
373
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_19

CHAPTER 19

Advanced Topics
This chapter covers several topics that we briefly described earlier in the book but did

not expand upon as it would have distracted from the focus points. The in-depth details

on these topics are here for your reference.

�Nonuniform Memory Access (NUMA)
NUMA is a computer memory design used in multiprocessing where the memory

access time depends on the memory location relative to the processor. NUMA is used

in a symmetric multiprocessing (SMP) system. An SMP system is a “tightly coupled and

share everything” system in which multiple processors working under a single operating

system can access each other’s memory over a common bus or “interconnect” path.

With NUMA, a processor can access its own local memory faster than nonlocal memory

(memory that is local to another processor or memory shared between processors). The

benefits of NUMA are limited to particular workloads, notably on servers where the data

is often associated strongly with certain tasks or users.

CPU memory access is always fastest when the CPU can access its local memory.

Typically, the CPU socket and the closest memory banks define a NUMA node. Whenever

a CPU needs to access the memory of another NUMA node, it cannot access it directly

but is required to access it through the CPU owning the memory. Figure 19-1 shows a

two-socket system with DRAM and persistent memory represented as “memory.”

https://doi.org/10.1007/978-1-4842-4932-1_19

374

On a NUMA system, the greater the distance between a processor and a memory

bank, the slower the processor’s access to that memory bank. Performance-sensitive

applications should therefore be configured so they allocate memory from the closest

possible memory bank.

Performance-sensitive applications should also be configured to execute on a set

number of cores, particularly in the case of multithreaded applications. Because first-

level caches are usually small, if multiple threads execute on one core, each thread

will potentially evict cached data accessed by a previous thread. When the operating

system attempts to multitask between these threads, and the threads continue to evict

each other’s cached data, a large percentage of their execution time is spent on cache

line replacement. This issue is referred to as cache thrashing. We therefore recommend

that you bind a multithreaded application to a NUMA node rather than a single core,

since this allows the threads to share cache lines on multiple levels (first-, second-, and

last-level cache) and minimizes the need for cache fill operations. However, binding

an application to a single core may be performant if all threads are accessing the

same cached data. numactl allows you to bind an application to a particular core or

NUMA node and to allocate the memory associated with a core or set of cores to that

application.

�NUMACTL Linux Utility
On Linux we can use the numactl utility to display the NUMA hardware configuration

and control which cores and threads application processes can run. The libnuma library

included in the numactl package offers a simple programming interface to the NUMA

policy supported by the kernel. It is useful for more fine-grained tuning than the numactl

utility. Further information is available in the numa(7) man page.

Figure 19-1.  A two-socket CPU NUMA architecture showing local and remote
memory access

Chapter 19 Advanced Topics

375

The numactl --hardware command displays an inventory of the available NUMA

nodes within the system. The output shows only volatile memory, not persistent

memory. We will show how to use the ndctl command to show NUMA locality of

persistent memory in the next section. The number of NUMA nodes does not always

equal the number of sockets. For example, an AMD Threadripper 1950X has 1 socket

and 2 NUMA nodes. The following output from numactl was collected from a two-socket

Intel Xeon Platinum 8260L processor server with a total of 385GiB DDR4, 196GiB per

socket.

numactl --hardware

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

node 0 size: 192129 MB

node 0 free: 187094 MB

node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

94 95

node 1 size: 192013 MB

node 1 free: 191478 MB

node distances:

node 0 1

 0: 10 21

 1: 21 10

The node distance is a relative distance and not an actual time-based latency in

nanoseconds or milliseconds.

numactl lets you bind an application to a particular core or NUMA node and allocate

the memory associated with a core or set of cores to that application. Some useful

options provided by numactl are described in Table 19-1.

Chapter 19 Advanced Topics

376

�NDCTL Linux Utility
The ndctl utility is used to create persistent memory capacity for the operating system,

called namespaces, as well as enumerating, enabling, and disabling the dimms,

regions, and namespaces. Using the –v (verbose) option shows what NUMA node

(numa_node) persistent memory DIMMS (-D), regions (-R), and namespaces (-N)

belong to. Listing 19-1 shows the region and namespaces for a two-socket system. We

can correlate the numa_node with the corresponding NUMA node shown by the numactl

command.

Listing 19-1.  Region and namespaces for a two-socket system

ndctl list -Rv

{

 "regions":[

 {

 "dev":"region1",

 "size":1623497637888,

 "available_size":0,

 "max_available_extent":0,

 "type":"pmem",

 "numa_node":1,

Table 19-1.  numactl command options for binding processes to NUMA nodes or

CPUs

Option Description

--membind, -m Only allocate memory from specific NUMA nodes. The allocation will fail

if there is not enough memory available on these nodes.

--cpunodebind, -N Only execute the process on CPUs from the specified NUMA nodes.

--physcpubind, -C Only execute process on the given CPUs.

--localalloc, -l Always allocate on the current NUMA node.

--preferred Preferably allocate memory on the specified NUMA node. If memory

cannot be allocated, fall back to other nodes.

Chapter 19 Advanced Topics

377

 "iset_id":-2506113243053544244,

 "persistence_domain":"memory_controller",

 "namespaces":[

 {

 "dev":"namespace1.0",

 "mode":"fsdax",

 "map":"dev",

 "size":1598128390144,

 "uuid":"b3e203a0-2b3f-4e27-9837-a88803f71860",

 "raw_uuid":"bd8abb69-dd9b-44b7-959f-79e8cf964941",

 "sector_size":512,

 "align":2097152,

 "blockdev":"pmem1",

 "numa_node":1

 }

]

 },

 {

 "dev":"region0",

 "size":1623497637888,

 "available_size":0,

 "max_available_extent":0,

 "type":"pmem",

 "numa_node":0,

 "iset_id":3259620181632232652,

 "persistence_domain":"memory_controller",

 "namespaces":[

 {

 "dev":"namespace0.0",

 "mode":"fsdax",

 "map":"dev",

 "size":1598128390144,

 "uuid":"06b8536d-4713-487d-891d-795956d94cc9",

 "raw_uuid":"39f4abba-5ca7-445b-ad99-fd777f7923c1",

 "sector_size":512,

 "align":2097152,

Chapter 19 Advanced Topics

378

 "blockdev":"pmem0",

 "numa_node":0

 }

]

 }

]

}

�Intel Memory Latency Checker Utility
To get absolute latency numbers between NUMA nodes on Intel systems, you can use

the Intel Memory Latency Checker (Intel MLC), available from https://software.

intel.com/en-us/articles/intel-memory-latency-checker.

Intel MLC provides several modes specified through command-line arguments:

•	 --latency_matrix prints a matrix of local and cross-socket memory

latencies.

•	 --bandwidth_matrix prints a matrix of local and cross-socket

memory bandwidths.

•	 --peak_injection_bandwidth prints peak memory bandwidths of

the platform for various read-write ratios.

•	 --idle_latency prints the idle memory latency of the platform.

•	 --loaded_latency prints the loaded memory latency of the platform.

•	 --c2c_latency prints the cache-to-cache data transfer latency of the

platform.

Executing mlc or mlc_avx512 with no arguments runs all the modes in sequence

using the default parameters and values for each test and writes the results to the

terminal. The following example shows running just the latency matrix on a two-socket

Intel system.

./mlc_avx512 --latency_matrix -e -r

Intel(R) Memory Latency Checker - v3.6

Command line parameters: --latency_matrix -e -r

Chapter 19 Advanced Topics

https://software.intel.com/en-us/articles/intel-memory-latency-checker
https://software.intel.com/en-us/articles/intel-memory-latency-checker

379

Using buffer size of 2000.000MiB

Measuring idle latencies (in ns)...

 Numa node

Numa node 0 1

 0 84.2 141.4

 1 141.5 82.4

•	 --latency_matrix prints a matrix of local and cross-socket memory

latencies.

•	 -e means that the hardware prefetcher states do not get modified.

•	 -r is random access reads for latency thread.

MLC can be used to test persistent memory latency and bandwidth in either DAX or

FSDAX modes. Commonly used arguments include

•	 -L requests that large pages (2MB) be used (assuming they have been

enabled).

•	 -h requests huge pages (1GB) for DAX file mapping.

•	 -J specifies a directory in which files for mmap will be created (by

default no files are created). This option is mutually exclusive with –j.

•	 -P CLFLUSH is used to evict stores to persistent memory.

Examples:

Sequential read latency:

mlc_avx512 --idle_latency –J/mnt/pmemfs

Random read latency:

mlc_avx512 --idle_latency -l256 –J/mnt/pmemfs

Chapter 19 Advanced Topics

380

�NUMASTAT Utility
The numastat utility on Linux shows per NUMA node memory statistics for processors

and the operating system. With no command options or arguments, it displays NUMA

hit and miss system statistics from the kernel memory allocator. The default numastat

statistics shows per-node numbers, in units of pages of memory, for example:

$ sudo numastat

 node0 node1

numa_hit 8718076 7881244

numa_miss 0 0

numa_foreign 0 0

interleave_hit 40135 40160

local_node 8642532 2806430

other_node 75544 5074814

•	 numa_hit is memory successfully allocated on this node as intended.

•	 numa_miss is memory allocated on this node despite the process

preferring some different node. Each numa_miss has a numa_foreign

on another node.

•	 numa_foreign is memory intended for this node but is actually

allocated on a different node. Each numa_foreign has a numa_miss on

another node.

•	 interleave_hit is interleaved memory successfully allocated on this

node as intended.

•	 local_node is memory allocated on this node while a process was

running on it.

•	 other_node is memory allocated on this node while a process was

running on another node.

Chapter 19 Advanced Topics

381

�Intel VTune Profiler – Platform Profiler
On Intel systems, you can use the Intel VTune Profiler - Platform Profiler, previously

called VTune Amplifier, (discussed in Chapter 15) to show CPU and memory statistics,

including hit and miss rates of CPU caches and data accesses to DDR and persistent

memory. It can also depict the system’s configuration to show what memory devices are

physically located on which CPU.

�IPMCTL Utility
Persistent memory vendor- and server-specific utilities can also be used to show DDR

and persistent memory device topology to help identify what devices are associated

with which CPU sockets. For example, the ipmctl show –topology command displays

the DDR and persistent memory (non-volatile) devices with their physical memory slot

location (see Figure 19-2), if that data is available.

Figure 19-2.  Topology report from the ipmctl show –topology command

Chapter 19 Advanced Topics

https://doi.org/10.1007/978-1-4842-4932-1_15

382

�BIOS Tuning Options
The BIOS contains many tuning options that change the behavior of CPU, memory,

persistent memory, and NUMA. The location and name may vary between server

platform types, server vendors, persistent memory vendors, or BIOS versions. However,

most applicable tunable options can usually be found in the Advanced menu under

Memory Configuration and Processor Configuration. Refer to your system BIOS user

manual for descriptions of each available option. You may want to test several BIOS

options with the application(s) to understand which options bring the most value.

�Automatic NUMA Balancing
Physical limitations to hardware are encountered when many CPUs and a lot of memory

are required. The important limitation is the limited communication bandwidth

between the CPUs and the memory. The NUMA architecture modification addresses

this issue. An application generally performs best when the threads of its processes are

accessing memory on the same NUMA node as the threads are scheduled. Automatic

NUMA balancing moves tasks (which can be threads or processes) closer to the memory

they are accessing. It also moves application data to memory closer to the tasks that

reference it. The kernel does this automatically when automatic NUMA balancing

is active. Most operating systems implement this feature. This section discusses the

feature on Linux; refer to your Linux distribution documentation for specific options as

they may vary.

Automatic NUMA balancing is enabled by default in most Linux distributions and

will automatically activate at boot time when the operating system detects it is running

on hardware with NUMA properties. To determine if the feature is enabled, use the

following command:

$ sudo cat /proc/sys/kernel/numa_balancing

A value of 1 (true) indicates the feature is enabled, whereas a value of 0 (zero/false)

means it is disabled.

Chapter 19 Advanced Topics

383

Automatic NUMA balancing uses several algorithms and data structures, which are

only active and allocated if automatic NUMA balancing is active on the system, using a

few simple steps:

•	 A task scanner periodically scans the address space and marks the

memory to force a page fault when the data is next accessed.

•	 The next access to the data will result in a NUMA Hinting Fault. Based

on this fault, the data can be migrated to a memory node associated

with the thread or process accessing the memory.

•	 To keep a thread or process, the CPU it is using and the memory it is

accessing together, the scheduler groups tasks that share data.

Manual NUMA tuning of applications using numactl will override any system-wide

automatic NUMA balancing settings. Automatic NUMA balancing simplifies tuning

workloads for high performance on NUMA machines. Where possible, we recommend

statically tuning the workload to partition it within each node. Certain latency-sensitive

applications, such as databases, usually work best with manual configuration. However,

in most other use cases, automatic NUMA balancing should help performance.

�Using Volume Managers with Persistent Memory
We can provision persistent memory as a block device on which a file system can be

created. Applications can access persistent memory using standard file APIs or memory

map a file from the file system and access the persistent memory directly through load/

store operations. The accessibility options are described in Chapters 2 and 3.

The main advantages of volume managers are increased abstraction, flexibility, and

control. Logical volumes can have meaningful names like “databases” or “web.” Volumes

can be resized dynamically as space requirements change and migrated between

physical devices within the volume group on a running system.

On NUMA systems, there is a locality factor between the CPU and the DRR and

persistent memory that is directly attached to it. Accessing memory on a different CPU

across the interconnect incurs a small latency penalty. Latency-sensitive applications,

such as databases, understand this and coordinate their threads to run on the same

socket as the memory they are accessing.

Compared with SSD or NVMe capacity, persistent memory is relatively small. If

your application requires a single file system that consumes all persistent memory on

Chapter 19 Advanced Topics

https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_3

384

the system rather than one file system per NUMA node, a software volume manager

can be used to create concatenations or stripes (RAID0) using all the system’s capacity.

For example, if you have 1.5TiB of persistent memory per CPU socket on a two-socket

system, you could build a concatenation or stripe (RAID0) to create a 3TiB file system. If

local system redundancy is more important than large file systems, mirroring (RAID1)

persistent memory across NUMA nodes is possible. In general, replicating the data

across physical servers for redundancy is better. Chapter 18 discusses remote persistent

memory in detail, including using remote direct memory access (RDMA) for data

transfer and replication across systems.

There are too many volume manager products to provide step-by-step recipes for all of

them within this book. On Linux, you can use Device Mapper (dmsetup), Multiple Device

Driver (mdadm), and Linux Volume Manager (LVM) to create volumes that use the capacity

from multiple NUMA nodes. Because most modern Linux distributions default to using

LVM for their boot disks, we assume that you have some experience using LVM. There is

extensive information and tutorials within the Linux documentation and on the Web.

Figure 19-3 shows two regions on which we can create either an fsdax or sector

type namespace that creates the corresponding /dev/pmem0 and /dev/pmem1 devices.

Using /dev/pmem[01], we can create an LVM physical volume which we then combine

to create a volume group. Within the volume group, we are free to create as many logical

volumes of the requested size as needed. Each logical volume can support one or more

file systems.

Figure 19-3.  Linux Volume Manager architecture using persistent memory regions
and namespaces

Chapter 19 Advanced Topics

https://doi.org/10.1007/978-1-4842-4932-1_18

385

We can also create a number of possible configurations if we were to create multiple

namespaces per region or partition the /dev/pmem* devices using fdisk or parted, for

example. Doing this provides greater flexibility and isolation of the resulting logical

volumes. However, if a physical NVDIMM fails, the impact is significantly greater since it

would impact some or all of the file systems depending on the configuration.

Creating complex RAID volume groups may protect the data but at the cost of not

efficiently using all the persistent memory capacity for data. Additionally, complex RAID

volume groups do not support the DAX feature that some applications may require.

�The mmap( ) MAP_SYNC Flag
Introduced in the Linux kernel v4.15, the MAP_SYNC flag ensures that any needed file

system metadata writes are completed before a process is allowed to modify directly

mapped data. The MAP_SYNC flag was added to the mmap() system call to request the

synchronous behavior; in particular, the guarantee provided by this flag is

While a block is writeably mapped into page tables of this mapping, it is
guaranteed to be visible in the file at that offset also after a crash.

This means the file system will not silently relocate the block, and it will ensure that the

file’s metadata is in a consistent state so that the blocks in question will be present after

a crash. This is done by ensuring that any needed metadata writes were done before the

process is allowed to write pages affected by that metadata.

When a persistent memory region is mapped using MAP_SYNC, the memory

management code will check to see whether there are metadata writes pending for the

affected file. However, it will not actually flush those writes out. Instead, the pages are

mapped read only with a special flag, forcing a page fault when the process first attempts

to perform a write to one of those pages. The fault handler will then synchronously flush

out any dirty metadata, set the page permissions to allow the write, and return. At that

point, the process can write the page safely, since all the necessary metadata changes

have already made it to persistent storage.

The result is a relatively simple mechanism that will perform far better than

the currently available alternative of manually calling fsync() before each write to

persistent memory. The additional IO from fsync() can potentially cause the process to

block in what was supposed to be a simple memory write, introducing latency that may

be unexpected and unwanted.

Chapter 19 Advanced Topics

386

The mmap(2) man page in the Linux Programmer’s manual describes the MAP_SYNC

flag as follows:

MAP_SYNC (since Linux 4.15)

This flag is available only with the MAP_SHARED_VALIDATE mapping
type; mappings of type MAP_SHARED will silently ignore this flag. This flag
is supported only for files supporting DAX (direct mapping of persistent
memory). For other files, creating a mapping with this flag results in an
EOPNOTSUPP error.

Shared file mappings with this flag provide the guarantee that while some
memory is writably mapped in the address space of the process, it will be
visible in the same file at the same offset even after the system crashes or is
rebooted. In conjunction with the use of appropriate CPU instructions, this
provides users of such mappings with a more efficient way of making data
modifications persistent.

�Summary
In this chapter, we presented some of the more advanced topics for persistent memory

including page size considerations on large memory systems, NUMA awareness and

how it affects application performance, how to use volume managers to create DAX file

systems that span multiple NUMA nodes, and the MAP_SYNC flag for mmap(). Additional

topics such as BIOS tuning were intentionally left out of this book as it is vendor and

product specific. Performance and benchmarking of persistent memory products are left

to external resources as there are too many tools – vdbench, sysbench, fio, etc. – and too

many options for each one, to cover in this book.

Chapter 19 Advanced Topics

387

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 19 Advanced Topics

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 19: Advanced Topics
	Nonuniform Memory Access (NUMA)
	NUMACTL Linux Utility
	NDCTL Linux Utility
	Intel Memory Latency Checker Utility
	NUMASTAT Utility
	Intel VTune Profiler – Platform Profiler
	IPMCTL Utility
	BIOS Tuning Options
	Automatic NUMA Balancing

	Using Volume Managers with Persistent Memory
	The mmap() MAP_SYNC Flag
	Summary

