the code compact and easier to analyze. Listing 8-1 

shows how lambda can be used to perform work in a transaction.

Listing 8-1.  Function object transaction

    45        // execute a transaction

    46        pmem::obj::transaction::run(pop, [&]() {

    47            // do transactional work

    48        });

Of course, this API is not limited to just lambda functions. Any callable target can 

be passed as tx, such as functions, bind expressions, function objects, and pointers 

to member functions. Since run is a normal static member function, it has the benefit 

of being able to throw exceptions. If an exception is thrown during the execution of 

a transaction, it is automatically aborted, and the active exception is rethrown so 

information about the interruption is not lost. If the underlying C library fails for any 

reason, the transaction is also aborted, and a C++ library exception is thrown. The 

developer is no longer burdened with the task of checking the status of the previous 

transaction.

libpmemobj-cpp transactions provide an entry point for persistent memory resident 

synchronization primitives such as pmem::obj::mutex, pmem::obj::shared_mutex and 

pmem::obj::timed_mutex. libpmemobj ensures that all locks are properly reinitialized 

when one attempts to acquire a lock for the first time. The use of pmem locks is 

completely optional, and transactions can be executed without them. The number of 

supplied locks is arbitrary, and the types can be freely mixed. The locks are held until 

the end of the given transaction, or the outermost transaction in the case of nesting. This 

means when transactions are enclosed by a try-catch statement, the locks are released 

before reaching the catch clause. This is extremely important in case some kind of 

transaction abort cleanup needs to modify the shared state. In such a case, the necessary 

locks need to be reacquired in the correct order.
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�Snapshotting
The C library requires manual snapshots before modifying data in a transaction. The 

C++ bindings do all of the snapshotting automatically, to reduce the probability of 

programmer error. The pmem::obj::p template wrapper class is the basic building block 

for this mechanism. It is designed to work with basic types and not compound types 

such as classes or PODs (Plain Old Data, structures with fields only and without any 

object-oriented features). This is because it does not define operator->() and there is 

no possibility to implement operator.(). The implementation of pmem::obj::p is based 

on the operator=(). Each time the assignment operator is called, the value wrapped 

by p will be changed, and the library needs to snapshot the old value. In addition to 

snapshotting, the p<> template ensures the variable is persisted correctly, flushing data if 

necessary. Listing 8-2 provides an example of using the p<> template.

Listing 8-2.  Using the p<> template to persist values correctly

    39    struct bad_example {

    40        int some_int;

    41        float some_float;

    42    };

    43

    44    struct good_example {

    45        pmem::obj::p<int> pint;

    46        pmem::obj::p<float> pfloat;

    47    };

    48

    49    struct root {

    50        bad_example bad;

    51        good_example good;

    52    };

    53

    54    int main(int argc, char *argv[]) {

    55        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "p");

    56

    57        auto r = pop.root();

    58
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    59        pmem::obj::transaction::run(pop, [&]() {

    60            r->bad.some_int = 10;

    61            r->good.pint = 10;

    62

    63            r->good.pint += 1;

    64        });

    65

    66        return 0;

    67    }

•	 Lines 39-42: Here, we declare a bad_example structure with two 

variables – some_int and some_float. Storing this structure on 

persistent memory and modifying it are dangerous because data is 

not snapshotted automatically.

•	 Lines 44-47: We declare the good_example structure with two p<> 

type variables – pint and pfloat. This structure can be safely stored 

on persistent memory as every modification of pint or pfloat in a 

transaction will perform a snapshot.

•	 Lines 55-57: Here, we open a persistent memory pool, created 

already using the pmempool command, and obtain a pointer to the 

root object stored within the root variable.

•	 Line 60: We modify the integer value from the bad_example structure. 

This modification is not safe because we do not add this variable to 

the transaction; hence it will not be correctly made persistent if there 

is an unexpected application or system crash or power failure.

•	 Line 61: Here, we modify integer value wrapped by p<> template. This 

is safe because operator=() will automatically snapshot the element.

•	 Line 63: Using arithmetic operators on p<> (if the underlying type 

supports it) is also safe.

�Allocating
As with std::shared_ptr, the pmem::obj::persistent_ptr comes with a set of allocating 

and deallocating functions. This helps allocate memory and create objects, as well as 

destroy and deallocate the memory. This is especially important in the case of persistent 
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memory because all allocations and object construction/destruction must be done 

atomically with respect to power-fail interruptions. The transactional allocations use 

perfect forwarding and variadic templates for object construction. This makes object 

creation similar to calling the constructor and identical to std::make_shared. The 

transactional array creation, however, requires the objects to be default constructible. 

The created arrays can be multidimensional. The pmem::obj::make_persistent and 

pmem::obj::make_persistent_array must be called within a transaction; otherwise, an 

exception is thrown. During object construction, other transactional allocations can be 

made, and that is what makes this API very flexible. The specifics of persistent memory 

required the introduction of the pmem::obj::delete_persistent function, which 

destroys objects and arrays of objects. Since the pmem::obj::persistent_ptr does not 

automatically handle the lifetime of pointed to objects, the user is responsible for disposing 

of the ones that are no longer in use. Listing 8-3 shows example of transaction allocation.

Atomic allocations behave differently as they do not return a pointer. Developers 

must provide a reference to one as the function’s argument. Because atomic allocations 

are not executed in the context of a transaction, the actual pointer assignment must be 

done through other means. For example, by redo logging the operation. Listing 8-3 also 

provides an example of atomic allocation.

Listing 8-3.  Example of transactional and atomic allocations

    39    struct my_data {

    40        my_data(int a, int b): a(a), b(b) {

    41

    42        }

    43

    44        int a;

    45        int b;

    46    };

    47

    48    struct root {

    49        pmem::obj::persistent_ptr<my_data> mdata;

    50    };

    51

    52    int main(int argc, char *argv[]) {

    53        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");
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    54

    55        auto r = pop.root();

    56

    57        pmem::obj::transaction::run(pop, [&]() {

    58            r->mdata = pmem::obj::make_persistent<my_data>(1, 2);

    59        });

    60

    61        pmem::obj::transaction::run(pop, [&]() {

    62            pmem::obj::delete_persistent<my_data>(r->mdata);

    63        });

    64        �pmem::obj::make_persistent_atomic<my_data>(pop, r->mdata,  

2, 3);

    65

    66        return 0;

    67    }

•	 Line 58: Here, we allocate my_data object transactionally. Parameters 

passed to make_persistent will be forwarded to my_data constructor. 

Note that assignment to r->mdata will perform a snapshot of old 

persistent pointer’s value.

•	 Line 62: Here, we delete the my_data object. delete_persistent will 

call the object’s destructor and free the memory.

•	 Line 64: We allocate my_data object atomically. Calling this function 

cannot be done inside of a transaction.

�C++ Standard limitations
The C++ language restrictions and persistent memory programming paradigm imply 

serious restrictions on objects which may be stored on persistent memory. Applications 

can access persistent memory with memory-mapped files to take advantage of its byte 

addressability thanks to libpmemobj and SNIA programming model. No serialization 

takes place here, so applications must be able to read and modify directly from the 

persistent memory media even after the application was closed and reopened or after a 

power failure event.

Chapter 8  libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory 



119

What does the preceding mean from a C++ and libpmemobj’s perspective? There are 

four major problems:

	 1.	 Object lifetime

	 2.	 Snapshotting objects in transactions

	 3.	 Fixed on-media layout of stored objects

	 4.	 Pointers as object members

These four problems will be described in next four sections.

�An Object’s Lifetime
The lifetime of an object is described in the [basic.life] section of the C++ standard 

(https://isocpp.org/std/the-standard):

The lifetime of an object or reference is a runtime property of the object or 
reference. A variable is said to have vacuous initialization if it is default-
initialized and, if it is of class type or a (possibly multi-dimensional) array 
thereof, that class type has a trivial default constructor. The lifetime of an 
object of type T begins when:

(1.1) storage with the proper alignment and size for type T is obtained, and

(1.2) its initialization (if any) is complete (including vacuous initializa-
tion) ([dcl.init]), except that if the object is a union member or subobject 
thereof, its lifetime only begins if that union member is the initialized mem-
ber in the union ([dcl.init.aggr], [class.base.init]), or as described in [class.
union]. The lifetime of an object of type T ends when:

(1.3) if T is a non-class type, the object is destroyed, or

(1.4) if T is a class type, the destructor call starts, or

(1.5) the storage which the object occupies is released, or is reused by an 
object that is not nested within o ([intro.object]).

The standard states that properties ascribed to objects apply for a given object only 

during its lifetime. In this context, the persistent memory programming problem is 

similar to transmitting data over a network, where the C++ application is given an array 

of bytes but might be able to recognize the type of object sent. However, the object was 

not constructed in this application, so using it would result in undefined behavior.  
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This problem is well known and is being addressed by the WG21 C++ Standards 

Committee Working Group (https://isocpp.org/std/the-committee and http://

www.open-std.org/jtc1/sc22/wg21/).

Currently, there is no possible way to overcome the object-lifetime obstacle and 

stop relying on undefined behavior from C++ standard’s point of view. libpmemobj-cpp 

is tested and validated with various C++11 compliant compilers and use case scenarios. 

The only recommendation for libpmemobj-cpp users is that they must keep this 

limitation in mind when developing persistent memory applications.

�Trivial Types
Transactions are the heart of libpmemobj. That is why libpmemobj-cpp was implemented 

with utmost care while designing the C++ versions so they are as easy to use as possible. 

Developers do not have to know the implementation details and do not have to worry about 

snapshotting modified data to make undo log–based transaction works. A special semi-

transparent template property class has been implemented to automatically add variable 

modifications to the transaction undo log, which is described in the “Snapshotting” section.

But what does snapshotting data mean? The answer is very simple, but the 

consequences for C++ are not. libpmemobj implements snapshotting by copying data of 

given length from a specified address to another address using memcpy(). If a transaction 

aborts or a system power loss occurs, the data will be written from the undo log when the 

memory pool is reopened. Consider a definition of the following C++ object, presented 

in Listing 8-4, and think about the consequences that a memcpy() has on it.

Listing 8-4.  An example showing an unsafe memcpy() on an object

    35    class nonTriviallyCopyable {

    36    private:

    37        int* i;

    38    public:

    39        nonTriviallyCopyable (const nonTriviallyCopyable & from)

    40        {

    41            /* perform non-trivial copying routine */

    42            i = new int(*from.i);

    43        }

    44    };
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Deep and shallow copying is the simplest example. The gist of the problem is that 

by copying the data manually, we may break the inherent behavior of the object which 

may rely on the copy constructor. Any shared or unique pointer would be another great 

example – by simple copying it with memcpy(), we break the "deal" we made with that 

class when we used it, and it may lead to leaks or crashes.

The application must handle many more sophisticated details when it manually 

copies the contents of an object. The C++11 standard provides a <type_traits> 

type trait and std::is_trivially_copyable, which ensure a given type satisfies the 

requirements of TriviallyCopyable. Referring to C++ standard, an object satisfies the 

TriviallyCopyable requirements when

A trivially copyable class is a class that:

— has no non-trivial copy constructors (12.8),

— has no non-trivial move constructors (12.8),

— has no non-trivial copy assignment operators (13.5.3, 12.8),

— has no non-trivial move assignment operators (13.5.3, 12.8), and

— has a trivial destructor (12.4).

A trivial class is a class that has a trivial default constructor (12.1) and is 
trivially copyable.

[Note: In particular, a trivially copyable or trivial class does not have vir-
tual functions or virtual base classes.]

The C++ standard defines nontrivial methods as follows:

A copy/move constructor for class X is trivial if it is not user-provided and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), 
and

— the constructor selected to copy/move each direct base class subobject is 
trivial, and

— for each non-static data member of X that is of class type (or array 
thereof), the constructor selected to copy/move that member is trivial;

otherwise, the copy/move constructor is non-trivial.
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This means that a copy or move constructor is trivial if it is not user provided.  

The class has nothing virtual in it, and this property holds recursively for all the members 

of the class and for the base class. As you can see, the C++ standard and libpmemobj 

transaction implementation limit the possible objects type to store on persistent 

memory to satisfy requirements of trivial types, but the layout of our objects must be 

taken into account.

�Object Layout
Object representation, also referred to as the layout, might differ between compilers, 

compiler flags, and application binary interface (ABI). The compiler may do some 

layout-related optimizations and is free to shuffle order of members with same specifier 

type – for example, public then protected, then public again. Another problem related 

to unknown object layout is connected to polymorphic types. Currently there is no 

reliable and portable way to implement vtable rebuilding after reopening the memory 

pool, so polymorphic objects cannot be supported with persistent memory.

If we want to store objects on persistent memory using memory-mapped files and 

to follow the SNIA NVM programming model, we must ensure that the following casting 

will be always valid:

someType A = *reinterpret_cast<someType*>(mmap(...));

The bit representation of a stored object type must be always the same, and our 

application should be able to retrieve the stored object from the memory-mapped file 

without serialization.

It is possible to ensure that specific types satisfy the aforementioned requirements. 

C++11 provides another type trait called std::is_standard_layout. The standard 

mentions that it is useful for communicating with other languages, such as for creating 

language bindings to native C++ libraries as an example, and that's why a standard-

layout class has the same memory layout of the equivalent C struct or union. A general 

rule is that standard-layout classes must have all non-static data members with the same 

access control. We mentioned this at the beginning of this section – that a C++ compliant 

compiler is free to shuffle access ranges of the same class definition.

When using inheritance, only one class in the whole inheritance tree can have non-

static data members, and the first non-static data member cannot be of a base class type 

because this could break aliasing rules. Otherwise, it is not a standard-layout class.
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The C++11 standard defines std::is_standard_layout as follows:

A standard-layout class is a class that:

— has no non-static data members of type non-standard-layout class (or 
array of such types) or reference,

— has no virtual functions (10.3) and no virtual base classes (10.1),

— has the same access control (Clause 11) for all non-static data members,

— has no non-standard-layout base classes,

— either has no non-static data members in the most derived class and at 
most one base class with non-static data members, or has no base classes 
with non-static data members, and

— has no base classes of the same type as the first non-static data member.

A standard-layout struct is a standard-layout class defined with the class-
key struct or the class-key class.

A standard-layout union is a standard-layout class defined with the class-
key union.

[ Note: Standard-layout classes are useful for communicating with code 
written in other programming languages. Their layout is specified in 9.2.]

Having discussed object layouts, we look at another interesting problem with pointer 

types and how to store them on persistent memory.

�Pointers
In previous sections, we quoted parts of the C++ standard. We were describing the limits 

of types which were safe to snapshot and copy and which we can binary-cast without 

thinking of fixed layout. But what about pointers? How do we deal with them in our 

objects as we come to grips with the persistent memory programming model? Consider 

the code snippet presented in Listing 8-5 which provides an example of a class that uses 

a volatile pointer as a class member.
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Listing 8-5.  Example of class with a volatile pointer as a class member

    39    struct root {

    40        int* vptr1;

    41        int* vptr2;

    42    };

    43

    44    int main(int argc, char *argv[]) {

    45        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");

    46

    47        auto r = pop.root();

    48

    49        int a1 = 1;

    50

    51        pmem::obj::transaction::run(pop, [&](){

    52            auto ptr = pmem::obj::make_persistent<int>(0);

    53            r->vptr1 = ptr.get();

    54            r->vptr2 = &a1;

    55        });

    56

    57        return 0;

    58    }

•	 Lines 39-42: We create a root structure with two volatile pointers as 

members.

•	 Lines 51-52: Our application is assigning, transactionally, two virtual 

addresses. One to an integer residing on the stack and the second to 

an integer residing on persistent memory. What will happen if the 

application crashes or exits after execution of the transaction and we 

execute the application again? Since the variable a1 was residing on 

the stack, the old value vanished. But what is the value assigned to 

vptr1? Even if it resides on persistent memory, the volatile pointer 

is no longer valid. With ASLR we are not guaranteed to get the same 

virtual address again if we call mmap(). The pointer could point to 

something, nothing, or garbage.
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As shown in the preceding example, it is very important to realize that storing 

volatile memory pointers in persistent memory is almost always a design error. 

However, using the pmem::obj::persistent_ptr<> class template is safe. It provides 

the only way to safely access specific memory after an application crash. However, 

the pmem::obj::persistent_ptr<> type does not satisfy TriviallyCopyable 

requirements because of explicitly defined constructors. As a result, an object with a 

pmem::obj::persistent_ptr<> member will not pass the std::is_trivially_copyable 

verification check. Every persistent memory developer should always check whether 

pmem::obj::persistent_ptr<> could be copied in that specific case and that it will 

not cause errors and persistent memory leaks. Developers should realize that std::is_

trivially_copyable is a syntax check only and it does not test the semantics. Using 

pmem::obj::persistent_ptr<> in this context leads to undefined behavior. There is no 

single solution to the problem. At the time of writing this book, the C++ standard does 

not yet fully support persistent memory programming, so developers must ensure that 

copying pmem::obj::persistent_ptr<> is safe to use in each case.

�Limitations Summary
C++11 provides several very useful type traits for persistent memory programming. 

These are

•	 template <typename T>

struct std::is_pod;

•	 template <typename T>

struct std::is_trivial;

•	 template <typename T>

struct std::is_trivially_copyable;

•	 template <typename T>

struct std::is_standard_layout;

They are correlated with each other. The most general and restrictive is the definition 

of a POD type shown in Figure 8-1.
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We mentioned previously that a persistent memory resident class must satisfy the 

following requirements:

•	 std::is_trivially_copyable

•	 std::is_standard_layout

Persistent memory developers are free to use more restrictive type traits if required. 

If we want to use persistent pointers, however, we cannot rely on type traits, and we 

must be aware of all problems related to copying objects with memcpy() and the layout 

representation of objects. For persistent memory programming, a format description or 

standardization of the aforementioned concepts and features needs to take place within 

the C++ standards body group such that it can be officially designed and implemented. 

Until then, developers must be aware of the restrictions and limitations to manage 

undefined object-lifetime behavior.

�Persistence Simplified
Consider a simple queue implementation, presented in Listing 8-6, which stores 

elements in volatile DRAM.

Listing 8-6.  An implementation of a volatile queue

    33    #include <cstdio>

    34    #include <cstdlib>

    35    #include <iostream>

    36    #include <string>

    37

Figure 8-1.  Correlation between persistent memory–related C++ type traits
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    38    struct queue_node {

    39        int value;

    40        struct queue_node *next;

    41    };

    42

    43    struct queue {

    44        void

    45        push(int value)

    46        {

    47            auto node = new queue_node;

    48            node->value = value;

    49            node->next = nullptr;

    50

    51            if (head == nullptr) {

    52                head = tail = node;

    53            } else {

    54                tail->next = node;

    55                tail = node;

    56            }

    57        }

    58

    59        int

    60        pop()

    61        {

    62            if (head == nullptr)

    63                throw std::out_of_range("no elements");

    64

    65            auto head_ptr = head;

    66            auto value = head->value;

    67

    68            head = head->next;

    69            delete head_ptr;

    70

    71            if (head == nullptr)

    72                tail = nullptr;

    73
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    74            return value;

    75        }

    76

    77        void

    78        show()

    79        {

    80            auto node = head;

    81            while (node != nullptr) {

    82                std::cout << "show: " << node->value << std::endl;

    83                node = node->next;

    84            }

    85

    86            std::cout << std::endl;

    87        }

    88

    89    private:

    90        queue_node *head = nullptr;

    91        queue_node *tail = nullptr;

    92    };

•	 Lines 38-40: We declare layout of the queue_node structure. It stores 

an integer value and a pointer to the next node in the list.

•	 Lines 44-57: We implement push() method which allocates new 

node and sets its value.

•	 Lines 59-75: We implement pop() method which deletes the first 

element in the queue.

•	 Lines 77-87: The show() method walks the list and prints the contents 

of each node to standard out.

The preceding queue implementation stores values of type int in a linked list and 

provides three basic methods: push(), pop(), and show().

In this section, we will demonstrate how to modify your volatile structure to store 

elements in persistent memory with libpmemobj-cpp bindings. All the modifier methods 

should provide atomicity and consistency properties which will be guaranteed by the 

use of transactions.
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Changing a volatile application to start taking advantage of persistent memory 

should rely on modifying structures and classes with only slight modifications to 

functions. We will begin by modifying the queue_node structure by changing its layout as 

shown in Listing 8-7.

Listing 8-7.  A persistent queue implementation – modifying the queue_node struct

    38    #include <libpmemobj++/make_persistent.hpp>

    39    #include <libpmemobj++/p.hpp>

    40    #include <libpmemobj++/persistent_ptr.hpp>

    41    #include <libpmemobj++/pool.hpp>

    42    #include <libpmemobj++/transaction.hpp>

    43

    44    struct queue_node {

    45        pmem::obj::p<int> value;

    46        pmem::obj::persistent_ptr<queue_node> next;

    47    };

    48

    49    struct queue {

   ...

   100    private:

   101        pmem::obj::persistent_ptr<queue_node> head = nullptr;

   102        pmem::obj::persistent_ptr<queue_node> tail = nullptr;

   103    };

As you can see, all the modifications are limited to replace the volatile pointers with 

pmem:obj::persistent_ptr and to start using the p<> property.

Next, we modify a push() method, shown in Listing 8-8.

Listing 8-8.  A persistent queue implementation – a persistent push() method

    50        void

    51        push(pmem::obj::pool_base &pop, int value)

    52        {

    53            pmem::obj::transaction::run(pop, [&]{

    54                auto node = pmem::obj::make_persistent<queue_node>();

    55                node->value = value;
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    56                node->next = nullptr;

    57

    58                if (head == nullptr) {

    59                    head = tail = node;

    60                } else {

    61                    tail->next = node;

    62                    tail = node;

    63                }

    64            });

    65        }

All the modifiers methods must be aware on which persistent memory pool they 

should operate on. For a single memory pool, this is trivial, but if the application 

memory maps files from different file systems, we need to keep track of which pool has 

what data. We introduce an additional argument of type pmem::obj::pool_base to solve 

this problem. Inside the method definition, we are wrapping the code with a transaction 

by using a C++ lambda expression, [&], to guarantee atomicity and consistency of 

modifications. Instead of allocating a new node on the stack, we call pmem::obj::make_

persistent<>() to transactionally allocate it on persistent memory.

Listing 8-9 shows the modification of the pop() method.

Listing 8-9.  A persistent queue implementation – a persistent pop() method

    67        int

    68        pop(pmem::obj::pool_base &pop)

    69        {

    70            int value;

    71            pmem::obj::transaction::run(pop, [&]{

    72                if (head == nullptr)

    73                    throw std::out_of_range("no elements");

    74

    75                auto head_ptr = head;

    76                value = head->value;

    77

    78                head = head->next;

    79                pmem::obj::delete_persistent<queue_node>(head_ptr);

    80
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    81                if (head == nullptr)

    82                    tail = nullptr;

    83            });

    84

    85            return value;

    86        }

The logic of pop() is wrapped within a libpmemobj-cpp transaction. The only 

additional modification is to exchange call to volatile delete with transactional 

pmem::obj::delete_persistent<>().

The show() method does not modify anything on either volatile DRAM or persistent 

memory, so we do not need to make any changes to it since the pmem:obj::persistent_

ptr implementation provides operator->.

To start using the persistent version of this queue example, our application can 

associate it with a root object. Listing 8-10 presents an example application that uses our 

persistent queue.

Listing 8-10.  Example of application that uses a persistent queue

    39    #include "persistent_queue.hpp"

    40

    41    enum queue_op {

    42        PUSH,

    43        POP,

    44        SHOW,

    45        EXIT,

    46        MAX_OPS,

    47    };

    48

    49    const char *ops_str[MAX_OPS] = {"push", "pop", "show", "exit"};

    50

    51    queue_op

    52    parse_queue_ops(const std::string &ops)

    53    {

    54        for (int i = 0; i < MAX_OPS; i++) {

    55            if (ops == ops_str[i]) {

    56                return (queue_op)i;
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    57            }

    58        }

    59        return MAX_OPS;

    60    }

    61

    62    int

    63    main(int argc, char *argv[])

    64    {

    65        if (argc < 2) {

    66            �std::cerr << "Usage: " << argv[0] << " path_to_pool"  

<< std::endl;

    67            return 1;

    68        }

    69

    70        auto path = argv[1];

    71        pmem::obj::pool<queue> pool;

    72

    73        try {

    74            pool = pmem::obj::pool<queue>::open(path, "queue");

    75        } catch(pmem::pool_error &e) {

    76            std::cerr << e.what() << std::endl;

    77            �std::cerr << "To create pool run: pmempool create obj 

--layout=queue -s 100M path_to_pool" << std::endl;

    78        }

    79

    80        auto q = pool.root();

    81

    82        while (1) {

    83            std::cout << "[push value|pop|show|exit]" << std::endl;

    84

    85            std::string command;

    86            std::cin >> command;

    87

    88            // parse string

    89            auto ops = parse_queue_ops(std::string(command));

    90
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    91            switch (ops) {

    92                case PUSH: {

    93                    int value;

    94                    std::cin >> value;

    95

    96                    q->push(pool, value);

    97

    98                    break;

    99                }

   100                case POP: {

   101                    std::cout << q->pop(pool) << std::endl;

   102                    break;

   103                }

   104                case SHOW: {

   105                    q->show();

   106                    break;

   107                }

   108                case EXIT: {

   109                    exit(0);

   110                }

   111                default: {

   112                    std::cerr << "unknown ops" << std::endl;

   113                    exit(0);

   114                }

   115            }

   116        }

   117    }

�The Ecosystem
The overall goal for the libpmemobj C++ bindings was to create a friendly and less 

error-prone API for persistent memory programming. Even with persistent memory 

pool allocators, a convenient interface for creating and managing transactions,  

auto-snapshotting class templates and smart persistent pointers, and designing  
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an application with persistent memory usage may still prove challenging without 

a lot of niceties that the C++ programmers are used to. The natural step forward to 

make persistent programming easier was to provide programmers with efficient and 

useful containers.

�Persistent Containers
The C++ standard library containers collection is something that persistent memory 

programmers may want to use. Containers manage the lifetime of held objects 

through allocation/creation and deallocation/destruction with the use of allocators. 

Implementing custom persistent allocator for C++ STL (Standard Template Library) 

containers has two main downsides:

•	 Implementation details:

•	 STL containers do not use algorithms optimal for a persistent 

memory programming point of view.

•	 Persistent memory containers should have durability and 

consistency properties, while not every STL method guarantees 

strong exception safety.

•	 Persistent memory containers should be designed with an 

awareness of fragmentation limitations.

•	 Memory layout:

•	 The STL does not guarantee that the container layout will remain 

unchanged in new library versions.

Due to these obstacles, the libpmemobj-cpp contains the set of custom, 

implemented-from-scratch, containers with optimized on-media layouts and 

algorithms to fully exploit the potential and features of persistent memory. These 

methods guarantee atomicity, consistency, and durability. Besides specific internal 

implementation details, libpmemobj-cpp persistent memory containers have a well-

known STL-like interface, and they work with STL algorithms.
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�Examples of Persistent Containers
Since the main goal for the libpmemobj-cpp design is to focus modifications to volatile 

programs on data structures and not on the code, the use of libpmemobj-cpp persistent 

containers is almost the same as for their STL counterparts. Listing 8-11 shows a 

persistent vector example to showcase this.

Listing 8-11.  Allocating a vector transactionally using persistent containers

    33    #include <libpmemobj++/make_persistent.hpp>

    34    #include <libpmemobj++/transaction.hpp>

    35    #include <libpmemobj++/persistent_ptr.hpp>

    36    #include <libpmemobj++/pool.hpp>

    37    #include "libpmemobj++/vector.hpp"

    38

    39    using vector_type = pmem::obj::experimental::vector<int>;

    40

    41    struct root {

    42            pmem::obj::persistent_ptr<vector_type> vec_p;

    43    };

    44

              ...

    63

    64        /* creating pmem::obj::vector in transaction */

    65        pmem::obj::transaction::run(pool, [&] {

    66            �root->vec_p = pmem::obj::make_persistent<vector_type> 

(/* optional constructor arguments */);

    67        });

    68

    69        vector_type &pvector = *(root->vec_p);

Listing 8-11 shows that a pmem::obj::vector must be created and allocated in 

persistent memory using transaction to avoid an exception being thrown. The vector 

type constructor may construct an object by internally opening another transaction. 

In this case, an inner transaction will be flattened to an outer one. The interface and 

semantics of pmem::obj::vector are similar to that of std::vector, as Listing 8-12 

demonstrates.
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Listing 8-12.  Using persistent containers

    71        pvector.reserve(10);

    72        assert(pvector.size() == 0);

    73        assert(pvector.capacity() == 10);

    74

    75        pvector = {0, 1, 2, 3, 4};

    76        assert(pvector.size() == 5);

    77        assert(pvector.capacity() == 10);

    78

    79        pvector.shrink_to_fit();

    80        assert(pvector.size() == 5);

    81        assert(pvector.capacity() == 5);

    82

    83        for (unsigned i = 0; i < pvector.size(); ++i)

    84            assert(pvector.const_at(i) == static_cast<int>(i));

    85

    86        pvector.push_back(5);

    87        assert(pvector.const_at(5) == 5);

    88        assert(pvector.size() == 6);

    89

    90        pvector.emplace(pvector.cbegin(), pvector.back());

    91        assert(pvector.const_at(0) == 5);

    92        for (unsigned i = 1; i < pvector.size(); ++i)

    93            assert(pvector.const_at(i) == static_cast<int>(i - 1));

Every method that modifies persistent memory containers does so inside an implicit 

transaction to guarantee full exception safety. If any of these methods are called inside 

the scope of another transaction, the operation is performed in the context of that 

transaction; otherwise, it is atomic in its own scope.

Iterating over pmem::obj::vector works exactly the same as std::vector. We can 

use the range-based indexing operator for loops or iterators. The pmem::obj::vector 

can also be processed using std::algorithms, as shown in Listing 8-13.
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Listing 8-13.  Iterating over persistent container and compatibility with STD 

algorithms

    95        std::vector<int> stdvector = {5, 4, 3, 2, 1};

    96        pvector = stdvector;

    97

    98        try {

    99            pmem::obj::transaction::run(pool, [&] {

   100                for (auto &e : pvector)

   101                    e++;

   102                /* 6, 5, 4, 3, 2 */

   103

   104                �for (auto it = pvector.begin();  

it != pvector.end(); it++)

   105                    *it += 2;

   106                /* 8, 7, 6, 5, 4 */

   107

   108                for (unsigned i = 0; i < pvector.size(); i++)

   109                    pvector[i]--;

   110                /* 7, 6, 5, 4, 3 */

   111

   112                std::sort(pvector.begin(), pvector.end());

   113                for (unsigned i = 0; i < pvector.size(); ++i)

   114                    �assert(pvector.const_at(i) == static_cast<int> 

(i + 3));

   115

   116                pmem::obj::transaction::abort(0);

   117            });

   118        } catch (pmem::manual_tx_abort &) {

   119            /* expected transaction abort */

   120        } catch (std::exception &e) {

   121            std::cerr << e.what() << std::endl;

   122        }

   123
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   124        �assert(pvector == stdvector); /* pvector element's value was 

rolled back */

   125

   126        try {

   127            pmem::obj::delete_persistent<vector_type>(&pvector);

   128        } catch (std::exception &e) {

   129        }

If an active transaction exists, elements accessed using any of the preceding methods 

are snapshotted. When iterators are returned by begin() and end(), snapshotting 

happens during the iterator dereferencing phase. Note that snapshotting is done only 

for mutable elements. In the case of constant iterators or constant versions of indexing 

operator, nothing is added to the transaction. That is why it is essential to use const 

qualified function overloads such as cbegin() or cend() whenever possible. If an object 

snapshot occurs in the current transaction, a second snapshot of the same memory 

address will not be performed and thus will not have performance overhead. This will 

reduce the number of snapshots and can significantly reduce the performance impact 

of transactions. Note also that pmem::obj::vector does define convenient constructors 

and compare operators that take std::vector as an argument.

�Summary
This chapter describes the libpmemobj-cpp library. It makes creating applications less 

error prone, and its similarity to standard C++ API makes it easier to modify existing 

volatile programs to use persistent memory. We also list the limitations of this library 

and the problems you must consider during development.

Chapter 8  libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory 



139

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter's Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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