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CHAPTER 16

PMDK Internals: 
Important Algorithms 
and Data Structures
Chapters 5 through 10 describe most of the libraries contained within the Persistent 

Memory Development Kit (PMDK) and how to use them.

This chapter introduces the fundamental algorithms and data structures on which 

libpmemobj is built. After we first describe the overall architecture of the library, we 

discuss the individual components and the interaction between them that makes 

libpmemobj a cohesive system.

�A Pool of Persistent Memory: High-Level 
Architecture Overview
Figure 16-1 shows that libpmemobj comprises many isolated components that build on 

top of each other to provide a transactional object store.

Figure 16-1.  The modules of the libpmemobj architecture
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Everything is built on top of libpmem and its persistence primitives that the library 

uses to transfer data to persistent memory and persist it. Those primitives are also 

exposed through libpmemobj-specific APIs to applications that wish to perform low-level 

operations on persistent memory, such as manual cache flushing. These APIs are exposed 

so the high-level library can instrument, intercept, and augment all stores to persistent 

memory. This is useful for the instrumentation of runtime analysis tools such as Valgrind 

pmemcheck, described in Chapter 12. More importantly, these functions are interception 

points for data replication, both local and remote.

Replication is implemented in a way that ensures all data written prior to calling 

drain will be safely stored in the replica as configured. A drain operation is a barrier that 

waits for hardware buffers to complete their flush operation to ensure all writes have 

reached the media. This works by initiating a write to the replica when a memory copy 

or a flush is performed and then waits for those writes to finish in the drain call. This 

mechanism guarantees the same behavior and ordering semantics for replicated and 

non-replicated pools.

On top of persistence primitives provided by libpmem is an abstraction for fail-safe 

modification of transactional data called unified logging. The unified log is a single 

data structure and API for two different logging types used throughout libpmemobj to 

ensure fail-safety: transactions and atomic operations. This is one of the most crucial, 

performance-sensitive modules in the library because it is the hot code path of almost 

every API. The unified log is a hybrid DRAM and persistent memory data structure 

accessed through a runtime context that organizes all memory operations that need 

to be performed within a single fail-safe atomic transaction and allows for critical 

performance optimizations.

The persistent memory allocator operates in the unified log context of either a 

transaction or a single atomic operation. This is the largest and most complex module in 

libpmemobj and is used to manage the potentially large amounts of persistent memory 

associated with the memory pool.

Each object stored in a persistent memory pool is represented by an object handle 

of type PMEMoid (persistent memory object identifier). In practice, such a handle is 

a unique object identifier (OID) of global scope, which means that two objects from 

different pools will never have the same OID. An OID cannot be used as a direct pointer 

to an object. Each time the program attempts to read or write object data, it must obtain 

the current memory address of the object by converting its OID into a pointer. In contrast 

to the memory address, the OID value for a given object does not change during the 

life of an object, except for a realloc(), and remains valid after closing and reopening 
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the pool. For this reason, if an object contains a reference to another persistent object, 

for example, to build a linked data structure, the reference must be an OID and not a 

memory address.

The atomic and transactional APIs are built using a combination of the persistent 

memory allocator and unified logs. The simplest public interface is the atomic API which 

runs a single allocator operation in a unified log context. That log context is not exposed 

externally and is created, initialized, and destroyed within a single function call.

The most general-purpose interface is the transactional API, which is based on a 

combination of undo logging for snapshots and redo logging for memory allocation and 

deallocation. This API has ACID (atomicity, consistency, isolation, durability) properties, 

and it is a relatively thin layer that combines the utility of unified logs and the persistent 

memory allocator.

For specific transactional use cases that need low-level access to the persistent 

memory allocator, there is an “action” API. The action API is essentially a pass-through 

to the raw memory allocator interface, alongside helpers for usability. This API can 

be leveraged to create low-overhead algorithms that issue fewer memory fences, as 

compared to general-purpose transactions, at the cost of ease of use.

All public interfaces produce and operate on PMEMoids as a replacement for 

pointers. This comes with space overhead because PMEMoids are 16 bytes. There is 

also a performance overhead for the translation to a normal pointer. The upside is that 

objects can be safely referenced between different instances of the application and even 

different persistent memory pools.

The pool management API opens, maps, and manages persistent memory resident 

files or devices. This is where the replication is configured, metadata and the heap are 

initialized, and all the runtime data is created. This is also where the crucial recovery of 

interrupted transactions happens. Once recovery is complete, all prior transactions are 

either committed or aborted, the persistent state is consistent, and the logs are clean and 

ready to be used again.

�The Uncertainty of Memory Mapping: Persistent 
Memory Object Identifier
A key concept that is important for any persistent memory application is how to 

represent the relative position of an object within a pool of memory, and even beyond 

it. That is, how do you implement pointers? You could rely on normal pointers, which 
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are relative to the beginning of the application’s virtual address space, but that comes 

with many caveats. Using such pointers would be predicated on the pool of persistent 

memory always being located at the same place in the virtual address space of an 

application that maps it. This is difficult, if not impossible, to accomplish in a portable 

way on modern operating systems due to address space layout randomization (ASLR). 

Therefore, a general-purpose library for persistent memory programming must provide 

a specialized persistent pointer. Figure 16-2 shows a pointer from Object A to Object B. If 

the base address changes, the pointer no longer points to Object B.

An implementation of a general-purpose relative persistent pointer should satisfy 

these two basic requirements:

	 1.	 The pointer must remain valid across application restarts.

	 2.	 The pointer should unambiguously identify a memory location in 

the presence of many persistent memory pools, even if not located 

in a pool from which it was originally derived.

In addition to the previous requirements, you should also consider some potential 

performance problems:

•	 Additional space overhead over a traditional pointer. This is important 

because large fat pointers would take up more space in memory and 

because fewer of these fat pointers would fit in a single CPU cache line. 

This potentially increases the cost of operations in pointer-chasing 

heavy data structures, such as those found in B-tree algorithms.

•	 The cost of translating persistent pointers to real pointers. Because 

dereferencing is an extremely common operation, this calculation 

must be as lightweight as possible and should involve as few 

instructions as possible. This is to ensure that persistent pointer 

usage is efficient and it doesn’t generate too much code bloat during 

compilation.

Figure 16-2.  Example of using a normal pointer in a persistent memory pool
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•	 Preventing compiler optimizations through the dereferencing 

method. A complicated pointer translation might negatively impact 

the compiler’s optimization passes. The translation method should 

ideally avoid operations that depend on an external state because 

that will prevent, among other things, auto-vectorization.

Satisfying the preceding requirements while maintaining low-overhead and C99 

standard compliance is surprisingly difficult. We explored several options:

•	 The 8-byte offset pointer, relative to the beginning of the pool, was 

quickly ruled out because it did not satisfy the second requirement 

and needed a pool base pointer to be provided to the translation 

method.

•	 8-byte self-relative pointers, where the value of the pointer is the 

offset between the object’s location and the pointer’s location. This 

is potentially the fastest implementation because the translation 

method can be implemented as `ptr + (*ptr)`. However, this does 

not satisfy the second basic requirement. Additionally, it would 

require a special assignment method because the value of the pointer 

to the same object would differ depending on the pointer’s location.

•	 8-byte offset pointers with embedded memory pool identifier, 

which allows the library to satisfy the second requirement. This is 

an augmentation of the first method that additionally stores the 

identifier in the unused part of the pointer value by taking advantage 

of the fact that the usable size of the virtual address space is smaller 

than the size of the pointer on most modern CPUs. The problem with 

this method, however, is that the number of bits for the pool identifier 

is relatively small (16 bits on modern CPUs) and might shrink with 

future hardware.

•	 16-byte fat offset pointer with pool identifier. This is the most obvious 

solution, which is similar to the one earlier but has 8-byte offset 

pointers and 8-byte pool identifiers. Fat pointers provide the best 

utility, at the cost of space overhead and some runtime performance.
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libpmemobj uses the most generic approach of the 16-byte offset pointer. This allows 

you to make your own choice since all other pointer types can be directly derived from 

it. libpmemobj bindings for more expressive languages than C99, such as C++, can also 

provide different types of pointers with different trade-offs.

Figure 16-3 shows the translation method used to convert a libpmemobj persistent 

pointer, PMEMoid, into a valid C pointer. In principle, this approach is very simple. 

We look up the base address of the pool through the pool identifier and then add the 

object offset to it. The method itself is static inline and defined in the public header file 

for libpmemobj to avoid a function call on every deference. The problem is the lookup 

method, which, for an application linked with a dynamic library, means a call to a 

different compilation unit, and that might be costly for a very commonly performed 

operation. To resolve this problem, the translation method has a per-thread cache 

of the last base address, which removes the necessity of calling the lookup with each 

dereferencing for the common case where persistent pointers from the same pool are 

accessed close together.

The pool lookup method itself is implemented using a radix tree that stores 

identifier-address pairs. This tree has a lock-free read operation, which is necessary 

because each non-cached pointer translation would otherwise have to acquire a lock to 

be thread-safe, and that would have a severe negative performance impact and could 

potentially serialize access to persistent memory.

�Persistent Thread Local Storage: Using Lanes
Very early in the development of PMDK, we found that persistent memory 

programming closely resembles multithreaded programming because it requires 

restricting visibility of memory changes – either through locking or transactions – to 

other threads or instances of the program. But that is not the only similarity. The 

other similarity, which we discuss in this section, is how sometimes low-level code 

Figure 16-3.  Example of using a PMEMoid in a persistent memory pool
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needs to store data that is unique to one thread of execution. In the persistent case, 

we often need to associate data with a transaction rather than a thread.

In libpmemobj, we need a way to create an association between an in-flight 

transaction and its persistent logs. It also requires a way to reconnect to those logs after 

an unplanned interruption. The solution is to use a data structure called a “lane,” which 

is simply a persistent byte buffer that is also transaction local.

Lanes are limited in quantity, have a fixed size, and are located at the beginning 

of the pool. Each time a transaction starts, it chooses one of the lanes to operate from. 

Because there is a limited number of lanes, there is also a limited number of transactions 

that can run in parallel. For this reason, the size of the lane is relatively small, but the 

number of lanes is big enough as to be larger than a number of application threads 

that could feasibly run in parallel on current platforms and platforms coming in the 

foreseeable future.

The challenge of the lane mechanism is the selection algorithm, that is, which lane 

to choose for a specific transaction. It is a scheduler that assigns resources (lanes) to 

perform work (transactions).

The naive algorithm, which was implemented in the earliest versions of libpmemobj, 

simply picked the first available lane from the pool. This approach has a few problems. 

First, the implementation of what effectively amounts to a single LIFO (last in, first 

out) data structure of lanes requires a lot of synchronization on the front of the stack, 

regardless of whether it is implemented as a linked list or an array, and thus reducing 

performance. The second problem is false sharing of lane data. False sharing occurs 

when two or more threads operate on data that is being modified, causing CPU cache 

thrashing. And that is exactly what happens if multiple threads are continually fighting 

over the same number of lanes to start new transactions. The third problem is spreading 

the traffic across interleaved DIMMs. Interleaving is a technique that allows sequential 

traffic to take advantage of throughput of all of the DIMMs in the interleave set by 

spreading the physical memory across all available DIMMs. This is similar to striping 

(RAID0) across multiple disk drives. Depending on the size of the interleaved block, and 

the platform configuration, using naive lane allocation might continuously use the same 

physical DIMMs, lowering the overall performance.

To alleviate these problems, the lane scheduling algorithm in libpmemobj is more 

complex. Instead of using a LIFO data structure, it uses an array of 8-byte spinlocks, one 

for each lane. Each thread is initially assigned a primary lane number, which is assigned 

in such a way as to minimize false sharing of both lane data and the spinlock array.  
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The algorithm also tries to spread the lanes evenly across interleaved DIMMs. As long as 

there are fewer active threads than lanes, no thread will ever share a lane. When a thread 

attempts to start a transaction, it will try to acquire its primary lane spinlock, and if it is 

unsuccessful, it will try to acquire the next lane in the array.

The final lane scheduling algorithm decision took a considerable amount of research 

into various lane scheduling approaches. Compared to the naive implementation, 

the current implementation has vastly improved performance, especially in heavily 

multithreaded workloads.

�Ensuring Power-Fail Atomicity: Redo and Undo 
Logging
The two fundamental concepts libpmemobj uses to ensure power-fail safety are redo 

and undo logging. Redo logs are used to ensure atomicity of memory allocations, while 

undo logs are used to implement transactional snapshots. Before we discuss the many 

different possible implementation approaches, this section describes the basic ideas.

�Transaction Redo Logging
Redo logging is a method by which a group of memory modifications that need to be 

done atomically are stored in a log and deferred until all modifications in the group are 

persistently stored. Once completed, the log is marked as complete, and the memory 

modifications are processed (applied); the log can then be discarded. If the processing is 

interrupted before it finishes, the logging is repeated until successful. Figure 16-4 shows 

the four phases of transaction redo logging.

Figure 16-4.  The phases of a transaction redo log
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The benefit of this logging approach, in the context of persistent memory, is that all the 

log entries can be written and flushed to storage at once. An optimal implementation of 

redo logging uses only two synchronization barriers: once to mark the log as complete and 

once to discard it. The downside to this approach is that the memory modifications are 

not immediately visible, which makes for a more complicated programming model. Redo 

logging can sometimes be used alongside load/store instrumentation techniques which 

can redirect a memory operation to the logged location. However, this approach can be 

difficult to implement efficiently and is not well suited for a general-purpose library.

�Transaction Undo Logging
Undo logging is a method by which each memory region of a group (undo transaction) 

that needs to be modified atomically is snapshotted into a log prior to the modification. 

Once all memory modifications are complete, the log is discarded. If the transaction 

is interrupted, the modifications in the log are rolled back to their original state. 

Figure 16-5 shows the three phases of the transaction undo logging.

This type of log can have lower performance characteristics compared with the redo 

log approach because it requires a barrier for every snapshot that needs to be made, 

and the snapshotting itself must be fail-safe atomic, which presents its own challenges. 

An undo log benefit is that the changes are visible immediately, allowing for a natural 

programming model.

The important observation here is that redo and undo logging are complimentary. 

Use redo logging for performance-critical code and where deferred modifications are 

not a problem; use undo logging where ease of use is important. This observation led 

to the current design of libpmemobj where a single transaction takes advantage of both 

algorithms.

Figure 16-5.  Phases of a transaction undo log

Chapter 16  PMDK Internals: Important Algorithms and Data Structures



322

�libpmemobj Unified Logging
Both redo and undo logging in libpmemobj share the same internal interface and data 

structure, which is called a unified log (or ulog for short). This is because redo and undo 

logging only differ in the execution order of the log phases, or more precisely, when 

the log is applied on commit or recovery. In practice, however, there are performance 

considerations that require specialization in certain parts of the algorithm.

The ulog data structure contains one cache line header with metadata and a variable 

length array of data bytes. The header consists of: 

•	 A checksum for both the header and data, used only for redo logs

•	 A monotonically increasing generation number of a transaction in 

the log, used only for undo logs

•	 The total length in bytes of the data array

•	 An offset of the next log in the group

The last field is used to create a singly linked list of all logs that participate in a single 

transaction. This is because it is impossible to predict the total required size of the log 

at the beginning of the transaction, so the library cannot allocate a log structure that is 

the exact required length ahead of time. Instead, the logs are allocated on demand and 

atomically linked into a list.

The unified log supports two ways of fail-safe inserting of entries:

	 1.	 Bulk insert takes an array of log entries, prepares the header of 

the log, and creates a checksum of both the header and data. Once 

done, a non-temporal copy, followed by a fence, is performed 

to store this structure into persistent memory. This is the way in 

which a group of deferred memory modifications forms a redo 

log with only one additional barrier at the end of the transaction. 

In this case, the checksum in the header is used to verify the 

consistency of the entire log. If that checksum doesn’t match, the 

log is skipped during recovery.

	 2.	 Buffer insert takes only a single entry, checksums it together 

with the current generation number, and stores it in persistent 

memory through non-temporal stores followed by a fence. This 

method is used to create undo logs when snapshotting. Undo logs 
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in a transaction are different than redo logs because during the 

commit’s fast path, they need to be invalidated instead of applied. 

Instead of laboriously writing zeros into the log buffer, the log is 

invalidated by incrementing the generation number. This works 

because the number is part of the data with its checksum, so 

changing the generation number will cause a checksum failure. 

This algorithm allows libpmemobj to have only one additional 

fence for the transaction (on top of the fences needed for 

snapshots) to ensure fail-safety of a log, resulting in very low-

overhead transactions.

�Persistent Allocations: The Interface 
of a Transactional Persistent Allocator
The internal allocator interface in libpmemobj is far more complex than a typical volatile 

dynamic memory allocator. First, it must ensure fail-safety of all its operations and 

cannot allow for any memory to become unreachable due to interruptions. Second, it 

must be transactional so that multiple operations on the heap can be done atomically 

alongside other modifications. And lastly, it must operate on the pool state, allocating 

memory from specific files instead of relying on the anonymous virtual memory 

provided by the operating system. All these factors contribute to an internal API that 

hardly resembles the standard malloc() and free(), shown in Listing 16-1.

Listing 16-1.  The core persistent memory allocator interface that splits heap 

operations into two distinct steps

int palloc_reserve(struct palloc_heap *heap, size_t size,...,

        struct pobj_action *act);

void palloc_publish(struct palloc_heap *heap,

        struct pobj_action *actv, size_t actvcnt,

        struct operation_context *ctx);
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All memory operations, called “actions” in the API, are broken up into two individual 

steps.

The first step reserves the state that is needed to perform the operation. For 

allocations, this means retrieving a free memory block, marking it as reserved, and 

initializing the object’s content. This reservation is stored in a user-provided runtime 

variable. The library guarantees that if an application crashes while holding reservations, 

the persistent state is not affected. That is why these action variables must not be 

persistent.

The second step is the act of exercising the reservations, which is called 

“publication.” Reservations can be published individually, but the true power of this API 

lies in its ability to group and publish many different actions together.

The internal allocator API also has a function to create an action that will set a 

memory location to a given value when published. This is used to modify the destination 

pointer value and is instrumental in making the atomic API of libpmemobj fail-safe.

All internal allocator APIs that need to perform fail-safe atomic actions take 

operation context as an argument, which is the runtime instance of a single log. It 

contains various state information, such as the total capacity of the log and the current 

number of entries. It exposes the functions to create either bulk or singular log entries. 

The allocator’s functions will log and then process all metadata modifications inside of 

the persistent log that belongs to the provided instance of the operating context.

�Persistent Memory Heap Management: Allocator 
Design for Persistent Memory
The previous section described the interface for the memory allocation used internally 

in libpmemobj, but that was only the tip of the allocator iceberg. Before diving deeper 

into this topic, we briefly describe the principles behind normal volatile allocators so you 

can understand how persistent memory impacts the status quo.

Traditional allocators for volatile memory are responsible for efficient – in both time 

and space – management of operating system–provided memory pages. Precisely how 

this should be done for the generic case is an active research area of computer science; 

many different techniques can be used. All of them try to exploit the regularities in 

allocation and deallocation patterns to minimize heap fragmentation.

Most commonly used general-purpose memory allocators settled on an algorithm 

that we refer to as “segregated fit with page reuse and thread caching.”
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This works by using a free list for many different sizes, shown in Figure 16-6, 

until some predefined threshold, after which it is sensible to allocate directly from 

the operating system. Those free lists are typically called bins or buckets and can be 

implemented in various ways, such as a simple linked list or contiguous buffer with 

boundary tags. Each incoming memory allocation request is rounded up to match 

one of the free lists, so there must be enough of them to minimize the amount of 

overprovisioned space for each allocation. This algorithm approximates a best-fit 

allocation policy that selects the memory block with the least amount of excess space for 

the request from the ones available.

Using this technique allows memory allocators to have average-case O(1) complexity 

while retaining the memory efficiency of best fit. Another benefit is that rounding up of 

memory blocks and subsequent segregation forces some regularity to allocation patterns 

that otherwise might not exhibit any.

Some allocators also sort the available memory blocks by address and, if possible, 

allocate the one that is spatially collocated with previously selected blocks. This 

improves space efficiency by increasing the likelihood of reusing the same physical 

memory page. It also preserves temporal locality of allocated memory objects, which can 

minimize cache and translation lookaside buffer (TLB) misses.

One important advancement in memory allocators is scalability in multithreaded 

applications. Most modern memory allocators implement some form of thread caching, 

where the vast majority of allocation requests are satisfied directly from memory that 

is exclusively assigned to a given thread. Only when memory assigned to a thread is 

entirely exhausted, or if the request is very large, the allocation will contend with other 

threads for operating system resources.

This allows for allocator implementations that have no locks of any kind, not even 

atomics, on the fast path. This can have a potentially significant impact on performance, 

even in the single-threaded case. This technique also prevents allocator-induced false 

sharing between threads, since a thread will always allocate from its own region of 

Figure 16-6.  Example of free lists in a memory allocator
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memory. Additionally, the deallocation path often returns the memory block to the 

thread cache from which it originated, again preserving locality.

We mentioned earlier that volatile allocators manage operating system–provided 

pages but did not explain how they acquire those pages. This will become very important 

later as we discuss how things change for persistent memory. Memory is usually 

requested on demand from the operating system either through sbrk(), which moves 

the break segment of the application, or anonymous mmap(), which creates new virtual 

memory mapping backed by the page cache. The actual physical memory is usually not 

assigned until the page is written to for the first time. When the allocator decides that it 

no longer needs a page, it can either completely remove the mapping using unmap() or 

it can tell the operating system to release the backing physical pages but keep the virtual 

mapping. This enables the allocator to reuse the same addresses later without having to 

memory map them again.

How does all of this translate into persistent memory allocators and libpmemobj 

specifically?

The persistent heap must be resumable after application restart. This means that 

all state information must be either located on persistent memory or reconstructed on 

startup. If there are any active bookkeeping processes, those need to be restarted from 

the point at which they were interrupted. There cannot be any volatile state held in 

persistent memory, such as thread cache pointers. In fact, the allocator must not operate 

on any pointers at all because the virtual address of the heap can change between 

restarts.

In libpmemobj, the heap is rebuilt lazily and in stages. The entire available memory 

is divided into equally sized zones (except for the last one, which can be smaller than 

the others) with metadata at the beginning of each one. Each zone is subsequentially 

divided into variably sized memory blocks called chunks. Whenever there is an 

allocation request, and the runtime state indicates that there is no memory to satisfy it, 

the zone’s metadata is processed, and the corresponding runtime state is initialized.  

This minimizes the startup time of the pool and amortizes the cost of rebuilding the 

heap state across many individual allocation requests.

There are three main reasons for having any runtime state at all. First, access 

latency of persistent memory can be higher than that of DRAM, potentially impacting 

performance of data structures placed on it. Second, separating the runtime state from 

the persistent state enables a workflow where the memory is first reserved in runtime 

state and initialized, and only then the allocation is reflected on the persistent state.  
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This mechanism was described in the previous section. Finally, maintaining fail-safety of 

complex persistent data structures is expensive, and keeping them in DRAM allows the 

allocator to sidestep that cost.

The runtime allocation scheme employed by libpmemobj is segregated fit with chunk 

reuse and thread caching as described earlier. Free lists in libpmemobj, called buckets, 

are placed in DRAM and are implemented as vectors of pointers to persistent memory 

blocks. The persistent representation of this data structure is a bitmap, located at the 

beginning of a larger buffer from which the smaller blocks are carved out. These buffers 

in libpmemobj, called runs, are variably sized and are allocated from the previously 

mentioned chunks. Very large allocations are directly allocated as chunks. Figure 16-7 

shows the libpmemobj implementation.

Persistent allocators must also ensure consistency in the presence of failures, 

otherwise, memory might become unreachable after an ungraceful shutdown of the 

application. One part of the solution is the API we outlined in the previous section. The 

other part is the careful design of the algorithms inside the allocator that ensures no 

matter when the application is aborted, the state is consistent. This is also aided by redo 

logs, which are used to ensure atomicity of groups of noncontiguous persistent metadata 

changes.

Figure 16-7.  On-media layout of libpmemobj’s heap
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One of the most impactful aspects of persistent memory allocation is how the 

memory is provisioned from the operating system. We previously explained that for 

normal volatile allocators, the memory is usually acquired through anonymous memory 

mappings that are backed by the page cache. In contrast, persistent heaps must use file-

based memory mappings, backed directly by persistent memory. The difference might 

be subtle, but it has a significant impact on the way the allocator must be designed. The 

allocator must manage the entire virtual address space, retain information about any 

potential noncontiguous regions of the heap, and avoid excessive overprovisioning of 

virtual address space. Volatile allocators can rely on the operating system to coalesce 

noncontiguous physical pages into contiguous virtual ones, whereas persistent allocators 

cannot do the same without explicit and complicated techniques. Additionally, for some 

file system implementations, the allocator cannot assume that the physical memory is 

allocated at the time of the first page fault, so it must be conservative with internal block 

allocations.

Another problem for allocation from file-based mappings is that of perception. 

Normal allocators, due to memory overcommitment, seemingly never run out of memory 

because they are allocating the virtual address space, which is effectively infinite. There 

are negative performance consequences of address space bloat, and memory allocators 

actively try to avoid it, but they are not easily measurable in a typical application. In 

contrast, memory heaps allocate from a finite resource, the persistent memory device, or 

a file. This exacerbates the common phenomenon that is heap fragmentation by making 

it trivially measurable, creating the perception that persistent memory allocators are 

less efficient than volatile ones. They can be, but the operating system does a lot of work 

behind the scene to hide fragmentation of traditional memory allocators.

�ACID Transactions: Efficient Low-Level Persistent 
Transactions
The four components we just described – lanes, redo logs, undo logs, and the 

transactional memory allocator – form the basis of libpmemobj's implementation of 

ACID transactions that we defined in Chapter 4.

A transaction’s persistent state consists of three logs. First is an undo log, which 

contains snapshots of user data. Second is an external redo log, which contains 

allocations and deallocations performed by the user. Third is an internal redo log, which 

is used to perform atomic metadata allocations and deallocations. This is technically not 
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part of the transaction but is required to allocate the log extensions if they are needed. 

Without the internal redo log, it would be impossible to reserve and then publish a new 

log object in a transaction that already had user-made allocator actions in the external 

redo log.

All three logs have individual operation-context instances that are stored in runtime 

state of the lanes. This state is initialized when the pool is opened, and that is also when 

all the logs of the prior instance of the application are either processed or discarded. 

There is no special persistent variable that indicates whether past transactions in the log 

were successful or not. That information is directly derived from checksums stored in 

the log.

When a transaction begins, and it is not a nested transaction, it acquires a lane, 

which must not contain any valid uncomitted logs. The runtime state of the transaction 

is stored in a thread-local variable, and that is where the lane variable is stored once 

acquired.

Transactional allocator operations use the external redo log and its associated 

operation context to call the appropriate reservation method which in turn creates an 

allocator action to be published at the time of transaction commit. The allocator actions 

are stored in a volatile array. If the transaction is aborted, all the actions are canceled, 

and the associated state is discarded. The complete redo log for memory allocations is 

created only at the time of transaction commit. If the library is interrupted while creating 

the redo log, the next time the pool is opened, the checksum will not match, and the 

transaction will be aborted by rolling back using the undo log.

Transactional snapshots use the undo log and its context. The first time a snapshot 

is created, a new memory modification action is created in the external redo log. When 

published, that action increments the generation number of the associated undo log, 

invalidating its contents. This guarantees that if the external log is fully written and 

processed, it automatically discards the undo log, committing the entire transaction. If 

the external log is discarded, the undo log is processed, and the transaction is aborted.

To ensure that there are never two snapshots of the same memory location (this 

would be an inefficient use of space), there is a runtime range tree that is queried every 

time the application wants to create an undo log entry. If the new range overlaps with an 

existing snapshot, adjustments to the input arguments are made to avoid duplication. 

The same mechanism is also used to prevent snapshots of newly allocated data. 

Whenever new memory in a transaction is allocated, the reserved memory range is 

inserted into the ranges tree. Snapshotting new objects is redundant because they will be 

discarded automatically in the case of an abort.
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To ensure that all memory modifications performed inside the transaction are 

durable on persistent memory once committed, the ranges tree is also used to iterate 

over all snapshots and call the appropriate flushing function on the modified memory 

locations.

�Lazy Reinitialization of Variables: Storing 
the Volatile State on Persistent Memory
While developing software for persistent memory, it is often useful to store the runtime 

(volatile) state inside of persistent memory locations. Keeping that state consistent, 

however, is extremely difficult, especially in multithreaded applications.

The problem is the initialization of the runtime state. One solution is to simply iterate 

over all objects at the start of the application and initialize the volatile variables then, but 

that might significantly contribute to startup time of applications with large persistent 

pools. The other solution is to lazily reinitialize the variables on access, which is what 

libpmemobj does for its built-in locks. The library also exposes this mechanism through 

an API for use with custom algorithms.

Lazy reinitialization of the volatile state is implemented using a lock-free algorithm that 

relies on a generation number stored alongside each volatile variable on persistent memory 

and inside the pool header. The pool header resident copy is increased by two every time 

a pool is opened. This means that a valid generation number is always even. When a 

volatile variable is accessed, its generation number is checked against the one stored in 

the pool header. If they match, it means that the object can be used and is simply returned 

to the application; otherwise, the object needs to be initialized before returning to ensure 

the initialization is thread-safe and is performed exactly once in a single instance of the 

application.

The naive implementation could use a double-checked locking, where a thread 

would try to acquire a lock prior to initialization and verify again if the generation 

numbers match. If they still do not match, initialize the object, and increase the number. 

To avoid the overhead that comes with using locks, the actual implementation first 

uses a compare-and-swap to set the generation number to a value that is equal to the 

generation number of the pool minus one, which is an odd number that indicates 

an initialization operation is in progress. If this compare-and-swap were to fail, the 

Chapter 16  PMDK Internals: Important Algorithms and Data Structures



331

algorithm would loop back to check if the generation number matches. If it is successful, 

the running thread initializes the variable and once again increments the generation 

number – this time to an even number that should match the number stored in the pool 

header.

�Summary
This chapter described the architecture and inner workings of libpmemobj. We 

also discuss the reasons for the choices that were made during the design and 

implementation of libpmemobj. With this knowledge, you can accurately reason about 

the semantics and performance characteristics of code written using this library.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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