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CHAPTER 18

Remote Persistent 
Memory
This chapter provides an overview of how persistent memory – and the programming 

concepts that were introduced in this book – can be used to access persistent memory 

located in remote servers connected via a network. A combination of TCP/IP or RDMA 

network hardware and software running on the servers containing persistent memory 

provide direct remote access to persistent memory.

Having remote direct memory access via a high-performance network connection is 

a critical use case for most cloud deployments of persistent memory. Typically, in high-

availability or highly redundant use cases, data written locally to persistent memory is 

not considered reliable until it has been replicated to two or more remote persistent 

memory devices on separate remote servers. We describe this push model design later in 

this chapter.

While it is certainly possible to use existing TCP/IP networking infrastructures to 

remotely access the persistent memory, this chapter focuses on the use of remote direct 

memory access (RDMA). Direct memory access (DMA) allows data movement on a 

platform to be off-loaded to a hardware DMA engine that moves that data on behalf of 

the CPU, freeing it to do other important tasks during the data move. RDMA applies the 

same concept and enables data movement between remote servers to occur without the 

CPU on either server having to be directly involved.

This chapter’s content and the PMDK librpmem remote persistent memory library 

that is discussed assume the use of RDMA, but the concepts discussed here can apply to 

other networking interconnects and protocols.
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Figure 18-1 outlines a simple remote persistent memory configuration with one 

initiator system that is replicating writes to persistent memory on a single remote target 

system. While this shows the use of persistent memory on both the initiator and target, 

it is possible to read data from initiator DRAM and write to persistent memory on the 

remote target system, or read from the initiator’s persistent memory and write to the 

remote target’s DRAM.

�RDMA Networking Protocols
Examples of popular RDMA networking protocols used throughout the cloud and 

enterprise data centers include: 

•	 InfiniBand is an I/O architecture and high-performance specification 

for data transmission between high-speed, low-latency, and highly 

scalable CPUs, processors, and storage.

•	 RoCE (RDMA over Converged Ethernet) is a network protocol that 

allows RDMA over an Ethernet network.

•	 iWARP (Internet Wide Area RDMA Protocol) is a networking protocol 

that implements RDMA for efficient data transfer over Internet 

Protocol networks.

All three protocols support high-performance data movement to and from persistent 

memory using RDMA.

Figure 18-1.  Initiator and target system using RDMA
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The RDMA protocols are governed by the RDMA Wire Protocol Standards, which are 

driven by the IBTA (InfiniBand Trade Association) and the IEFT (Internet Engineering 

Task Force) specifications. The IBTA (https://www.infinibandta.org/) governs the 

InfiniBand and RoCE protocols, while the IEFT (https://www.ietf.org/) governs 

iWARP.

Low-latency RDMA networking protocols allow the network interface controller 

(NIC) to control the movement of data between an initiator node source buffer and the 

sink buffer on the target node without needing either node’s CPU to be involved in the 

data movement. In fact, RDMA Read and RDMA Write operations are often referred 

to as one-sided operations because all of the information required to move the data is 

supplied by the initiator and the CPU on the target node is not typically interrupted or 

even aware of the data transfer.

To perform remote data transfers, information from the target node’s buffers must 

be passed to the initiator before the remote operation( s) will begin. This requires 

configuring the local initiator’s RDMA resources and buffers. Similarly, the remote target 

node’s RDMA resources that will require CPU resources will need to be initialized and 

reported to the initiator. However, once the resources for the RDMA transfers are set up 

and applications initiate the RDMA request using the CPU, the NIC does the actual data 

movement on behalf of the RDMA-aware application.

RDMA-aware applications are responsible for: 

•	 Interrogating each NIC on every initiator and target system to 

determine supported features

•	 Selecting a NIC for each end of the RDMA point-to-point connection

•	 Creating the connection with the selected NICs, described as an 

RDMA protection domain

•	 Allocating queues for the incoming and outgoing message on each 

NIC and assigning those hardware resources to the protection domain

•	 Allocating DRAM or persistent memory buffers for use with RDMA, 

registering those buffers with the NIC, and assigning those buffers to 

the protection domain
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Three basic RDMA commands are used by most RDMA-capable applications and 

libraries:

RDMA Write: A one-sided operation where only the initiator supplies all of the 

information required for the transfer to occur. This transfer is used to write data to the 

remote target node. The write request contains all source and sink buffer information. 

The remote target system is not typically interrupted and thus completely unaware of 

the write operations occurring through the NIC. When the initiator’s NIC sends a write 

to the target, it will generate a “software write completion interrupt.” A software write 

completion interrupt means that the write message has been sent to the target NIC 

and is not an indicator of the write completion. Optionally, RDMA Writes can use an 

immediate option that will interrupt the target node CPU and allow software running 

there to be immediately notified of the write completion.

RDMA Read: A one-sided operation where only the initiator supplies all of the 

information required for the transfer to occur. This transfer is used to read data from 

the remote target node. The read request contains all source buffer and target sink 

buffer information, and the remote target system is not typically interrupted and thus 

completely unaware of the read operations occurring through the NIC. The initiator 

software read completion interrupt is an acknowledgment that the read has traversed 

all the way through the initiator’s NIC, over the network, into the target system’s NIC, 

through the target internal hardware mesh and memory controllers, to the DRAM or 

persistent memory to retrieve the data. Then it returns all the way back to the initiator 

software that registered for the completion notification.

RDMA Send (and Receive): The two-sided RDMA Send means that both the 

initiator and target must supply information for the transfer to complete. This is because 

the target NIC will be interrupted when the RDMA Send is received by the target NIC 

and requires a hardware receive queue to be set up and pre-populated with completion 

entries before the NIC will receive an RDMA Send transfer operation. Data from the 

initiator application is bundled in a small, limited sized buffer and sent to the target 

NIC. The target CPU will be interrupted to handle the send operation and any data it 

contains. If the initiator needs to be notified of receipt of the RDMA Send, or to handle a 

message back to the initiator, another RDMA Send operation must be sent in the reverse 

direction after the initiator has set up its own receive queue and queued completion 

entries to it. The use of the RDMA Send command and the contents of the payload 

are application-specific implementation details. An RDMA Send is typically used for 

bookkeeping and updates of read and write activity between the initiator and the target, 
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since the target application has no other context of what data movement has taken place. 

For example, because there is no good way to know when writes have completed on 

the target, an RDMA Send is often used to notify the target node what is happening. For 

small amounts of data, the RDMA Send is very efficient, but it always requires target-

side interaction to complete. An RDMA Write with immediate data operation will also 

allow the target node to be interrupted when the write has completed as a different 

mechanism for bookkeeping.

�Goals of the Initial Remote Persistent Memory 
Architecture
The goal of the first remote persistent memory implementation was based on minimal 

changes – or ideally, no changes – to the current RDMA hardware and software stacks 

used with volatile memory. From a network hardware, middleware, and software 

architecture standpoint, writing to remote volatile memory is identical to writing to 

remote persistent memory. The knowledge that a specific memory-mapped file is 

backed by persistent memory vs. volatile memory is entirely the responsibility of the 

application to maintain. None of the lower layers in the networking stack are aware of the 

fact that the write is to a persistent memory region or volatile memory. The responsibility 

of knowing which write persistence method to use for a given target connection, and 

making those remote writes persistent, falls to the application.

�Guaranteeing Remote Persistence
Until this chapter, much of the book focuses on the use and programming of persistent 

memory on the local machine. You are now aware of some of the challenges of using 

persistent memory, the persistence domain, and the need to understand and use a 

flushing mechanism to ensure the data is persistent. These same programming concepts 

and challenges apply to remote persistent memory with the additional constraints of 

making it work within the existing network protocol and network latency.

The SNIA NVM programming model (described in Chapter 3) requires applications 

to flush data that has been written to persistent memory to guarantee that the written 

data made it into the persistence domain. This same requirement applies to writing to 

remote persistent memory. After the RDMA Write or Send operation has moved the data 
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from the initiator node to the persistent memory on the target node, that write or send 

data needs to be flushed to the persistence domain on the remote system. Alternatively, 

the remote write or send data needs to bypass CPU caches on the remote node to avoid 

having to be flushed.

Different vendor-specific platform features add an extra challenge to RDMA and to 

remote persistent memory. Intel platforms typically use a feature called allocating writes 

or Direct Data IO (DDIO) which allows incoming writes to be placed directly into the 

CPU’s L3 cache. The data is immediately visible to any application wanting to read the 

data. However, having allocating writes enabled means that RDMA Writes to persistent 

memory now have to be flushed to the persistence domain on the target node.

On Intel platforms, allocating writes can be disabled by turning on non-allocating 

write I/O flows which forces the write data to bypass cache and be placed directly into 

the persistent memory, governed by the location of the RDMA Write sink buffer. This 

would slow down applications that will immediately touch the newly written data 

because they incur the penalty to pull the data into CPU cache. However, this simplifies 

making remote writes to persistent memory simpler and faster because cache flushing 

on the remote target node can be avoided. An additional complication to using non-

allocating write mode on an Intel platform is that an entire PCI root complex must be 

enabled for this write mode. This means that any inbound writes that come through 

that PCI root complex, for any device connected downstream of it, will have write-data 

bypass CPU caches, causing possible additional performance latency as a side effect.

Intel specifies two methods for forcing writes to remote persistent memory into the 

persistence domain:

	 1.	 A general-purpose remote replication method that does not rely 

on Intel non-allocating write mode and assumes some or all of the 

remote write data will end up in CPU cache on the target system

	 2.	 A high-performance appliance remote replication method that 

uses the Intel platform-specific non-allocating write mode and 

is probably more suited to an appliance product where there is 

complete control over the hardware configuration to control what 

is connected to which PCI root complex
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�General-Purpose Remote Replication Method
The general-purpose remote replication method (GPRRM), also referred to as the 

general-purpose server persistency method (GPSPM), relies on the initiator RDMA 

application to maintain a list of virtual addresses on the remote target system that have 

been written to with previous RDMA Write requests. When all remote writes to persistent 

memory are issued, the application issues an RDMA Send request from the initiator NIC 

to the target NIC. The RDMA Send request contains a list of virtual starting addresses 

and lengths that the target system will consume when the application software running 

on the target node interrupts the system to process the send request. The application 

walks the list of regions, flushing each cache line in the requested region to the persistent 

memory using an optimized flush machine instruction (CLWB, CLFLUSHOPT, etc.). When 

complete, an SFENCE machine instruction is required to fence those previous writes and 

force them to complete before handling additional writes. The application on the target 

system then issues an RDMA Send request back to interrupt the initiator software of 

the completed flush operations. This is an indicator to the application that the previous 

writes were made persistent.

Figure 18-2 outlines the general-purpose remote replication method sequence of 

operation.
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�How Does the General-Purpose Remote Replication Method 
Make Data Persistent?

After the RDMA Write or any number of writes have been sent, the write data will either 

be in the L3 CPU cache (due to the default allocating writes) or persistent memory 

(assuming it does not all fit in L3) with potentially some write data still pending in NIC 

internal buffers. An RDMA Send request, by definition, will force previous writes to 

be pushed out of the NIC to the target L3 CPU cache and interrupt the target CPU. At 

this point, all previously issued RDMA Writes to persistent memory are now in L3 or 

persistent memory. The RDMA Send request contains a list of cache lines that the 

initiator is requesting the target system to flush to its persistence domain. The target 

Figure 18-2.  The general-purpose remote replication method
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system issues optimized flush instructions to flush each cache line in the list to the 

persistence domain. This is followed by an SFENCE to guarantee these writes complete 

before new writes are handled. At this point, the previous writes that were flushed in the 

RDMA Send list are now persistent.

�Performance Implications of the General-Purpose Remote 
Replication Method

The general-purpose remote replication method requires that RDMA of the initiator 

software follows a number of RDMA Write(s) with an RDMA Send. After the target NIC 

finishes flushing the requested regions, an RDMA Send from the target goes back to 

the initiator to affirm that the initiator application can consider those writes persistent. 

This additional send/receive/send/receive messaging has an effect on latency and 

throughput to make the writes persistent and has 50% higher latency than the appliance 

remote replication method. The extra messaging has an effect on overall bandwidth and 

scalability of all the RDMA connections running on those NICs.

Also, if the size of the RDMA Write that needs to be made persistent is small, the 

efficiency of the connection drops dramatically as the extra messaging overhead 

becomes a significant component of the overall latency. Additionally, the target 

node CPU and caches are consumed for that operation. The same data is essentially 

transmitted twice: once from NIC (via PCIe) to the CPU L3 cache and then from the CPU 

L3 cache to the memory controller (iMC).

�Appliance Remote Replication Method
Users of persistent memory on an Intel platform can use non-allocating write flows by 

enabling the feature on the specific PCI root complex where incoming writes from the 

NIC will enter into the CPU’s internal fabric and out to the persistent memory. Using the 

non-allocating write flow, the incoming RDMA Writes will bypass CPU caches and go 

directly to the persistence domain. This means that writes do not need to be flushed to 

the persistence domain by the target system CPU.

The I/O pipeline still needs to be flushed to the persistence domain. This is more 

efficiently accomplished by issuing a small RDMA Read to any memory address on the 

same RDMA connection as the RDMA Writes; the memory address does not need to 

be one that was written or is persistent. The RDMA specification clearly states that an 

RDMA Read will force the previous RDMA Writes to complete first. This ordering rule is 
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also true of the PCIe interconnect to which the target NIC is connected. PCIe Reads will 

perform a pipeline flush and force previous PCIe writes to complete first.

Figure 18-3 outlines the basic appliance remote replication method, often referred to 

as the appliance persistency method, described earlier.

Figure 18-3.  The appliance remote replication method
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�How Does the Appliance Remote Replication Method Make Data 
Persistent?

The combination of bypassing CPU caches on the target system for the inbound RDMA 

Writes to persistent memory with the ordering semantics of the RDMA and PCIe 

protocols results in an efficient mechanism to make data persistent. Since the RDMA 

Read to persistent memory will force previous writes first to persistent memory and the 

persistence domain, the RDMA Read completion that comes back after those writes are 

complete is the initiator application’s acknowledgment that those writes are now durable.

Chapter 2 defines the persistence domain in depth, including how the platform 

ensures that all writes get to the media from the persistence domain in the event of a 

power loss.

�Performance Implications of the Appliance Remote Replication 
Method

This single extra round trip using an RDMA Read is roughly 50% lower latency than the 

general-purpose server persistency method, which requires two round-trip messages 

before the writes can be declared durable. As with the first method, as the size of the 

writes to be made durable gets smaller, the RDMA Read round-trip overhead becomes a 

significant component of the overall latency.

�General Software Architecture
The software stack for the use of remote persistent memory typically uses the same 

memory-mapped files discussed in Chapter 3. Persistent memory is presented to the 

RDMA application as a memory-mapped file. The application registers the persistent 

memory with the local NIC on both ends of the connection, and the resulting registry 

key is shared with the initiator application for use in the RDMA Read and Write requests. 

This is the identical process required for using traditional volatile DRAM with RDMA.

A layering of kernel and application-level software components is typically used to 

allow an application to make use of both persistent memory and an RDMA connection. 

The IBTA defines verbs interfaces that are typically implemented by the kernel drivers 

for the NIC and the middleware software application library. Additional libraries may be 

layered above the verbs layer to provide generic RDMA services via a common API- and 

NIC-specific provider that implements the library.
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On Linux, the Open Fabric Alliance (OFA) libibverbs library provides ring-3 interfaces 

to configure and use the RDMA connection for NICs that support IB, RoCE, and iWARP 

RDMA network protocols. The OFA libfabric ring-3 application library can be layered 

on top of libibverbs to provide a generic high-level common API that can be used with 

typical RDMA NICs. This common API requires a provider plug-in to implement the 

common API for the specific network protocol. The OFA web site contains many example 

applications and performance tests that can be used on Linux with a variety of RDMA-

capable NICs. Those examples provide the backbone of the PMDK librpmem library.

Windows implements remotely mounted NTFS volumes via the ring-3 SMB Direct 

Application library, which provides a number of storage protocols including block 

storage over RDMA.

Figure 18-4 provides the basic high-level architecture for a typical RDMA application 

on Linux, using all of the publically available libraries and interfaces. Notice that a separate 

side-band connection is typically needed to set up the RDMA connections themselves.

�librpmem Architecture and Its Use in Replication
PMDK implements both the general-purpose remote replication method and the 

appliance remote replication method in the librpmem library. As of PMDK v1.7, the 

librpmem library implements the synchronous and asynchronous replication of local 

writes to persistent memory on remote systems. librpmem is a low-level library, like 

libpmem, which allows other libraries to use its replication features.

Figure 18-4.  General RDMA software architecture
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libpmemobj uses a synchronous write model, meaning that the local initiator write 

and all of the remotely replicated writes must complete before the local write will be 

completed back to the application. The libpmemobj library also implements a simple 

active-passive replication architecture, where all persistent memory transactions are 

driven through the active initiator node and the remote targets passively standby, 

replicating the write data. While the passive target systems have the latest write data 

replicated, the implementation makes no attempt to fail over, fail back, or load balance 

using the remote systems. The following sections describe the significant performance 

drawbacks to this implementation.

libpmemobj uses the local memory pool configuration information provided in a 

configuration file to describe the remote network–connected memory-mapped files. 

A remote rpmemd program installed on each remote target system is started and 

connected to the librpmem library on the initiator using a secure encrypted socket 

connection. Through this connection, librpmem, on behalf of libpmemobj, will set up the 

RDMA point-to-point connection with each target system, determine the persistence 

method the target supports (general purpose or appliance method), allocate remote 

memory-mapped persistent memory files, register the persistent memory on the remote 

NIC, and retrieve the resulting memory keys for the registered memory.

Once all the RDMA connections to all the targets are established, all required 

queues are instantiated, and memory buffers have all been allocated and registered, 

the libpmemobj library is ready to begin remotely replicating all application write 

data to its local memory-mapped file. When the application calls pmemobj_persist() 

in libpmemobj, the library will generate a corresponding rpmem_persist() call 

into librpmem which, in turn, calls the libfabric fi_write() to do the RDMA Write. 

librpmem then initiates the RDMA Read or Send persistence method (as governed 

by an understanding of the currently enabled target node’s current configuration) by 

calling libfabric fi_read() or fi_send(). RDMA Read is used in the appliance remote 

replication method, and RDMA Send is used in the general-purpose remote replication 

method.

Figure 18-5 outlines the high-level components and interfaces described earlier and 

used by both the initiator and remote target system using librpmem and libpmemobj.
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The major components (shown in Figure 18-5) are described in the following to 

help you understand the high-level architecture that is used by the PMDK’s remote 

replication feature:

librpmem – PMDK Remote RDMA Access Library: The 

container for the initiator node for all the initiator PMDK 

functionality that is related to remote replication using RDMA.

rpmemd – PMDK Remote RDMA Configuration Daemon: The 

container for the target node for all the target PMDK functionality 

that is related to remote replication using RDMA. It will block any 

local access to the pmempool set that has been configured for 

remote usage and executes the remote target interrupt handlers 

required for the general-purpose remote replication method.

Initiator and Target SSH: This component is used by both 

librpmem and rpmemd libraries to set up a simple socket 

connection, close a previously opened socket connection, and 

send communication packets back and forth.

Libfabric: The OFA defined high-level ring-3 application API for 

setting up and using a fabric connection in a fabric and vendor-

agnostic way. This high-level interface supports RoCE, InfiniBand, 

and iWARP, as well Intel Omni-Path Architecture products 

and other network protocols using libfabric-specific transport 

providers.

Figure 18-5.  RDMA architecture using libpmemobj and librpmem
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Libibverbs: The OFA defined high-level RDMA fabric-based 

interface. This high-level interface supports RoCE, InfiniBand, 

and iWARP and is commonly used in most Linux distributions.

Target Node Platform Configuration File: Simple text file 

generated by the IT admin or user to describe the platform 

capabilities of the remote target node. This file describes specific 

capabilities that affect what durability method can be used, that 

is, ADR-enabled platform, non-allocating write flows enabled by 

the NIC, and platform type. It also specifies the default socket-

connection port that rpmemd will listen on.

Initiator Node PMDK pmempool Set Configuration File: An 

existing persistent memory poolset configuration file is generated 

by the system or application administrator that describes local 

sets of files that will be treated as a pool of persistent memory on 

the local platform. It also describes local files for local replication 

and remote target hostnames for remote replication.

Target Node PMDK pmempool Set Configuration File: An 

existing persistent memory poolset configuration file is generated 

by the system or application administrator that describes local 

sets of files that will be treated as a pool of persistent memory on 

the local platform. On the target node, this set is the collection of 

files that the initiator node is replicating data into.

Initiator and Target Node Operating System syslog: The 

standard Linux syslog on each node used by librpmem and 

rpmemd for outputting useful data for both debug and non-debug 

information. Since there is little information from rpmemd that 

is visible on the initiator system, extensive information will be 

output to the target system syslog when rpmemd is started with the 

"-d" (debug) runtime option. Even without the debug enabled, 

rpmemd will output socket events like open, close, create, lost 

connection, and similar RDMA events.
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�Configuring Remote Replication Using Poolsets
You are probably already familiar with using poolsets (introduced in Chapter 7) libpmemobj 

to initialize remote replication, which requires two such poolset files. The file used on the 

initiator side by the libpmemobj-enabled application must describe the local memory pool 

and point to poolset configuration file on the target node, whereas the poolset file on the 

target node must describe the memory pool shared by the target system.

Listing 18-1 shows a poolset file that will allow replicating local writes to the 

“remotepool.set” on a remote host.

Listing 18-1.  poolwithremotereplica.set – An example of replicating local data to 

a remote host

PMEMPOOLSET

256G /mnt/pmem0/pool1

REPLICA user@example.com remotepool.set

Listing 18-2 shows a poolset file that describes the memory-mapped files shared for 

the remote access. In many ways, a remote poolset file is the same as the regular poolset 

file, but it must fulfill additional requirements:

•	 Exist in a poolset directory specified in the rpmemd configuration file

•	 Should be uniquely identified by its name, which an rpmem-enabled 

application has to use to replicate to the specified memory pool

•	 Cannot define any additional replicas, local or remote

Listing 18-2.  remotereplica.set – An example of how to describe the memory 

pool on the remote host

PMEMPOOLSET

256G /mnt/pmem1/pool2

�Performance Considerations
Once persistent memory is accessible via a remote network connection, significantly 

lower latency can be achieved compared with writing to a remote SSD or legacy block 

storage device. This is because the RDMA hardware is writing the remote write data 
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directly into the final persistent memory location, whereas remote replication to an SSD 

requires an RDMA Write into the DRAM on the remote server, followed by a second local 

DMA operation to move the remote write data from volatile DRAM into the final storage 

location on the SSD or other legacy block storage device.

The performance challenge with replicating data to remote persistent memory is that 

while large block sizes of 512KiB or larger can achieve good performance, as the size of 

the writes being replicated gets smaller, the network overhead becomes a larger portion 

of the total latency, and performance can suffer.

If the persistent memory is being used as an SSD replacement, the typical native 

block storage size is 4K, avoiding some of the inefficiencies seen with small transfers. 

If the persistent memory replaces a traditional SSD and data is written remotely to the 

SSD, the latency improvements with persistent memory can be 10x or more.

The synchronous replication model implemented in librpmem means that small 

data structures and pointer updates in local persistent memory result in small, very 

inefficient, RDMA Writes followed by a small RDMA Read or Send to make that small 

amount of write data persistent. This results in significant performance degradation 

compared to writing only to local persistent memory. It makes the replication 

performance very dependent on the local persistent memory write sequences, which 

is heavily dependent on the application workload. In general, the larger the average 

request size and the lower the number of rpmem_persist() calls that are required for a 

given workload will improve the overall latency required for guaranteeing that data is 

persistent.

It is possible to follow multiple RDMA Writes with single RDMA Read or Send 

to make all of the preceding writes persistent. This reduces the impact of the size of 

RDMA Writes on the overall performance of the proposed solution. But using this 

mitigation, remember you are not guaranteed that any of the RDMA Writes is persistent 

until RDMA Read completion returns or you receive RDMA Send with a confirmation. 

The implementation that allows this approach is implemented in rpmem_flush() and 

rpmem_drain() API call pair, where rpmem_flush() performs RDMA Write and returns 

immediately and rpmem_drain() posts RDMA Read and waits for its completion (at the 

time of publication it is not implemented in the write/send model).

There are many performance considerations, including the high-level networking 

model being used. Traditional best-in-class networking architecture typically relies 

on a pull model between the initiator and target. In a pull model, the initiator requests 

resources from the target, but the target server only pulls the data across via RDMA 
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Read when it has the resources and connection bandwidth. This server-centric view 

allows the target node to handle hundreds or thousands of connections since it is in 

complete control of all resources for all of the connections and initiates the networking 

transactions when it chooses. With the speed and low latency of persistent memory, a 

push model can be used where the initiator and target have pre-allocated and registered 

memory resources and directly RDMA Write the data without waiting for server-side 

resource coordination. Microsoft’s SNIA DevCon RDMA presentation describes the 

push/pull model in more detail: (https://www.snia.org/sites/default/files/

SDC/2018/presentations/PM/Talpey_Tom_Remote_Persistent_Memory.pdf).

�Remote Replication Error Handling
librpmem replication failures will occur for either a lost socket connection or a lost 

RDMA connection. Any error status returned from rpmem_persist(), rpmem_flush(), 

and rpmem_drain() is typically treated as an unrecoverable failure. The libpmemobj 

user of librpmem API should treat this as a lost socket or RDMA condition and should 

wait for all remaining librpmem API calls to complete, call rpmem_close() to close the 

connection and clean up the stack, and then force the application to exit. When the 

application restarts, the files will be reopened on both ends, and libpmemobj will check 

only the file metadata. We recommend you do not proceed before synchronizing local 

and remote memory pools with the pmempool-sync(1) command.

�Say Hello to the Replicated World
The beauty of the libpmemobj remote replication is that it does not require any changes 

to the existing libpmemobj application. If you take any libpmemobj application and 

provide it with the poolset file configured to use the remote replica, it will simply start 

replicating. No coding required.

To illustrate how to replicate persistent memory, we look at a Hello World type 

program demonstrating the replication process directly using the librpmem library. 

Listing 18-3 shows a part of the C program that writes the “Hello world” message to 

remote memory. If it discovers that the message in English is already there, it translates 

it to Spanish and writes it back to remote memory. We walk through the lines of the 

program at the end of the listing.
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Listing 18-3.  The main routine of the Hello World program with replication

    37    #include <assert.h>

    38    #include <errno.h>

    39    #include <unistd.h>

    40    #include <stdio.h>

    41    #include <stdlib.h>

    42    #include <string.h>

    43

    44    #include <librpmem.h>

    45

    46    /*

    47     * English and Spanish translation of the message

    48     */

    49    enum lang_t {en, es};

    50    static const char *hello_str[] = {

    51        [en] = "Hello world!",

    52        [es] = "¡Hola Mundo!"

    53    };

    54

    55    /*

    56     * structure to store the current message

    57     */

    58    #define STR_SIZE    100

    59    struct hello_t {

    60        enum lang_t lang;

    61        char str[STR_SIZE];

    62    };

    63

    64    /*

    65     * write_hello_str -- write a message to the local memory

    66     */
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    67    static inline void

    68    write_hello_str(struct hello_t *hello, enum lang_t lang)

    69    {

    70        hello->lang = lang;

    71        strncpy(hello->str, hello_str[hello->lang], STR_SIZE);

    72    }

   104    int

   105    main(int argc, char *argv[])

   106    {

   107        /* for this example, assume 32MiB pool */

   108        size_t pool_size = 32 * 1024 * 1024;

   109        void *pool = NULL;

   110        int created;

   111

   112        /* allocate a page size aligned local memory pool */

   113        long pagesize = sysconf(_SC_PAGESIZE);

   114        assert(pagesize >= 0);

   115        int ret = posix_memalign(&pool, pagesize, pool_size);

   116        assert(ret == 0 && pool != NULL);

   117

   118        /* skip to the beginning of the message */

   119        size_t hello_off = 4096; /* rpmem header size */

   120        struct hello_t *hello = (struct hello_t *)(pool + hello_off);

   121

   122        �RPMEMpool *rpp = remote_open("target", "pool.set", pool, 

pool_size,

   123                &created);

   124        if (created) {

   125            /* reset local memory pool */

   126            memset(pool, 0, pool_size);

   127            write_hello_str(hello, en);

   128        } else {

   129            /* read message from the remote pool */

   130            ret = rpmem_read(rpp, hello, hello_off, sizeof(*hello), 0);

   131            assert(ret == 0);
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   132

   133            /* translate the message */

   134            �const int lang_num = (sizeof(hello_str) / sizeof(hello_

str[0]));

   135            �enum lang_t lang = (enum lang_t)((hello->lang + 1) % 

lang_num);

   136            write_hello_str(hello, lang);

   137        }

   138

   139        /* write message to the remote pool */

   140        ret = rpmem_persist(rpp, hello_off, sizeof(*hello), 0, 0);

   141        printf("%s\n", hello->str);

   142        assert(ret == 0);

   143

   144        /* close the remote pool */

   145        ret = rpmem_close(rpp);

   146        assert(ret == 0);

   147

   148        /* release local memory pool */

   149        free(pool);

   150        return 0;

   151    }

•	 Line 68: Simple helper routine for writing message to the local memory.

•	 Line 115: Allocate a big enough block of memory, which is aligned 

to the page size. The required block size is hard-coded, whereas 

the alignment is required if you want to make this memory block 

available for RDMA transfers.

•	 Line 122: The remote_open() routine creates or opens the remote 

memory pool.

•	 Lines 126-127: The local memory pool is initialized here. It is 

performed only once when the remote memory pool was just 

created, so it does not contain any message.

•	 Line 130: A message from the remote memory pool is read to the 

local memory here.
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•	 Lines 134-136: If a message from the remote memory pool was read 

correctly, it is translated locally.

•	 Line 140: The newly initialized or translated message is written to the 

remote memory pool.

•	 Line 145: Close the remote memory pool.

•	 Line 149: Release remote memory pool.

The last missing piece of the whole process is how the remote replication is set up. It 

is all done in the remote_open() routine presented in Listing 18-4.

Listing 18-4.  A remote_open routine from the Hello World program with 

replication

    74    /*

    75     * remote_open -- setup the librpmem replication

    76     */

    77    static inline RPMEMpool*

    78    remote_open(const char *target, const char *poolset, void *pool,

    79            size_t pool_size, int *created)

    80    {

    81        /* fill pool_attributes */

    82        struct rpmem_pool_attr pool_attr;

    83        memset(&pool_attr, 0, sizeof(pool_attr));

    84        strncpy(pool_attr.signature, "HELLO", RPMEM_POOL_HDR_SIG_LEN);

    85

    86        /* create a remote pool */

    87        unsigned nlanes = 1;

    88        �RPMEMpool *rpp = rpmem_create(target, poolset, pool, pool_

size, &nlanes,

    89                &pool_attr);

    90        if (rpp) {

    91            *created = 1;

    92            return rpp;

    93        }

    94
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    95        /* create failed so open a remote pool */

    96        assert(errno == EEXIST);

    97        �rpp = rpmem_open(target, poolset, pool, pool_size, &nlanes, 

&pool_attr);

    98        assert(rpp != NULL);

    99        *created = 0;

   100

   101        return rpp;

   102    }

•	 Line 88: A remote memory pool can be either created or opened. 

When it is used for the first time, it must be created so that it is 

available for the opening afterward. We first try to create it here.

•	 Line 97: Here we attempt to open the remote memory pool. We 

assume it exists because of the error code received during the create 

try (EEXIST).

�Execution Example

The Hello World application produces the output shown in Listing 18-5.

Listing 18-5.  An output from the Hello World application for librpmem

[user@initiator]$ ./hello

Hello world!

[user@initiator]$ ./hello

¡Hola Mundo!

Listing 18-6 shows the contents of the target persistent memory pool where we see 

the “Hola Mundo” string.

Listing 18-6.  The ¡Hola Mundo! snooped on the replication target

[user@target]$ hexdump –s 4096 –C /mnt/pmem1/pool2

00001000  01 00 00 00 c2 a1 48 6f  6c 61 20 4d 75 6e 64 6f  |......Hola 

Mundo|

00001010  21 00 00 00 00 00 00 00  00 00 00 00 00 00 00 

00  |!...............|
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00001020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 

00  |................|

*

00002000

�Summary
It is important to know that neither the general-purpose remote replication method 

nor the appliance remote replication method is ideal because vendor-specific platform 

features are required to use non-allocating writes, adding the complication of effecting 

performance on an entire PCI root complex. Conversely, flushing remote writes using 

allocating writes requires a painful interrupt of the target system to intercept an RDMA 

Send request and flush the list of regions contained within the send buffer. Waking the 

remote node is extremely painful in a cloud environment because there are hundreds 

or thousands of inbound RDMA requests from many different connections; avoid this if 

possible.

There are cloud service providers using these two methods today and getting 

phenomenal performance results. If the persistent memory is used as a replacement for 

a remotely accessed SSD, huge reductions in latency can be achieved.

As the first iteration of remote persistence support, we focused on application/

library changes to implement these high-level persistence methods, without hardware, 

firmware, driver, or protocol changes. At the time of publication, IBTA and IETF drafts 

for a new wire protocol extension for persistent memory is nearing completion. This will 

provide native hardware support for RDMA to persistent memory and allow hardware 

entities to route each I/ O to its destination memory device without the need to change 

allocating write mode and without the potential to adversely affect performance on 

collateral devices connected to the same root port. See Appendix E for more details on 

the new extensions to RDMA, specifically for remote persistence.

RDMA protocol extensions are only one step into further remote persistent memory 

development. Several other areas of improvement are already identified and shall be 

addressed to the remote persistent memory users community, including atomicity of 

remote operations, advanced error handling (including RAS), dynamic configuration of 

remote persistent memory and custom setup, and real 0% CPU utilization on remote/

target replication side.
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As this book has demonstrated, unlocking the true potential of persistent memory 

may require new approaches to existing software and application architecture. 

Hopefully, this chapter gave you an overview of this complex topic, the challenges of 

working with remote persistent memory, and the many aspects of software architecture 

to consider when unlocking the true performance potential.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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