
347
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_18

CHAPTER 18

Remote Persistent
Memory
This chapter provides an overview of how persistent memory – and the programming

concepts that were introduced in this book – can be used to access persistent memory

located in remote servers connected via a network. A combination of TCP/IP or RDMA

network hardware and software running on the servers containing persistent memory

provide direct remote access to persistent memory.

Having remote direct memory access via a high-performance network connection is

a critical use case for most cloud deployments of persistent memory. Typically, in high-

availability or highly redundant use cases, data written locally to persistent memory is

not considered reliable until it has been replicated to two or more remote persistent

memory devices on separate remote servers. We describe this push model design later in

this chapter.

While it is certainly possible to use existing TCP/IP networking infrastructures to

remotely access the persistent memory, this chapter focuses on the use of remote direct

memory access (RDMA). Direct memory access (DMA) allows data movement on a

platform to be off-loaded to a hardware DMA engine that moves that data on behalf of

the CPU, freeing it to do other important tasks during the data move. RDMA applies the

same concept and enables data movement between remote servers to occur without the

CPU on either server having to be directly involved.

This chapter’s content and the PMDK librpmem remote persistent memory library

that is discussed assume the use of RDMA, but the concepts discussed here can apply to

other networking interconnects and protocols.

https://doi.org/10.1007/978-1-4842-4932-1_18

348

Figure 18-1 outlines a simple remote persistent memory configuration with one

initiator system that is replicating writes to persistent memory on a single remote target

system. While this shows the use of persistent memory on both the initiator and target,

it is possible to read data from initiator DRAM and write to persistent memory on the

remote target system, or read from the initiator’s persistent memory and write to the

remote target’s DRAM.

�RDMA Networking Protocols
Examples of popular RDMA networking protocols used throughout the cloud and

enterprise data centers include:

•	 InfiniBand is an I/O architecture and high-performance specification

for data transmission between high-speed, low-latency, and highly

scalable CPUs, processors, and storage.

•	 RoCE (RDMA over Converged Ethernet) is a network protocol that

allows RDMA over an Ethernet network.

•	 iWARP (Internet Wide Area RDMA Protocol) is a networking protocol

that implements RDMA for efficient data transfer over Internet

Protocol networks.

All three protocols support high-performance data movement to and from persistent

memory using RDMA.

Figure 18-1.  Initiator and target system using RDMA

Chapter 18 Remote Persistent Memory

349

The RDMA protocols are governed by the RDMA Wire Protocol Standards, which are

driven by the IBTA (InfiniBand Trade Association) and the IEFT (Internet Engineering

Task Force) specifications. The IBTA (https://www.infinibandta.org/) governs the

InfiniBand and RoCE protocols, while the IEFT (https://www.ietf.org/) governs

iWARP.

Low-latency RDMA networking protocols allow the network interface controller

(NIC) to control the movement of data between an initiator node source buffer and the

sink buffer on the target node without needing either node’s CPU to be involved in the

data movement. In fact, RDMA Read and RDMA Write operations are often referred

to as one-sided operations because all of the information required to move the data is

supplied by the initiator and the CPU on the target node is not typically interrupted or

even aware of the data transfer.

To perform remote data transfers, information from the target node’s buffers must

be passed to the initiator before the remote operation(s) will begin. This requires

configuring the local initiator’s RDMA resources and buffers. Similarly, the remote target

node’s RDMA resources that will require CPU resources will need to be initialized and

reported to the initiator. However, once the resources for the RDMA transfers are set up

and applications initiate the RDMA request using the CPU, the NIC does the actual data

movement on behalf of the RDMA-aware application.

RDMA-aware applications are responsible for:

•	 Interrogating each NIC on every initiator and target system to

determine supported features

•	 Selecting a NIC for each end of the RDMA point-to-point connection

•	 Creating the connection with the selected NICs, described as an

RDMA protection domain

•	 Allocating queues for the incoming and outgoing message on each

NIC and assigning those hardware resources to the protection domain

•	 Allocating DRAM or persistent memory buffers for use with RDMA,

registering those buffers with the NIC, and assigning those buffers to

the protection domain

Chapter 18 Remote Persistent Memory

https://www.infinibandta.org/
https://www.ietf.org/

350

Three basic RDMA commands are used by most RDMA-capable applications and

libraries:

RDMA Write: A one-sided operation where only the initiator supplies all of the

information required for the transfer to occur. This transfer is used to write data to the

remote target node. The write request contains all source and sink buffer information.

The remote target system is not typically interrupted and thus completely unaware of

the write operations occurring through the NIC. When the initiator’s NIC sends a write

to the target, it will generate a “software write completion interrupt.” A software write

completion interrupt means that the write message has been sent to the target NIC

and is not an indicator of the write completion. Optionally, RDMA Writes can use an

immediate option that will interrupt the target node CPU and allow software running

there to be immediately notified of the write completion.

RDMA Read: A one-sided operation where only the initiator supplies all of the

information required for the transfer to occur. This transfer is used to read data from

the remote target node. The read request contains all source buffer and target sink

buffer information, and the remote target system is not typically interrupted and thus

completely unaware of the read operations occurring through the NIC. The initiator

software read completion interrupt is an acknowledgment that the read has traversed

all the way through the initiator’s NIC, over the network, into the target system’s NIC,

through the target internal hardware mesh and memory controllers, to the DRAM or

persistent memory to retrieve the data. Then it returns all the way back to the initiator

software that registered for the completion notification.

RDMA Send (and Receive): The two-sided RDMA Send means that both the

initiator and target must supply information for the transfer to complete. This is because

the target NIC will be interrupted when the RDMA Send is received by the target NIC

and requires a hardware receive queue to be set up and pre-populated with completion

entries before the NIC will receive an RDMA Send transfer operation. Data from the

initiator application is bundled in a small, limited sized buffer and sent to the target

NIC. The target CPU will be interrupted to handle the send operation and any data it

contains. If the initiator needs to be notified of receipt of the RDMA Send, or to handle a

message back to the initiator, another RDMA Send operation must be sent in the reverse

direction after the initiator has set up its own receive queue and queued completion

entries to it. The use of the RDMA Send command and the contents of the payload

are application-specific implementation details. An RDMA Send is typically used for

bookkeeping and updates of read and write activity between the initiator and the target,

Chapter 18 Remote Persistent Memory

351

since the target application has no other context of what data movement has taken place.

For example, because there is no good way to know when writes have completed on

the target, an RDMA Send is often used to notify the target node what is happening. For

small amounts of data, the RDMA Send is very efficient, but it always requires target-

side interaction to complete. An RDMA Write with immediate data operation will also

allow the target node to be interrupted when the write has completed as a different

mechanism for bookkeeping.

�Goals of the Initial Remote Persistent Memory
Architecture
The goal of the first remote persistent memory implementation was based on minimal

changes – or ideally, no changes – to the current RDMA hardware and software stacks

used with volatile memory. From a network hardware, middleware, and software

architecture standpoint, writing to remote volatile memory is identical to writing to

remote persistent memory. The knowledge that a specific memory-mapped file is

backed by persistent memory vs. volatile memory is entirely the responsibility of the

application to maintain. None of the lower layers in the networking stack are aware of the

fact that the write is to a persistent memory region or volatile memory. The responsibility

of knowing which write persistence method to use for a given target connection, and

making those remote writes persistent, falls to the application.

�Guaranteeing Remote Persistence
Until this chapter, much of the book focuses on the use and programming of persistent

memory on the local machine. You are now aware of some of the challenges of using

persistent memory, the persistence domain, and the need to understand and use a

flushing mechanism to ensure the data is persistent. These same programming concepts

and challenges apply to remote persistent memory with the additional constraints of

making it work within the existing network protocol and network latency.

The SNIA NVM programming model (described in Chapter 3) requires applications

to flush data that has been written to persistent memory to guarantee that the written

data made it into the persistence domain. This same requirement applies to writing to

remote persistent memory. After the RDMA Write or Send operation has moved the data

Chapter 18 Remote Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_3

352

from the initiator node to the persistent memory on the target node, that write or send

data needs to be flushed to the persistence domain on the remote system. Alternatively,

the remote write or send data needs to bypass CPU caches on the remote node to avoid

having to be flushed.

Different vendor-specific platform features add an extra challenge to RDMA and to

remote persistent memory. Intel platforms typically use a feature called allocating writes

or Direct Data IO (DDIO) which allows incoming writes to be placed directly into the

CPU’s L3 cache. The data is immediately visible to any application wanting to read the

data. However, having allocating writes enabled means that RDMA Writes to persistent

memory now have to be flushed to the persistence domain on the target node.

On Intel platforms, allocating writes can be disabled by turning on non-allocating

write I/O flows which forces the write data to bypass cache and be placed directly into

the persistent memory, governed by the location of the RDMA Write sink buffer. This

would slow down applications that will immediately touch the newly written data

because they incur the penalty to pull the data into CPU cache. However, this simplifies

making remote writes to persistent memory simpler and faster because cache flushing

on the remote target node can be avoided. An additional complication to using non-

allocating write mode on an Intel platform is that an entire PCI root complex must be

enabled for this write mode. This means that any inbound writes that come through

that PCI root complex, for any device connected downstream of it, will have write-data

bypass CPU caches, causing possible additional performance latency as a side effect.

Intel specifies two methods for forcing writes to remote persistent memory into the

persistence domain:

	 1.	 A general-purpose remote replication method that does not rely

on Intel non-allocating write mode and assumes some or all of the

remote write data will end up in CPU cache on the target system

	 2.	 A high-performance appliance remote replication method that

uses the Intel platform-specific non-allocating write mode and

is probably more suited to an appliance product where there is

complete control over the hardware configuration to control what

is connected to which PCI root complex

Chapter 18 Remote Persistent Memory

353

�General-Purpose Remote Replication Method
The general-purpose remote replication method (GPRRM), also referred to as the

general-purpose server persistency method (GPSPM), relies on the initiator RDMA

application to maintain a list of virtual addresses on the remote target system that have

been written to with previous RDMA Write requests. When all remote writes to persistent

memory are issued, the application issues an RDMA Send request from the initiator NIC

to the target NIC. The RDMA Send request contains a list of virtual starting addresses

and lengths that the target system will consume when the application software running

on the target node interrupts the system to process the send request. The application

walks the list of regions, flushing each cache line in the requested region to the persistent

memory using an optimized flush machine instruction (CLWB, CLFLUSHOPT, etc.). When

complete, an SFENCE machine instruction is required to fence those previous writes and

force them to complete before handling additional writes. The application on the target

system then issues an RDMA Send request back to interrupt the initiator software of

the completed flush operations. This is an indicator to the application that the previous

writes were made persistent.

Figure 18-2 outlines the general-purpose remote replication method sequence of

operation.

Chapter 18 Remote Persistent Memory

354

�How Does the General-Purpose Remote Replication Method
Make Data Persistent?

After the RDMA Write or any number of writes have been sent, the write data will either

be in the L3 CPU cache (due to the default allocating writes) or persistent memory

(assuming it does not all fit in L3) with potentially some write data still pending in NIC

internal buffers. An RDMA Send request, by definition, will force previous writes to

be pushed out of the NIC to the target L3 CPU cache and interrupt the target CPU. At

this point, all previously issued RDMA Writes to persistent memory are now in L3 or

persistent memory. The RDMA Send request contains a list of cache lines that the

initiator is requesting the target system to flush to its persistence domain. The target

Figure 18-2.  The general-purpose remote replication method

Chapter 18 Remote Persistent Memory

355

system issues optimized flush instructions to flush each cache line in the list to the

persistence domain. This is followed by an SFENCE to guarantee these writes complete

before new writes are handled. At this point, the previous writes that were flushed in the

RDMA Send list are now persistent.

�Performance Implications of the General-Purpose Remote
Replication Method

The general-purpose remote replication method requires that RDMA of the initiator

software follows a number of RDMA Write(s) with an RDMA Send. After the target NIC

finishes flushing the requested regions, an RDMA Send from the target goes back to

the initiator to affirm that the initiator application can consider those writes persistent.

This additional send/receive/send/receive messaging has an effect on latency and

throughput to make the writes persistent and has 50% higher latency than the appliance

remote replication method. The extra messaging has an effect on overall bandwidth and

scalability of all the RDMA connections running on those NICs.

Also, if the size of the RDMA Write that needs to be made persistent is small, the

efficiency of the connection drops dramatically as the extra messaging overhead

becomes a significant component of the overall latency. Additionally, the target

node CPU and caches are consumed for that operation. The same data is essentially

transmitted twice: once from NIC (via PCIe) to the CPU L3 cache and then from the CPU

L3 cache to the memory controller (iMC).

�Appliance Remote Replication Method
Users of persistent memory on an Intel platform can use non-allocating write flows by

enabling the feature on the specific PCI root complex where incoming writes from the

NIC will enter into the CPU’s internal fabric and out to the persistent memory. Using the

non-allocating write flow, the incoming RDMA Writes will bypass CPU caches and go

directly to the persistence domain. This means that writes do not need to be flushed to

the persistence domain by the target system CPU.

The I/O pipeline still needs to be flushed to the persistence domain. This is more

efficiently accomplished by issuing a small RDMA Read to any memory address on the

same RDMA connection as the RDMA Writes; the memory address does not need to

be one that was written or is persistent. The RDMA specification clearly states that an

RDMA Read will force the previous RDMA Writes to complete first. This ordering rule is

Chapter 18 Remote Persistent Memory

356

also true of the PCIe interconnect to which the target NIC is connected. PCIe Reads will

perform a pipeline flush and force previous PCIe writes to complete first.

Figure 18-3 outlines the basic appliance remote replication method, often referred to

as the appliance persistency method, described earlier.

Figure 18-3.  The appliance remote replication method

Chapter 18 Remote Persistent Memory

357

�How Does the Appliance Remote Replication Method Make Data
Persistent?

The combination of bypassing CPU caches on the target system for the inbound RDMA

Writes to persistent memory with the ordering semantics of the RDMA and PCIe

protocols results in an efficient mechanism to make data persistent. Since the RDMA

Read to persistent memory will force previous writes first to persistent memory and the

persistence domain, the RDMA Read completion that comes back after those writes are

complete is the initiator application’s acknowledgment that those writes are now durable.

Chapter 2 defines the persistence domain in depth, including how the platform

ensures that all writes get to the media from the persistence domain in the event of a

power loss.

�Performance Implications of the Appliance Remote Replication
Method

This single extra round trip using an RDMA Read is roughly 50% lower latency than the

general-purpose server persistency method, which requires two round-trip messages

before the writes can be declared durable. As with the first method, as the size of the

writes to be made durable gets smaller, the RDMA Read round-trip overhead becomes a

significant component of the overall latency.

�General Software Architecture
The software stack for the use of remote persistent memory typically uses the same

memory-mapped files discussed in Chapter 3. Persistent memory is presented to the

RDMA application as a memory-mapped file. The application registers the persistent

memory with the local NIC on both ends of the connection, and the resulting registry

key is shared with the initiator application for use in the RDMA Read and Write requests.

This is the identical process required for using traditional volatile DRAM with RDMA.

A layering of kernel and application-level software components is typically used to

allow an application to make use of both persistent memory and an RDMA connection.

The IBTA defines verbs interfaces that are typically implemented by the kernel drivers

for the NIC and the middleware software application library. Additional libraries may be

layered above the verbs layer to provide generic RDMA services via a common API- and

NIC-specific provider that implements the library.

Chapter 18 Remote Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_3

358

On Linux, the Open Fabric Alliance (OFA) libibverbs library provides ring-3 interfaces

to configure and use the RDMA connection for NICs that support IB, RoCE, and iWARP

RDMA network protocols. The OFA libfabric ring-3 application library can be layered

on top of libibverbs to provide a generic high-level common API that can be used with

typical RDMA NICs. This common API requires a provider plug-in to implement the

common API for the specific network protocol. The OFA web site contains many example

applications and performance tests that can be used on Linux with a variety of RDMA-

capable NICs. Those examples provide the backbone of the PMDK librpmem library.

Windows implements remotely mounted NTFS volumes via the ring-3 SMB Direct

Application library, which provides a number of storage protocols including block

storage over RDMA.

Figure 18-4 provides the basic high-level architecture for a typical RDMA application

on Linux, using all of the publically available libraries and interfaces. Notice that a separate

side-band connection is typically needed to set up the RDMA connections themselves.

�librpmem Architecture and Its Use in Replication
PMDK implements both the general-purpose remote replication method and the

appliance remote replication method in the librpmem library. As of PMDK v1.7, the

librpmem library implements the synchronous and asynchronous replication of local

writes to persistent memory on remote systems. librpmem is a low-level library, like

libpmem, which allows other libraries to use its replication features.

Figure 18-4.  General RDMA software architecture

Chapter 18 Remote Persistent Memory

359

libpmemobj uses a synchronous write model, meaning that the local initiator write

and all of the remotely replicated writes must complete before the local write will be

completed back to the application. The libpmemobj library also implements a simple

active-passive replication architecture, where all persistent memory transactions are

driven through the active initiator node and the remote targets passively standby,

replicating the write data. While the passive target systems have the latest write data

replicated, the implementation makes no attempt to fail over, fail back, or load balance

using the remote systems. The following sections describe the significant performance

drawbacks to this implementation.

libpmemobj uses the local memory pool configuration information provided in a

configuration file to describe the remote network–connected memory-mapped files.

A remote rpmemd program installed on each remote target system is started and

connected to the librpmem library on the initiator using a secure encrypted socket

connection. Through this connection, librpmem, on behalf of libpmemobj, will set up the

RDMA point-to-point connection with each target system, determine the persistence

method the target supports (general purpose or appliance method), allocate remote

memory-mapped persistent memory files, register the persistent memory on the remote

NIC, and retrieve the resulting memory keys for the registered memory.

Once all the RDMA connections to all the targets are established, all required

queues are instantiated, and memory buffers have all been allocated and registered,

the libpmemobj library is ready to begin remotely replicating all application write

data to its local memory-mapped file. When the application calls pmemobj_persist()

in libpmemobj, the library will generate a corresponding rpmem_persist() call

into librpmem which, in turn, calls the libfabric fi_write() to do the RDMA Write.

librpmem then initiates the RDMA Read or Send persistence method (as governed

by an understanding of the currently enabled target node’s current configuration) by

calling libfabric fi_read() or fi_send(). RDMA Read is used in the appliance remote

replication method, and RDMA Send is used in the general-purpose remote replication

method.

Figure 18-5 outlines the high-level components and interfaces described earlier and

used by both the initiator and remote target system using librpmem and libpmemobj.

Chapter 18 Remote Persistent Memory

360

The major components (shown in Figure 18-5) are described in the following to

help you understand the high-level architecture that is used by the PMDK’s remote

replication feature:

librpmem – PMDK Remote RDMA Access Library: The

container for the initiator node for all the initiator PMDK

functionality that is related to remote replication using RDMA.

rpmemd – PMDK Remote RDMA Configuration Daemon: The

container for the target node for all the target PMDK functionality

that is related to remote replication using RDMA. It will block any

local access to the pmempool set that has been configured for

remote usage and executes the remote target interrupt handlers

required for the general-purpose remote replication method.

Initiator and Target SSH: This component is used by both

librpmem and rpmemd libraries to set up a simple socket

connection, close a previously opened socket connection, and

send communication packets back and forth.

Libfabric: The OFA defined high-level ring-3 application API for

setting up and using a fabric connection in a fabric and vendor-

agnostic way. This high-level interface supports RoCE, InfiniBand,

and iWARP, as well Intel Omni-Path Architecture products

and other network protocols using libfabric-specific transport

providers.

Figure 18-5.  RDMA architecture using libpmemobj and librpmem

Chapter 18 Remote Persistent Memory

361

Libibverbs: The OFA defined high-level RDMA fabric-based

interface. This high-level interface supports RoCE, InfiniBand,

and iWARP and is commonly used in most Linux distributions.

Target Node Platform Configuration File: Simple text file

generated by the IT admin or user to describe the platform

capabilities of the remote target node. This file describes specific

capabilities that affect what durability method can be used, that

is, ADR-enabled platform, non-allocating write flows enabled by

the NIC, and platform type. It also specifies the default socket-

connection port that rpmemd will listen on.

Initiator Node PMDK pmempool Set Configuration File: An

existing persistent memory poolset configuration file is generated

by the system or application administrator that describes local

sets of files that will be treated as a pool of persistent memory on

the local platform. It also describes local files for local replication

and remote target hostnames for remote replication.

Target Node PMDK pmempool Set Configuration File: An

existing persistent memory poolset configuration file is generated

by the system or application administrator that describes local

sets of files that will be treated as a pool of persistent memory on

the local platform. On the target node, this set is the collection of

files that the initiator node is replicating data into.

Initiator and Target Node Operating System syslog: The

standard Linux syslog on each node used by librpmem and

rpmemd for outputting useful data for both debug and non-debug

information. Since there is little information from rpmemd that

is visible on the initiator system, extensive information will be

output to the target system syslog when rpmemd is started with the

"-d" (debug) runtime option. Even without the debug enabled,

rpmemd will output socket events like open, close, create, lost

connection, and similar RDMA events.

Chapter 18 Remote Persistent Memory

362

�Configuring Remote Replication Using Poolsets
You are probably already familiar with using poolsets (introduced in Chapter 7) libpmemobj

to initialize remote replication, which requires two such poolset files. The file used on the

initiator side by the libpmemobj-enabled application must describe the local memory pool

and point to poolset configuration file on the target node, whereas the poolset file on the

target node must describe the memory pool shared by the target system.

Listing 18-1 shows a poolset file that will allow replicating local writes to the

“remotepool.set” on a remote host.

Listing 18-1.  poolwithremotereplica.set – An example of replicating local data to

a remote host

PMEMPOOLSET

256G /mnt/pmem0/pool1

REPLICA user@example.com remotepool.set

Listing 18-2 shows a poolset file that describes the memory-mapped files shared for

the remote access. In many ways, a remote poolset file is the same as the regular poolset

file, but it must fulfill additional requirements:

•	 Exist in a poolset directory specified in the rpmemd configuration file

•	 Should be uniquely identified by its name, which an rpmem-enabled

application has to use to replicate to the specified memory pool

•	 Cannot define any additional replicas, local or remote

Listing 18-2.  remotereplica.set – An example of how to describe the memory

pool on the remote host

PMEMPOOLSET

256G /mnt/pmem1/pool2

�Performance Considerations
Once persistent memory is accessible via a remote network connection, significantly

lower latency can be achieved compared with writing to a remote SSD or legacy block

storage device. This is because the RDMA hardware is writing the remote write data

Chapter 18 Remote Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_7

363

directly into the final persistent memory location, whereas remote replication to an SSD

requires an RDMA Write into the DRAM on the remote server, followed by a second local

DMA operation to move the remote write data from volatile DRAM into the final storage

location on the SSD or other legacy block storage device.

The performance challenge with replicating data to remote persistent memory is that

while large block sizes of 512KiB or larger can achieve good performance, as the size of

the writes being replicated gets smaller, the network overhead becomes a larger portion

of the total latency, and performance can suffer.

If the persistent memory is being used as an SSD replacement, the typical native

block storage size is 4K, avoiding some of the inefficiencies seen with small transfers.

If the persistent memory replaces a traditional SSD and data is written remotely to the

SSD, the latency improvements with persistent memory can be 10x or more.

The synchronous replication model implemented in librpmem means that small

data structures and pointer updates in local persistent memory result in small, very

inefficient, RDMA Writes followed by a small RDMA Read or Send to make that small

amount of write data persistent. This results in significant performance degradation

compared to writing only to local persistent memory. It makes the replication

performance very dependent on the local persistent memory write sequences, which

is heavily dependent on the application workload. In general, the larger the average

request size and the lower the number of rpmem_persist() calls that are required for a

given workload will improve the overall latency required for guaranteeing that data is

persistent.

It is possible to follow multiple RDMA Writes with single RDMA Read or Send

to make all of the preceding writes persistent. This reduces the impact of the size of

RDMA Writes on the overall performance of the proposed solution. But using this

mitigation, remember you are not guaranteed that any of the RDMA Writes is persistent

until RDMA Read completion returns or you receive RDMA Send with a confirmation.

The implementation that allows this approach is implemented in rpmem_flush() and

rpmem_drain() API call pair, where rpmem_flush() performs RDMA Write and returns

immediately and rpmem_drain() posts RDMA Read and waits for its completion (at the

time of publication it is not implemented in the write/send model).

There are many performance considerations, including the high-level networking

model being used. Traditional best-in-class networking architecture typically relies

on a pull model between the initiator and target. In a pull model, the initiator requests

resources from the target, but the target server only pulls the data across via RDMA

Chapter 18 Remote Persistent Memory

364

Read when it has the resources and connection bandwidth. This server-centric view

allows the target node to handle hundreds or thousands of connections since it is in

complete control of all resources for all of the connections and initiates the networking

transactions when it chooses. With the speed and low latency of persistent memory, a

push model can be used where the initiator and target have pre-allocated and registered

memory resources and directly RDMA Write the data without waiting for server-side

resource coordination. Microsoft’s SNIA DevCon RDMA presentation describes the

push/pull model in more detail: (https://www.snia.org/sites/default/files/

SDC/2018/presentations/PM/Talpey_Tom_Remote_Persistent_Memory.pdf).

�Remote Replication Error Handling
librpmem replication failures will occur for either a lost socket connection or a lost

RDMA connection. Any error status returned from rpmem_persist(), rpmem_flush(),

and rpmem_drain() is typically treated as an unrecoverable failure. The libpmemobj

user of librpmem API should treat this as a lost socket or RDMA condition and should

wait for all remaining librpmem API calls to complete, call rpmem_close() to close the

connection and clean up the stack, and then force the application to exit. When the

application restarts, the files will be reopened on both ends, and libpmemobj will check

only the file metadata. We recommend you do not proceed before synchronizing local

and remote memory pools with the pmempool-sync(1) command.

�Say Hello to the Replicated World
The beauty of the libpmemobj remote replication is that it does not require any changes

to the existing libpmemobj application. If you take any libpmemobj application and

provide it with the poolset file configured to use the remote replica, it will simply start

replicating. No coding required.

To illustrate how to replicate persistent memory, we look at a Hello World type

program demonstrating the replication process directly using the librpmem library.

Listing 18-3 shows a part of the C program that writes the “Hello world” message to

remote memory. If it discovers that the message in English is already there, it translates

it to Spanish and writes it back to remote memory. We walk through the lines of the

program at the end of the listing.

Chapter 18 Remote Persistent Memory

https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Talpey_Tom_Remote_Persistent_Memory.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Talpey_Tom_Remote_Persistent_Memory.pdf

365

Listing 18-3.  The main routine of the Hello World program with replication

 37 #include <assert.h>

 38 #include <errno.h>

 39 #include <unistd.h>

 40 #include <stdio.h>

 41 #include <stdlib.h>

 42 #include <string.h>

 43

 44 #include <librpmem.h>

 45

 46 /*

 47 * English and Spanish translation of the message

 48 */

 49 enum lang_t {en, es};

 50 static const char *hello_str[] = {

 51 [en] = "Hello world!",

 52 [es] = "¡Hola Mundo!"

 53 };

 54

 55 /*

 56 * structure to store the current message

 57 */

 58 #define STR_SIZE 100

 59 struct hello_t {

 60 enum lang_t lang;

 61 char str[STR_SIZE];

 62 };

 63

 64 /*

 65 * write_hello_str -- write a message to the local memory

 66 */

Chapter 18 Remote Persistent Memory

366

 67 static inline void

 68 write_hello_str(struct hello_t *hello, enum lang_t lang)

 69 {

 70 hello->lang = lang;

 71 strncpy(hello->str, hello_str[hello->lang], STR_SIZE);

 72 }

 104 int

 105 main(int argc, char *argv[])

 106 {

 107 /* for this example, assume 32MiB pool */

 108 size_t pool_size = 32 * 1024 * 1024;

 109 void *pool = NULL;

 110 int created;

 111

 112 /* allocate a page size aligned local memory pool */

 113 long pagesize = sysconf(_SC_PAGESIZE);

 114 assert(pagesize >= 0);

 115 int ret = posix_memalign(&pool, pagesize, pool_size);

 116 assert(ret == 0 && pool != NULL);

 117

 118 /* skip to the beginning of the message */

 119 size_t hello_off = 4096; /* rpmem header size */

 120 struct hello_t *hello = (struct hello_t *)(pool + hello_off);

 121

 122 �RPMEMpool *rpp = remote_open("target", "pool.set", pool,

pool_size,

 123 &created);

 124 if (created) {

 125 /* reset local memory pool */

 126 memset(pool, 0, pool_size);

 127 write_hello_str(hello, en);

 128 } else {

 129 /* read message from the remote pool */

 130 ret = rpmem_read(rpp, hello, hello_off, sizeof(*hello), 0);

 131 assert(ret == 0);

Chapter 18 Remote Persistent Memory

367

 132

 133 /* translate the message */

 134 �const int lang_num = (sizeof(hello_str) / sizeof(hello_

str[0]));

 135 �enum lang_t lang = (enum lang_t)((hello->lang + 1) %

lang_num);

 136 write_hello_str(hello, lang);

 137 }

 138

 139 /* write message to the remote pool */

 140 ret = rpmem_persist(rpp, hello_off, sizeof(*hello), 0, 0);

 141 printf("%s\n", hello->str);

 142 assert(ret == 0);

 143

 144 /* close the remote pool */

 145 ret = rpmem_close(rpp);

 146 assert(ret == 0);

 147

 148 /* release local memory pool */

 149 free(pool);

 150 return 0;

 151 }

•	 Line 68: Simple helper routine for writing message to the local memory.

•	 Line 115: Allocate a big enough block of memory, which is aligned

to the page size. The required block size is hard-coded, whereas

the alignment is required if you want to make this memory block

available for RDMA transfers.

•	 Line 122: The remote_open() routine creates or opens the remote

memory pool.

•	 Lines 126-127: The local memory pool is initialized here. It is

performed only once when the remote memory pool was just

created, so it does not contain any message.

•	 Line 130: A message from the remote memory pool is read to the

local memory here.

Chapter 18 Remote Persistent Memory

368

•	 Lines 134-136: If a message from the remote memory pool was read

correctly, it is translated locally.

•	 Line 140: The newly initialized or translated message is written to the

remote memory pool.

•	 Line 145: Close the remote memory pool.

•	 Line 149: Release remote memory pool.

The last missing piece of the whole process is how the remote replication is set up. It

is all done in the remote_open() routine presented in Listing 18-4.

Listing 18-4.  A remote_open routine from the Hello World program with

replication

 74 /*

 75 * remote_open -- setup the librpmem replication

 76 */

 77 static inline RPMEMpool*

 78 remote_open(const char *target, const char *poolset, void *pool,

 79 size_t pool_size, int *created)

 80 {

 81 /* fill pool_attributes */

 82 struct rpmem_pool_attr pool_attr;

 83 memset(&pool_attr, 0, sizeof(pool_attr));

 84 strncpy(pool_attr.signature, "HELLO", RPMEM_POOL_HDR_SIG_LEN);

 85

 86 /* create a remote pool */

 87 unsigned nlanes = 1;

 88 �RPMEMpool *rpp = rpmem_create(target, poolset, pool, pool_

size, &nlanes,

 89 &pool_attr);

 90 if (rpp) {

 91 *created = 1;

 92 return rpp;

 93 }

 94

Chapter 18 Remote Persistent Memory

369

 95 /* create failed so open a remote pool */

 96 assert(errno == EEXIST);

 97 �rpp = rpmem_open(target, poolset, pool, pool_size, &nlanes,

&pool_attr);

 98 assert(rpp != NULL);

 99 *created = 0;

 100

 101 return rpp;

 102 }

•	 Line 88: A remote memory pool can be either created or opened.

When it is used for the first time, it must be created so that it is

available for the opening afterward. We first try to create it here.

•	 Line 97: Here we attempt to open the remote memory pool. We

assume it exists because of the error code received during the create

try (EEXIST).

�Execution Example

The Hello World application produces the output shown in Listing 18-5.

Listing 18-5.  An output from the Hello World application for librpmem

[user@initiator]$./hello

Hello world!

[user@initiator]$./hello

¡Hola Mundo!

Listing 18-6 shows the contents of the target persistent memory pool where we see

the “Hola Mundo” string.

Listing 18-6.  The ¡Hola Mundo! snooped on the replication target

[user@target]$ hexdump –s 4096 –C /mnt/pmem1/pool2

00001000 01 00 00 00 c2 a1 48 6f 6c 61 20 4d 75 6e 64 6f |......Hola

Mundo|

00001010 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 |!...............|

Chapter 18 Remote Persistent Memory

370

00001020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 |................|

*

00002000

�Summary
It is important to know that neither the general-purpose remote replication method

nor the appliance remote replication method is ideal because vendor-specific platform

features are required to use non-allocating writes, adding the complication of effecting

performance on an entire PCI root complex. Conversely, flushing remote writes using

allocating writes requires a painful interrupt of the target system to intercept an RDMA

Send request and flush the list of regions contained within the send buffer. Waking the

remote node is extremely painful in a cloud environment because there are hundreds

or thousands of inbound RDMA requests from many different connections; avoid this if

possible.

There are cloud service providers using these two methods today and getting

phenomenal performance results. If the persistent memory is used as a replacement for

a remotely accessed SSD, huge reductions in latency can be achieved.

As the first iteration of remote persistence support, we focused on application/

library changes to implement these high-level persistence methods, without hardware,

firmware, driver, or protocol changes. At the time of publication, IBTA and IETF drafts

for a new wire protocol extension for persistent memory is nearing completion. This will

provide native hardware support for RDMA to persistent memory and allow hardware

entities to route each I/ O to its destination memory device without the need to change

allocating write mode and without the potential to adversely affect performance on

collateral devices connected to the same root port. See Appendix E for more details on

the new extensions to RDMA, specifically for remote persistence.

RDMA protocol extensions are only one step into further remote persistent memory

development. Several other areas of improvement are already identified and shall be

addressed to the remote persistent memory users community, including atomicity of

remote operations, advanced error handling (including RAS), dynamic configuration of

remote persistent memory and custom setup, and real 0% CPU utilization on remote/

target replication side.

Chapter 18 Remote Persistent Memory

371

As this book has demonstrated, unlocking the true potential of persistent memory

may require new approaches to existing software and application architecture.

Hopefully, this chapter gave you an overview of this complex topic, the challenges of

working with remote persistent memory, and the many aspects of software architecture

to consider when unlocking the true performance potential.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 18 Remote Persistent Memory

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 18: Remote Persistent Memory
	RDMA Networking Protocols
	Goals of the Initial Remote Persistent Memory Architecture
	Guaranteeing Remote Persistence
	General-Purpose Remote Replication Method
	How Does the General-Purpose Remote Replication Method Make Data Persistent?
	Performance Implications of the General-Purpose Remote Replication Method

	Appliance Remote Replication Method
	How Does the Appliance Remote Replication Method Make Data Persistent?
	Performance Implications of the Appliance Remote Replication Method

	General Software Architecture
	librpmem Architecture and Its Use in Replication
	Configuring Remote Replication Using Poolsets
	Performance Considerations
	Remote Replication Error Handling
	Say Hello to the Replicated World
	Execution Example

	Summary

