
63
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_5

CHAPTER 5

Introducing the Persistent
Memory Development Kit
Previous chapters introduced the unique properties of persistent memory that make it

special, and you are correct in thinking that writing software for such a novel technology

is complicated. Anyone who has researched or developed code for persistent memory

can testify to this. To make your job easier, Intel created the Persistent Memory

Development Kit (PMDK). The team of PMDK developers envisioned it to be the

standard library for all things persistent memory that would provide solutions to the

common challenges of persistent memory programming.

�Background
The PMDK has evolved to become a large collection of open source libraries and

tools for application developers and system administrators to simplify managing and

accessing persistent memory devices. It was developed alongside evolving support for

persistent memory in operating systems, which ensures the libraries take advantage of

all the features exposed through the operating system interfaces.

The PMDK libraries build on the SNIA NVM programming model (described in

Chapter 3). They extend it to varying degrees, some by simply wrapping around the

primitives exposed by the operating system with easy-to-use functions and others by

providing complex data structures and algorithms for use with persistent memory.

This means you are responsible for making an informed decision about which level of

abstraction is the best for your use case.

https://doi.org/10.1007/978-1-4842-4932-1_5
https://doi.org/10.1007/978-1-4842-4932-1_3

64

Although the PMDK was created by Intel to support its hardware products, Intel is

committed to ensuring the libraries and tools are both vendor and platform neutral. This

means that the PMDK is not tied to Intel processors or Intel persistent memory devices.

It can be made to work on any other platform that exposes the necessary interfaces

through the operating system, including Linux and Microsoft Windows. We welcome

and encourage contributions to PMDK from individuals, hardware vendors, and ISVs.

The PMDK has a BSD 3-Clause License, allowing developers to embed it in any software,

whether it’s open source or proprietary. This allows you to pick and choose individual

components of PMDK by integrating only the bits of code required.

The PMDK is available at no cost on GitHub (https://github.com/pmem/pmdk) and

has a dedicated web site at https://pmem.io. Man pages are delivered with PMDK and

are available online under each library’s own page. Appendix B of this book describes

how to install it on your system.

An active persistent memory community is available through Google Forums at

https://groups.google.com/forum/#!forum/pmem. This forum allows developers,

system administrators, and others with an interest in persistent memory to ask questions

and get assistance. This is a great resource.

�Choosing the Right Semantics
With so many libraries available within the PMDK, it is important to carefully consider

your options. The PMDK offers two library categories:

	 1.	 Volatile libraries are for use cases that only wish to exploit the

capacity of persistent memory.

	 2.	 Persistent libraries are for use in software that wishes to

implement fail-safe persistent memory algorithms.

While you are deciding how to best solve a problem, carefully consider which

category it fits into. The challenges that fail-safe persistent programs present are

significantly different from volatile ones. Choosing the right approach upfront will

minimize the risk of having to rewrite any code.

You may decide to use libraries from both categories for different parts of the

application, depending on feature and functional requirements.

Chapter 5 Introducing the Persistent Memory Development Kit

https://github.com/pmem/pmdk
https://pmem.io
https://groups.google.com/forum/#!forum/pmem

65

�Volatile Libraries
Volatile libraries are typically simpler to use because they can fall back to dynamic

random-access memory (DRAM) when persistent memory is not available. This

provides a more straightforward implementation. Depending on the workload, they may

also have lower overall overhead compared to similar persistent libraries because they

do not need to ensure consistency of data in the presence of failures.

This section explores the available libraries for volatile use cases in applications,

including what the library is and when to use it. The libraries may have overlapping

situation use cases.

�libmemkind
What is it?

The memkind library, called libmemkind, is a user-extensible heap manager built

on top of jemalloc. It enables control of memory characteristics and partitioning of the

heap between different kinds of memory. The kinds of memory are defined by operating

system memory policies that have been applied to virtual address ranges. Memory

characteristics supported by memkind without user extension include control of

nonuniform memory access (NUMA) and page size features. The jemalloc nonstandard

interface has been extended to enable specialized kinds to make requests for virtual

memory from the operating system through the memkind partition interface. Through

the other memkind interfaces, you can control and extend memory partition features

and allocate memory while selecting enabled features. The memkind interface allows

you to create and control file-backed memory from persistent memory with PMEM kind.

 Chapter 10 describes this library in more detail. You can download memkind and

read the architecture specification and API documentation at http://memkind.github.

io/memkind/. memkind is an open source project on GitHub at https://github.com/

memkind/memkind.

When to use it?
Choose libmemkind when you want to manually move select memory objects to

persistent memory in a volatile application while retaining the traditional programming

model. The memkind library provides familiar malloc() and free() semantics. This is

the recommended memory allocator for most volatile use cases of persistent memory.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_10
http://memkind.github.io/memkind/
http://memkind.github.io/memkind/
https://github.com/memkind/memkind
https://github.com/memkind/memkind

66

Modern memory allocators usually rely on anonymous memory mapping to

provision memory pages from the operating system. For most systems, this means that

actual physical memory is allocated only when a page is first accessed, allowing the OS

to overprovision virtual memory. Additionally, anonymous memory can be paged out

if needed. When using memkind with file-based kinds, such as PMEM kind, physical

space is still only allocated on first access to a page and the other described techniques

no longer apply. Memory allocation will fail when there is no memory available to be

allocated, so it is important to handle such failures within the application.

The described techniques also play an important role in hiding the inherent

inefficiencies of manual dynamic memory allocation such as fragmentation, which

causes allocation failures when not enough contiguous free space is available. Thus, file-

based kinds can exhibit low space utilization for applications with irregular allocation/

deallocation patterns. Such workloads may be better served with libvmemcache.

�libvmemcache
What is it?

libvmemcache is an embeddable and lightweight in-memory caching solution that

takes full advantage of large-capacity memory, such as persistent memory with direct

memory access (DAX), through memory mapping in an efficient and scalable way.

libvmemcache has unique characteristics:

•	 An extent-based memory allocator sidesteps the fragmentation

problem that affects most in-memory databases and allows the cache

to achieve very high space utilization for most workloads.

•	 The buffered least recently used (LRU) algorithm combines a

traditional LRU doubly linked list with a non-blocking ring buffer to

deliver high degrees of scalability on modern multicore CPUs.

•	 The critnib indexing structure delivers high performance while

being very space efficient.

The cache is tuned to work optimally with relatively large value sizes. The smallest

possible size is 256 bytes, but libvmemcache works best if the expected value sizes are

above 1 kilobyte.

Chapter 10 describes this library in more detail. libvmemcache is an open source

project on GitHub at https://github.com/pmem/vmemcache.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_10
https://github.com/pmem/vmemcache

67

When to use it?
Use libvmemcache when implementing caching for workloads that typically would

have low space efficiency when cached using a system with a normal memory allocation

scheme.

�libvmem
What is it?

libvmem is a deprecated predecessor to libmemkind. It is a jemalloc-derived

memory allocator, with both metadata and objects allocations placed in file-based

mapping. The libvmem library is an open source project available from https://pmem.

io/pmdk/libvmem/.

When to use it?
Use libvmem only if you have an existing application that uses libvmem or if you

need to have multiple completely separate heaps of memory. Otherwise, consider using

libmemkind.

�Persistent Libraries
Persistent libraries help applications maintain data structure consistency in the presence

of failures. In contrast to the previously described volatile libraries, these provide new

semantics and take full advantage of the unique possibilities enabled by persistent

memory.

�libpmem
What is it?

libpmem is a low-level C library that provides basic abstraction over the primitives

exposed by the operating system. It automatically detects features available in the

platform and chooses the right durability semantics and memory transfer (memcpy())

methods optimized for persistent memory. Most applications will need at least parts of

this library.

Chapter 5 Introducing the Persistent Memory Development Kit

https://pmem.io/pmdk/libvmem/
https://pmem.io/pmdk/libvmem/

68

Chapter 4 describes the requirements for applications using persistent memory, and

Chapter 6 describes libpmem in more depth.

When to use it?
Use libpmem when modifying an existing application that already uses memory-

mapped I/O. Such applications can leverage the persistent memory synchronization

primitives, such as user space flushing, to replace msync(), thus reducing the kernel

overhead.

Also use libpmem when you want to build everything from the ground up. It

supports implementation of low-level persistent data structures with custom memory

management and recovery logic.

�libpmemobj
What is it?

libpmemobj is a C library that provides a transactional object store, with a manual

dynamic memory allocator, transactions, and general facilities for persistent memory

programming. This library solves many of the commonly encountered algorithmic and

data structure problems when programming for persistent memory. Chapter 7 describes

this library in detail.

When to use it?
Use libpmemobj when the programming language of choice is C and when you need

flexibility in terms of data structures design but can use a general-purpose memory

allocator and transactions.

�libpmemobj-cpp
What is it?

libpmemobj-cpp, also known as libpmemobj++, is a C++ header-only library that uses

the metaprogramming features of C++ to provide a simpler, less error-prone interface to

libpmemobj. It enables rapid development of persistent memory applications by reusing

many concepts C++ programmers are already familiar with, such as smart pointers and

closure-based transactions.

This library also ships with custom-made, STL-compatible data structures and

containers, so that application developers do not have to reinvent the basic algorithms

for persistent memory.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_4
https://doi.org/10.1007/978-1-4842-4932-1_6
https://doi.org/10.1007/978-1-4842-4932-1_7

69

When to use it?
When C++ is an option, libpmemobj-cpp is preferred for general-purpose persistent

memory programming over libpmemobj. Chapter 7 describes this library in detail.

�libpmemkv
What is it?

libpmemkv is a generic embedded local key-value store optimized for persistent

memory. It is easy to use and ships with many different language integrations, including

C, C++, and JavaScript.

This library has a pluggable back end for different storage engines. Thus, it can

be used as a volatile library, although it was originally designed primarily to support

persistent use cases.

Chapter 9 describes this library in detail.

When to use it?
This library is the recommended starting point into the world of persistent memory

programming because it is approachable and has a simple interface. Use it when

complex and custom data structures are not needed and a generic key-value store

interface is enough to solve the current problem.

�libpmemlog
What is it?

libpmemlog is a C library that implements a persistent memory append-only log file

with power fail-safe operations.

When to use it?
Use libpmemlog when your use case exactly fits into the provided log API; otherwise,

a more generic library such as libpmemobj or libpmemobj-cpp might be more useful.

�libpmemblk
What is it?

libpmemblk is a C library for managing fixed-size arrays of blocks. It provides fail-safe

interfaces to update the blocks through buffer-based functions.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_7
https://doi.org/10.1007/978-1-4842-4932-1_9

70

When to use it?
Use libpmemblk only when a simple array of fixed blocks is needed and direct byte-

level access to blocks is not required.

�Tools and Command Utilities
PMDK comes with a wide variety of tools and utilities to assist in the development and

deployment of persistent memory applications.

�pmempool
What is it?

The pmempool utility is a tool for managing and offline analysis of persistent

memory pools. Its variety of functionalities, useful throughout the entire life cycle of an

application, include

•	 Obtaining information and statistics from a memory pool

•	 Checking a memory pool’s consistency and repairing it if possible

•	 Creating memory pools

•	 Removing/deleting a previously created memory pool

•	 Updating internal metadata to the latest layout version

•	 Synchronizing replicas within a poolset

•	 Modifying internal data structures within a poolset

•	 Enabling or disabling pool and poolset features

When to use it?
Use pmempool whenever you are creating persistent memory pools for applications

using any of the persistent libraries from PMDK.

�pmemcheck
What is it?

The pmemcheck utility is a Valgrind-based tool for dynamic runtime analysis

of common persistent memory errors, such as a missing flush or incorrect use of

transactions. Chapter 12 describes this utility in detail.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_12

71

When to use it?
The pmemcheck utility is useful when developing an application using libpmemobj,

libpmemobj-cpp, or libpmem because it can help you find bugs that are common in

persistent applications. We suggest running error-checking tools early in the lifetime of a

codebase to avoid a pileup of hard-to-debug problems. The PMDK developers integrate

pmemcheck tests into the continuous integration pipeline of PMDK, and we recommend

the same for any persistent applications.

�pmreorder
What is it?

The pmreorder utility helps detect data structure consistency problems of persistent

applications in the presence of failures. It does this by first recording and then replaying

the persistent state of the application while verifying consistency of the application’s

data structures at any possible intermediate state. Chapter 12 describes this utility in

detail.

When to use it?
Just like pmemcheck, pmreorder is an essential tool for finding hard-to-debug

persistent problems and should be integrated into the development and testing cycle of

any persistent memory application.

�Summary
This chapter provides a brief listing of the libraries and tools available in PMDK

and when to use them. You now have enough information to know what is possible.

Throughout the rest of this book, you will learn how to create software using these

libraries and tools.

The next chapter introduces libpmem and describes how to use it to create simple

persistent applications.

Chapter 5 Introducing the Persistent Memory Development Kit

https://doi.org/10.1007/978-1-4842-4932-1_12

72

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 5 Introducing the Persistent Memory Development Kit

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 5: Introducing the Persistent Memory Development Kit
	Background
	Choosing the Right Semantics
	Volatile Libraries
	libmemkind
	libvmemcache
	libvmem

	Persistent Libraries
	libpmem
	libpmemobj
	libpmemobj-cpp
	libpmemkv
	libpmemlog
	libpmemblk

	Tools and Command Utilities
	pmempool
	pmemcheck
	pmreorder

	Summary

