
261
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_13

CHAPTER 13

Enabling Persistence
Using a Real-World
Application
This chapter turns the theory from Chapter 4 (and other chapters) into practice.

We show how an application can take advantage of persistent memory by building

a persistent memory-aware database storage engine. We use MariaDB (https://

mariadb.org/), a popular open source database, as it provides a pluggable storage

engine model. The completed storage engine is not intended for production use and

does not implement all the features a production quality storage engine should. We

implement only the basic functionality to demonstrate how to begin persistent memory

programming using a well known database. The intent is to provide you with a more

hands-on approach for persistent memory programming so you may enable persistent

memory features and functionality within your own application. Our storage engine is

left as an optional exercise for you to complete. Doing so would create a new persistent

memory storage engine for MariaDB, MySQL, Percona Server, and other derivatives. You

may also choose to modify an existing MySQL database storage engine to add persistent

memory features, or perhaps choose a different database entirely.

We assume that you are familiar with the preceding chapters that covered the

fundamentals of the persistent memory programming model and Persistent Memory

Development Kit (PMDK). In this chapter, we implement our storage engine using C++

and libpmemobj-cpp from Chapter 8. If you are not a C++ developer, you will still find this

information helpful because the fundamentals apply to other languages and applications.

The complete source code for the persistent memory-aware database storage engine

can be found on GitHub at https://github.com/pmem/pmdk-examples/tree/master/

pmem-mariadb.

https://doi.org/10.1007/978-1-4842-4932-1_13
https://doi.org/10.1007/978-1-4842-4932-1_4
https://mariadb.org/
https://mariadb.org/
https://doi.org/10.1007/978-1-4842-4932-1_8
https://github.com/pmem/pmdk-examples/tree/master/pmem-mariadb
https://github.com/pmem/pmdk-examples/tree/master/pmem-mariadb

262

�The Database Example
A tremendous number of existing applications can be categorized in many ways. For

the purpose of this chapter, we explore applications from the common components

perspective, including an interface, a business layer, and a store. The interface interacts

with the user, the business layer is a tier where the application’s logic is implemented,

and the store is where data is kept and processed by the application.

With so many applications available today, choosing one to include in this book that

would satisfy all or most of our requirements was difficult. We chose to use a database as

an example because a unified way of accessing data is a common denominator for many

applications.

�Different Persistent Memory Enablement
Approaches
The main advantages of persistent memory include:

•	 It provides access latencies that are lower than flash SSDs.

•	 It has higher throughput than NAND storage devices.

•	 Real-time access to data allows ultrafast access to large datasets.

•	 Data persists in memory after a power interruption.

Persistent memory can be used in a variety of ways to deliver lower latency for many

applications:

•	 In-memory databases: In-memory databases can leverage

persistent memory’s larger capacities and significantly reduce restart

times. Once the database memory maps the index, tables, and

other files, the data is immediately accessible. This avoids lengthy

startup times where the data is traditionally read from disk and paged

in to memory before it can be accessed or processed.

•	 Fraud detection: Financial institutions and insurance companies

can perform real-time data analytics on millions of records to detect

fraudulent transactions.

•	 Cyber threat analysis: Companies can quickly detect and defend

against increasing cyber threats.

Chapter 13 Enabling Persistence Using a Real-World Application

263

•	 Web-scale personalization: Companies can tailor online user

experiences by returning relevant content and advertisements,

resulting in higher user click-through rate and more e-commerce

revenue opportunities.

•	 Financial trading: Financial trading applications can rapidly

process and execute financial transactions, allowing them to gain a

competitive advantage and create a higher revenue opportunity.

•	 Internet of Things (IoT): Faster data ingest and processing of huge

datasets in real-time reduces time to value.

•	 Content delivery networks (CDN): A CDN is a highly distributed

network of edge servers strategically placed across the globe with the

purpose of rapidly delivering digital content to users. With a memory

capacity, each CDN node can cache more data and reduce the total

number of servers, while networks can reliably deliver low-latency

data to their clients. If the CDN cache is persisted, a node can restart

with a warm cache and sync only the data it is missed while it was out

of the cluster.

�Developing a Persistent Memory-Aware MariaDB*
Storage Engine
The storage engine developed here is not production quality and does not implement

all the functionality expected by most database administrators. To demonstrate the

concepts described earlier, we kept the example simple, implementing table create(),

open(), and close() operations and INSERT, UPDATE, DELETE, and SELECT SQL

operations. Because the storage engine capabilities are quite limited without indexing,

we include a simple indexing system using volatile memory to provide faster access to

the data residing in persistent memory.

Although MariaDB has many storage engines to which we could add persistent

memory, we are building a new storage engine from scratch in this chapter. To learn

more about the MariaDB storage engine API and how storage engines work, we suggest

reading the MariaDB “Storage Engine Development” documentation (https://

mariadb.com/kb/en/library/storage-engines-storage-engine-development/).

Since MariaDB is based on MySQL, you can also refer to the MySQL “Writing a Custom

Chapter 13 Enabling Persistence Using a Real-World Application

https://mariadb.com/kb/en/library/storage-engines-storage-engine-development/
https://mariadb.com/kb/en/library/storage-engines-storage-engine-development/

264

Storage Engine” documentation (https://dev.mysql.com/doc/internals/en/custom-

engine.html) to find all the information for creating an engine from scratch.

�Understanding the Storage Layer
MariaDB provides a pluggable architecture for storage engines that makes it easier

to develop and deploy new storage engines. A pluggable storage engine architecture

also makes it possible to create new storage engines and add them to a running

MariaDB server without recompiling the server itself. The storage engine provides data

storage and index management for MariaDB. The MariaDB server communicates with

the storage engines through a well-defined API.

In our code, we implement a prototype of a pluggable persistent memory–enabled

storage engine for MariaDB using the libpmemobj library from the Persistent Memory

Development Kit (PMDK).

Figure 13-1 shows how the storage engine communicates with libpmemobj to

manage the data stored in persistent memory. The library is used to turn a persistent

memory pool into a flexible object store.

Figure 13-1.  MariaDB storage engine architecture diagram for persistent memory

Chapter 13 Enabling Persistence Using a Real-World Application

https://dev.mysql.com/doc/internals/en/custom-engine.html
https://dev.mysql.com/doc/internals/en/custom-engine.html

265

�Creating a Storage Engine Class
The implementation of the storage engine described here is single-threaded to support a

single session, a single user, and single table requests. A multi-threaded implementation

would detract from the focus of this chapter. Chapter 14 discussed concurrency in more

detail. The MariaDB server communicates with storage engines through a well-defined

handler interface that includes a handlerton, which is a singleton handler that is

connected to a table handler. The handlerton defines the storage engine and contains

pointers to the methods that apply to the persistent memory storage engine.

The first method the storage engine needs to support is to enable the call for a new

handler instance, shown in Listing 13-1.

Listing 13-1.  ha_pmdk.cc – Creating a new handler instance

117 static handler *pmdk_create_handler(handlerton *hton,

118 TABLE_SHARE *table,

119 MEM_ROOT *mem_root);

120

121 handlerton *pmdk_hton;

When a handler instance is created, the MariaDB server sends commands to the

handler to perform data storage and retrieve tasks such as opening a table, manipulating

rows, managing indexes, and transactions. When a handler is instantiated, the first

required operation is the opening of a table. Since the storage engine is a single user and

single-threaded implementation, only one handler instance is created.

Various handler methods are also implemented; they apply to the storage engine as

a whole, as opposed to methods like create() and open() that work on a per-table basis.

Some examples of such methods include transaction methods to handle commits and

rollbacks, shown in Listing 13-2.

Listing 13-2.  ha_pmdk.cc – Handler methods including transactions, rollback, etc

209 static int pmdk_init_func(void *p)

210 {

...

213 pmdk_hton= (handlerton *)p;

214 pmdk_hton->state= SHOW_OPTION_YES;

215 pmdk_hton->create= pmdk_create_handler;

Chapter 13 Enabling Persistence Using a Real-World Application

https://doi.org/10.1007/978-1-4842-4932-1_14

266

216 pmdk_hton->flags= HTON_CAN_RECREATE;

217 pmdk_hton->tablefile_extensions= ha_pmdk_exts;

218

219 pmdk_hton->commit= pmdk_commit;

220 pmdk_hton->rollback= pmdk_rollback;

...

223 }

The abstract methods defined in the handler class are implemented to work with

persistent memory. An internal representation of the objects in persistent memory is

created using a single linked list (SLL). This internal representation is very helpful to

iterate through the records to improve performance.

To perform a variety of operations and gain faster and easier access to data, we used

the simple row structure shown in Listing 13-3 to hold the pointer to persistent memory

and the associated field value in the buffer.

Listing 13-3.  ha_pmdk.h – A simple data structure to store data in a single

linked list

71 struct row {

72 persistent_ptr<row> next;

73 uchar buf[];

74 };

�Creating a Database Table

The create() method is used to create the table. This method creates all necessary

files in persistent memory using libpmemobj. As shown in Listing 13-4, we create a new

pmemobj type pool for each table using the pmemobj_create() method; this method

creates a transactional object store with the given total poolsize. The table is created in

the form of an .obj extension.

Listing 13-4.  Creating a table method

1247 int ha_pmdk::create(const char *name, TABLE *table_arg,

1248 HA_CREATE_INFO *create_info)

1249 {

1250

Chapter 13 Enabling Persistence Using a Real-World Application

267

1251 char path[MAX_PATH_LEN];

1252 DBUG_ENTER("ha_pmdk::create");

1253 DBUG_PRINT("info", ("create"));

1254

1255 snprintf(path, MAX_PATH_LEN, "%s%s", name, PMEMOBJ_EXT);

1256 �PMEMobjpool *pop = pmemobj_create(path, name,PMEMOBJ_MIN_POOL,

S_IRWXU);

1257 if (pop == NULL) {

1258 �DBUG_PRINT("info", ("failed : %s error number :

%d",path,errCodeMap[errno]));

1259 DBUG_RETURN(errCodeMap[errno]);

1260 }

1261 DBUG_PRINT("info", ("Success"));

1262 pmemobj_close(pop);

1263

1264 DBUG_RETURN(0);

1265 }

�Opening a Database Table

Before any read or write operations are performed on a table, the MariaDB server calls

the open()method to open the data and index tables. This method opens all the named

tables associated with the persistent memory storage engine at the time the storage

engine starts. A new table class variable, objtab, was added to hold the PMEMobjpool.

The names for the tables to be opened are provided by the MariaDB server. The index

container in volatile memory is populated using the open() function call at the time of

server start using the loadIndexTableFromPersistentMemory() function.

The pmemobj_open() function from libpmemobj is used to open an existing object

store memory pool (see Listing 13-5). The table is also opened at the time of a table

creation if any read/write action is triggered.

Listing 13-5.  ha_pmdk.cc – Opening a database table

290 int ha_pmdk::open(const char *name, int mode, uint test_if_locked)

291 {

...

Chapter 13 Enabling Persistence Using a Real-World Application

268

302 objtab = pmemobj_open(path, name);

303 if (objtab == NULL)

304 DBUG_RETURN(errCodeMap[errno]);

305

306 proot = pmemobj_root(objtab, sizeof (root));

307 // update the MAP when start occured

308 loadIndexTableFromPersistentMemory();

...

310 }

Once the storage engine is up and running, we can begin to insert data into it. But we

first must implement the INSERT, UPDATE, DELETE, and SELECT operations.

�Closing a Database Table

When the server is finished working with a table, it calls the closeTable() method to

close the file using pmemobj_close() and release any other resources (see Listing 13-6).

The pmemobj_close() function closes the memory pool indicated by objtab and deletes

the memory pool handle.

Listing 13-6.  ha_pmdk.cc – Closing a database table

376 int ha_pmdk::close(void)

377 {

378 DBUG_ENTER("ha_pmdk::close");

379 DBUG_PRINT("info", ("close"));

380

381 pmemobj_close(objtab);

382 objtab = NULL;

383

384 DBUG_RETURN(0);

385 }

�INSERT Operation

The INSERT operation is implemented in the write_row() method, shown in Listing 13-7.

During an INSERT, the row objects are maintained in a singly linked list. If the table

is indexed, the index table container in volatile memory is updated with the new

Chapter 13 Enabling Persistence Using a Real-World Application

269

row objects after the persistent operation completes successfully. write_row() is an

important method because, in addition to the allocation of persistent pool storage to

the rows, it is used to populate the indexing containers. pmemobj_tx_alloc() is used for

inserts. write_row() transactionally allocates a new object of a given size and type_num.

Listing 13-7.  ha_pmdk.cc – Closing a database table

417 int ha_pmdk::write_row(uchar *buf)

418 {

...

421 int err = 0;

422

423 if (isPrimaryKey() == true)

424 DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);

425

426 persistent_ptr<row> row;

427 TX_BEGIN(objtab) {

428 row = pmemobj_tx_alloc(sizeof (row) + table->s->reclength, 0);

429 memcpy(row->buf, buf, table->s->reclength);

430 row->next = proot->rows;

431 proot->rows = row;

432 } TX_ONABORT {

433 DBUG_PRINT("info", ("write_row_abort errno :%d ",errno));

434 err = errno;

435 } TX_END

436 stats.records++;

437

438 for (Field **field = table->field; *field; field++) {

439 if ((*field)->key_start.to_ulonglong() >= 1) {

440 std::string convertedKey = IdentifyTypeAndConvertToString((*fie

ld)->ptr, (*field)->type(),(*field)->key_length(),1);

441 insertRowIntoIndexTable(*field, convertedKey, row);

442 }

443 }

444 DBUG_RETURN(err);

445 }

Chapter 13 Enabling Persistence Using a Real-World Application

270

In every INSERT operation, the field values are checked for a preexisting duplicate.

The primary key field in the table is checked using the isPrimaryKey()function (line

423). If the key is a duplicate, the error HA_ERR_FOUND_DUPP_KEY is returned. The

isPrimaryKey() is implemented in Listing 13-8.

Listing 13-8.  ha_pmdk.cc – Checking for duplicate primary keys

462 bool ha_pmdk::isPrimaryKey(void)

463 {

464 bool ret = false;

465 database *db = database::getInstance();

466 table_ *tab;

467 key *k;

468 for (unsigned int i= 0; i < table->s->keys; i++) {

469 KEY* key_info = &table->key_info[i];

470 if (memcmp("PRIMARY",key_info->name.str,sizeof("PRIMARY"))==0) {

471 Field *field = key_info->key_part->field;

472 �std::string convertedKey = IdentifyTypeAndConvertToString

(field->ptr, field->type(),field->key_length(),1);

473 if (db->getTable(table->s->table_name.str, &tab)) {

474 if (tab->getKeys(field->field_name.str, &k)) {

475 if (k->verifyKey(convertedKey)) {

476 ret = true;

477 break;

478 }

479 }

480 }

481 }

482 }

483 return ret;

484 }

�UPDATE Operation

The server executes UPDATE statements by performing a rnd_init() or index_init()

table scan until it locates a row matching the key value in the WHERE clause of the UPDATE

statement before calling the update_row() method. If the table is an indexed table, the

Chapter 13 Enabling Persistence Using a Real-World Application

271

index container is also updated after this operation is successful. In the update_row()

method defined in Listing 13-9, the old_data field will have the previous row record in it,

while new_data will have the new data.

Listing 13-9.  ha_pmdk.cc – Updating existing row data

506 int ha_pmdk::update_row(const uchar *old_data, const uchar *new_data)

507 {

...

540 if (k->verifyKey(key_str))

541 k->updateRow(key_str, field_str);

...

551 if (current)

552 memcpy(current->buf, new_data, table->s->reclength);

...

The index table is also updated using the updateRow() method shown in Listing 13-10.

Listing 13-10.  ha_pmdk.cc – Updating existing row data

1363 bool key::updateRow(const std::string oldStr, const std::string newStr)

1364 {

...

1366 persistent_ptr<row> row_;

1367 bool ret = false;

1368 rowItr matchingEleIt = getCurrent();

1369

1370 if (matchingEleIt->first == oldStr) {

1371 row_ = matchingEleIt->second;

1372 std::pair<const std::string, persistent_ptr<row> > r(newStr, row_);

1373 rows.erase(matchingEleIt);

1374 rows.insert(r);

1375 ret = true;

1376 }

1377 DBUG_RETURN(ret);

1378 }

Chapter 13 Enabling Persistence Using a Real-World Application

272

�DELETE Operation

The DELETE operation is implemented using the delete_row() method. Three different

scenarios should be considered:

•	 Deleting an indexed value from the indexed table

•	 Deleting a non-indexed value from the indexed table

•	 Deleting a field from the non-indexed table

For each scenario, different functions are called. When the operation is successful,

the entry is removed from both the index (if the table is an indexed table) and persistent

memory. Listing 13-11 shows the logic to implement the three scenarios.

Listing 13-11.  ha_pmdk.cc – Updating existing row data

594 int ha_pmdk::delete_row(const uchar *buf)

595 {

...

602 // Delete the field from non indexed table

603 if (active_index == 64 && table->s->keys ==0) {

604 if (current)

605 deleteNodeFromSLL();

606 �} else if (active_index == 64 && table->s->keys !=0) { // Delete

non indexed column field from indexed table

607 if (current) {

608 deleteRowFromAllIndexedColumns(current);

609 deleteNodeFromSLL();

610 }

611 } else { // Delete indexed column field from indexed table

612 database *db = database::getInstance();

613 table_ *tab;

614 key *k;

615 KEY_PART_INFO *key_part = table->key_info[active_index].key_part;

616 if (db->getTable(table->s->table_name.str, &tab)) {

617 if (tab->getKeys(key_part->field->field_name.str, &k)) {

618 rowItr currNode = k->getCurrent();

619 rowItr prevNode = std::prev(currNode);

Chapter 13 Enabling Persistence Using a Real-World Application

273

620 if (searchNode(prevNode->second)) {

621 if (prevNode->second) {

622 deleteRowFromAllIndexedColumns(prevNode->second);

623 deleteNodeFromSLL();

624 }

625 }

626 }

627 }

628 }

629 stats.records--;

630

631 DBUG_RETURN(0);

632 }

Listing 13-12 shows how the deleteRowFromAllIndexedColumns() function deletes

the value from the index containers using the deleteRow() method.

Listing 13-12.  ha_pmdk.cc – Deletes an entry from the index containers

634 �void ha_pmdk::deleteRowFromAllIndexedColumns(const persistent_ptr<row>

&row)

635 {

...

643 if (db->getTable(table->s->table_name.str, &tab)) {

644 if (tab->getKeys(field->field_name.str, &k)) {

645 k->deleteRow(row);

646 }

...

The deleteNodeFromSLL() method deletes the object from the linked list residing on

persistent memory using libpmemobj transactions, as shown in Listing 13-13.

Chapter 13 Enabling Persistence Using a Real-World Application

274

Listing 13-13.  ha_pmdk.cc – Deletes an entry from the linked list using

transactions

651 int ha_pmdk::deleteNodeFromSLL()

652 {

653 if (!prev) {

654 if (!current->next) { // When sll contains single node

655 TX_BEGIN(objtab) {

656 delete_persistent<row>(current);

657 proot->rows = nullptr;

658 } TX_END

659 } else { // When deleting the first node of sll

660 TX_BEGIN(objtab) {

661 delete_persistent<row>(current);

662 proot->rows = current->next;

663 current = nullptr;

664 } TX_END

665 }

666 } else {

667 if (!current->next) { // When deleting the last node of sll

668 prev->next = nullptr;

669 } else { // When deleting other nodes of sll

670 prev->next = current->next;

671 }

672 TX_BEGIN(objtab) {

673 delete_persistent<row>(current);

674 current = nullptr;

675 } TX_END

676 }

677 return 0;

678 }

Chapter 13 Enabling Persistence Using a Real-World Application

275

�SELECT Operation

SELECT is an important operation that is required by several methods. Many methods

that are implemented for the SELECT operation are also called from other methods. The

rnd_init() method is used to prepare for a table scan for non-indexed tables, resetting

counters and pointers to the start of the table. If the table is an indexed table, the

MariaDB server calls the index_init() method. As shown in Listing 13-14, the pointers

are initialized.

Listing 13-14.  ha_pmdk.cc – rnd_init() is called when the system wants the

storage engine to do a table scan

869 int ha_pmdk::rnd_init(bool scan)

870 {

...

874 current=prev=NULL;

875 iter = proot->rows;

876 DBUG_RETURN(0);

877 }

When the table is initialized, the MariaDB server calls the rnd_next(), index_first(),

or index_read_map() method, depending on whether the table is indexed or not. These

methods populate the buffer with data from the current object and updates the iterator to

the next value. The methods are called once for every row to be scanned.

Listing 13-15 shows how the buffer passed to the function is populated with the

contents of the table row in the internal MariaDB format. If there are no more objects to

read, the return value must be HA_ERR_END_OF_FILE.

Listing 13-15.  ha_pmdk.cc – rnd_init() is called when the system wants the

storage engine to do a table scan

902 int ha_pmdk::rnd_next(uchar *buf)

903 {

...

910 memcpy(buf, iter->buf, table->s->reclength);

911 if (current != NULL) {

912 prev = current;

913 }

Chapter 13 Enabling Persistence Using a Real-World Application

276

914 current = iter;

915 iter = iter->next;

916

917 DBUG_RETURN(0);

918 }

This concludes the basic functionality our persistent memory enabled storage

engine set out to achieve. We encourage you to continue the development of this storage

engine to introduce more features and functionality.

�Summary
This chapter provided a walk-through using libpmemobj from the PMDK to create

a persistent memory-aware storage engine for the popular open source MariaDB

database. Using persistent memory in an application can provide continuity in the

event of an unplanned system shutdown along with improved performance gained by

storing your data close to the CPU where you can access it at the speed of the memory

bus. While database engines commonly use in-memory caches for performance, which

take time to warm up, persistent memory offers an immediately warm cache upon

application startup.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 13 Enabling Persistence Using a Real-World Application

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 13: Enabling Persistence Using a Real-World Application
	The Database Example
	Different Persistent Memory Enablement Approaches
	Developing a Persistent Memory-Aware MariaDB* Storage Engine
	Understanding the Storage Layer
	Creating a Storage Engine Class
	Creating a Database Table
	Opening a Database Table
	Closing a Database Table
	INSERT Operation
	UPDATE Operation
	DELETE Operation
	SELECT Operation

	Summary

