
207
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_12

CHAPTER 12

Debugging Persistent
Memory Applications
Persistent memory programming introduces new opportunities that allow developers to

directly persist data structures without serialization and to access them in place without

involving classic block I/O. As a result, you can merge your data models and avoid the

classic split between data in memory – which is volatile, fast, and byte addressable – with

data on traditional storage devices, which is non-volatile but slower.

Persistent memory programming also brings challenges. Recall our discussion

about power-fail protected persistence domains in Chapter 2: When a process or system

crashes on an Asynchronous DRAM Refresh (ADR)-enabled platform, data residing in

the CPU caches that has not yet been flushed, is lost. This is not a problem with volatile

memory because all the memory hierarchy is volatile. With persistent memory, however,

a crash can cause permanent data corruption. How often must you flush data? Flushing

too frequently yields suboptimal performance, and not flushing often enough leaves the

potential for data loss or corruption.

Chapter 11 described several approaches to designing data structures and using

methods such as copy-on-write, versioning, and transactions to maintain data integrity.

Many libraries within the Persistent Memory Development Kit (PMDK) provide

transactional updates of data structures and variables. These libraries provide optimal

CPU cache flushing, when required by the platform, at precisely the right time, so you

can program without concern about the hardware intricacies.

This programming paradigm introduces new dimensions related to errors and

performance issues that programmers need to be aware of. The PMDK libraries reduce

errors in persistent memory programming, but they cannot eliminate them. This chapter

https://doi.org/10.1007/978-1-4842-4932-1_12
https://doi.org/10.1007/978-1-4842-4932-1_2
https://doi.org/10.1007/978-1-4842-4932-1_11

208

describes common persistent memory programming issues and pitfalls and how to

correct them using the tools available. The first half of this chapter introduces the tools.

The second half presents several erroneous programming scenarios and describes how

to use the tools to correct the mistakes before releasing your code into production.

�pmemcheck for Valgrind
pmemcheck is a Valgrind (http://www.valgrind.org/) tool developed by Intel. It is very

similar to memcheck, which is the default tool in Valgrind to discover memory-related

bugs but adapted for persistent memory. Valgrind is an instrumentation framework for

building dynamic analysis tools. Some Valgrind tools can automatically detect many

memory management and threading bugs and profile your programs in detail. You can

also use Valgrind to build new tools.

To run pmemcheck, you need a modified version of Valgrind supporting the new

CLFLUSHOPT and CLWB flushing instructions. The persistent memory version of Valgrind

includes the pmemcheck tool and is available from https://github.com/pmem/valgrind.

Refer to the README.md within the GitHub project for installation instructions.

All the libraries in PMDK are already instrumented with pmemcheck. If you use PMDK

for persistent memory programming, you will be able to easily check your code with

pmemcheck without any code modification.

Before we discuss the pmemcheck details, the following two sections demonstrate how

it identifies errors in an out-of-bounds and a memory leak example.

�Stack Overflow Example
An out-of-bounds scenario is a stack/buffer overflow bug, where data is written or

read beyond the capacity of the stack or array. Consider the small code snippet in

Listing 12-1.

Listing 12-1.  stackoverflow.c: Example of an out-of-bound bug

 32 #include <stdlib.h>

 33

 34 int main() {

 35 int *stack = malloc(100 * sizeof(int));

 36 stack[100] = 1234;

Chapter 12 Debugging Persistent Memory Applications

http://www.valgrind.org/
https://github.com/pmem/valgrind

209

 37 free(stack);

 38 return 0;

 39 }

In line 36, we are incorrectly assigning the value 1234 to the position 100, which is

outside the array range of 0-99. If we compile and run this code, it may not fail. This is

because, even if we only allocated 400 bytes (100 integers) for our array, the operating

system provides a whole memory page, typically 4KiB. Executing the binary under

Valgrind reports an issue, shown in Listing 12-2.

Listing 12-2.  Running Valgrind with code Listing 12-1

$ valgrind ./stackoverflow

==4188== Memcheck, a memory error detector

...

==4188== Invalid write of size 4

==4188== at 0x400556: main (stackoverflow.c:36)

==4188== Address 0x51f91d0 is 0 bytes after a block of size 400 alloc'd

==4188== at 0x4C2EB37: malloc (vg_replace_malloc.c:299)

==4188== by 0x400547: main (stackoverflow.c:35)

...

==4188== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Because Valgrind can produce long reports, we show only the relevant “Invalid write”

error part of the report. When compiling code with symbol information (gcc -g), it is

easy to see the exact place in the code where the error is detected. In this case, Valgrind

highlights line 36 of the stackoverflow.c file. With the issue identified in the code, we

know where to fix it.

�Memory Leak Example
Memory leaks are another common issue. Consider the code in Listing 12-3.

Listing 12-3.  leak.c: Example of a memory leak

 32 #include <stdlib.h>

 33

 34 void func(void) {

Chapter 12 Debugging Persistent Memory Applications

210

 35 int *stack = malloc(100 * sizeof(int));

 36 }

 37

 38 int main(void) {

 39 func();

 40 return 0;

 41 }

The memory allocation is moved to the function func(). A memory leak occurs

because the pointer to the newly allocated memory is a local variable on line 35, which is

lost when the function returns. Executing this program under Valgrind shows the results

in Listing 12-4.

Listing 12-4.  Running Valgrind with code Listing 12-3

$ valgrind --leak-check=yes ./leak

==4413== Memcheck, a memory error detector

...

==4413== 400 bytes in 1 blocks are definitely lost in loss record 1 of 1

==4413== at 0x4C2EB37: malloc (vg_replace_malloc.c:299)

==4413== by 0x4004F7: func (leak.c:35)

==4413== by 0x400507: main (leak.c:39)

==4413==

==4413== LEAK SUMMARY:

...

==4413== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Valgrind shows a loss of 400 bytes of memory allocated at leak.c:35. To learn more,

please visit the official Valgrind documentation (http://www.valgrind.org/docs/

manual/index.html).

�Intel Inspector – Persistence Inspector
Intel Inspector – Persistence Inspector is a runtime tool that developers use to detect

programming errors in persistent memory programs. In addition to cache flush misses,

this tool detects

Chapter 12 Debugging Persistent Memory Applications

http://www.valgrind.org/docs/manual/index.html
http://www.valgrind.org/docs/manual/index.html

211

•	 Redundant cache flushes and memory fences

•	 Out-of-order persistent memory stores

•	 Incorrect undo logging for the PMDK

Persistence Inspector is included as part of Intel Inspector, an easy-to-use

memory and threading error debugger for C, C++, and Fortran that works with both

Windows and Linux operating systems. It has an intuitive graphical and command-

line interfaces, and it can be integrated with Microsoft Visual Studio. Intel Inspector

is available as part of Intel Parallel Studio XE (https://software.intel.com/en-us/

parallel-studio-xe) and Intel System Studio (https://software.intel.com/en-us/

system-studio).

This section describes how the Intel Inspector tool works with the same out-of-

bounds and memory leak examples from Listings 12-1 and 12-3.

�Stack Overflow Example
The Listing 12-5 example demonstrates how to use the command-line interface to

perform the analysis and collect the data and then switches to the GUI to examine

the results in detail. To collect the data, we use the inspxe-cl utility with the –c=mi2

collection option for detecting memory problems.

Listing 12-5.  Running Intel Inspector with code Listing 12-1

$ inspxe-cl -c=mi2 -- ./stackoverflow

1 new problem(s) found

 1 Invalid memory access problem(s) detected

Intel Inspector creates a new directory with the data and analysis results, and prints

a summary of findings to the terminal. For the stackoverflow app, it detected one invalid

memory access.

After launching the GUI using inspxe-gui, we open the results collection through

the File ➤ Open ➤ Result menu and navigate to the directory created by inspxe-cli. The

directory will be named r000mi2 if it is the first run. Within the directory is a file named

r000mi2.inspxe. Once opened and processed, the GUI presents the data shown in

Figure 12-1.

Chapter 12 Debugging Persistent Memory Applications

https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/system-studio
https://software.intel.com/en-us/system-studio

212

The GUI defaults to the Summary tab to provide an overview of the analysis. Since

we compiled the program with symbols, the Code Locations panel at the bottom shows

the exact place in the code where the problem was detected. Intel Inspector identified

the same error on line 36 that Valgrind found.

If Intel Inspector detects multiple problems within the program, those issues are

listed in the Problems section in the upper left area of the window. You can select each

problem and see the information relating to it in the other sections of the window.

�Memory Leak Example
The Listing 12-6 example runs Intel Inspector using the leak.c code from Listing 12-2

and uses the same arguments from the stackoverflow program to detect memory issues.

Listing 12-6.  Running Intel Inspector with code Listing 12-2

$ inspxe-cl -c=mi2 -- ./leak

1 new problem(s) found

 1 Memory leak problem(s) detected

Figure 12-1.  GUI of Intel Inspector showing results for Listing 12-1

Chapter 12 Debugging Persistent Memory Applications

213

The Intel Inspector output is shown in Figure 12-2 and explains that a memory leak

problem was detected. When we open the r001mi2/r001mi2.inspxe result file in the

GUI, we get something similar to what is shown in the lower left section of Figure 12-2.

The information related to the leaked object is shown above the code listing:

•	 Allocation site (source, function name, and module)

•	 Object size (400 bytes)

•	 The variable name that caused the leak

The right side of the Code panel shows the call stack that led to the bug (call stacks

are read from bottom to top). We see the call to func() in the main() function on line 39

(leak.c:39), then the memory allocation occurs within func() on line 35 (leak.c:35).

The Intel Inspector offers much more than what we presented here. To learn

more, please visit the documentation (https://software.intel.com/en-us/intel-

inspector-support/documentation).

Figure 12-2.  GUI of Intel Inspector showing results for Listing 12-2

Chapter 12 Debugging Persistent Memory Applications

https://software.intel.com/en-us/intel-inspector-support/documentation
https://software.intel.com/en-us/intel-inspector-support/documentation

214

�Common Persistent Memory Programming
Problems
This section reviews several coding and performance problems you are likely to

encounter, how to catch them using the pmemcheck and Intel Inspector tools, and how to

resolve the issues.

The tools we use highlight deliberately added issues in our code that can cause

bugs, data corruption, or other problems. For pmemcheck, we show how to bypass data

sections that should not be checked by the tool and use macros to assist the tool in better

understanding our intent.

�Nonpersistent Stores
Nonpersistent stores refer to data written to persistent memory but not flushed explicitly.

It is understood that if the program writes to persistent memory, it wishes for those

writes to be persistent. If the program ends without explicitly flushing writes, there is an

open possibility for data corruption. When a program exits gracefully, all the pending

writes in the CPU caches are flushed automatically. However, if the program were to

crash unexpectedly, writes still residing in the CPU caches could be lost.

Consider the code in Listing 12-7 that writes data to a persistent memory device

mounted to /mnt/pmem without flushing the data.

Listing 12-7.  Example of writing to persistent memory without flushing

 32 #include <stdio.h>

 33 #include <sys/mman.h>

 34 #include <fcntl.h>

 35

 36 int main(int argc, char *argv[]) {

 37 int fd, *data;

 38 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 39 posix_fallocate(fd, 0, sizeof(int));

 40 data = (int *) mmap(NULL, sizeof(int), PROT_READ |

 41 PROT_WRITE, MAP_SHARED_VALIDATE |

 42 MAP_SYNC, fd, 0);

Chapter 12 Debugging Persistent Memory Applications

215

 43 *data = 1234;

 44 munmap(data, sizeof(int));

 45 return 0;

 46 }

•	 Line 38: We open /mnt/pmem/file.

•	 Line 39: We make sure there is enough space in the file to allocate an

integer by calling posix_fallocate().

•	 Line 40: We memory map /mnt/pmem/file.

•	 Line 43: We write 1234 to the memory.

•	 Line 44: We unmap the memory.

If we run pmemcheck with Listing 12-7, we will not get any useful information

because pmemcheck has no way to know which memory addresses are persistent and

which ones are volatile. This may change in future versions. To run pmemcheck, we pass

--tool=pmemcheck argument to valgrind as shown in Listing 12-8. The result shows no

issues were detected.

Listing 12-8.  Running pmemcheck with code Listing 12-7

$ valgrind --tool=pmemcheck ./listing_12-7

==116951== pmemcheck-1.0, a simple persistent store checker

==116951== Copyright (c) 2014-2016, Intel Corporation

==116951== �Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright

info

==116951== Command: ./listing_12-9

==116951==

==116951==

==116951== Number of stores not made persistent: 0

==116951== ERROR SUMMARY: 0 errors

We can inform pmemcheck which memory regions are persistent using a VALGRIND_

PMC_REGISTER_PMEM_MAPPING macro shown on line 52 in Listing 12-9. We must include

the valgrind/pmemcheck.h header for pmemcheck, line 36, which defines the VALGRIND_

PMC_REGISTER_PMEM_MAPPING macro and others.

Chapter 12 Debugging Persistent Memory Applications

216

Listing 12-9.  Example of writing to persistent memory using Valgrind macros

without flushing

 33 #include <stdio.h>

 34 #include <sys/mman.h>

 35 #include <fcntl.h>

 36 #include <valgrind/pmemcheck.h>

 37

 38 int main(int argc, char *argv[]) {

 39 int fd, *data;

 40

 41 // open the file and allocate enough space for an

 42 // integer

 43 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 44 posix_fallocate(fd, 0, sizeof(int));

 45

 46 // memory map the file and register the mapped

 47 // memory with VALGRIND

 48 data = (int *) mmap(NULL, sizeof(int),

 49 PROT_READ|PROT_WRITE,

 50 MAP_SHARED_VALIDATE | MAP_SYNC,

 51 fd, 0);

 52 VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

 53 sizeof(int));

 54

 55 // write to pmem

 56 *data = 1234;

 57

 58 // unmap the memory and un-register it with

 59 // VALGRIND

 60 munmap(data, sizeof(int));

 61 VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

 62 sizeof(int));

 63 return 0;

 64 }

Chapter 12 Debugging Persistent Memory Applications

217

We remove persistent memory mapping identification from pmemcheck using the

VALGRIND_PMC_REMOVE_PMEM_MAPPING macro. As mentioned earlier, this is useful when

you want to exclude parts of persistent memory from the analysis. Listing 12-10 shows

executing pmemcheck with the modified code in Listing 12-9, which now reports a

problem.

Listing 12-10.  Running pmemcheck with code Listing 12-9

$ valgrind --tool=pmemcheck ./listing_12-9

==8904== pmemcheck-1.0, a simple persistent store checker

...

==8904== Number of stores not made persistent: 1

==8904== Stores not made persistent properly:

==8904== [0] at 0x4008B4: main (listing_12-9.c:56)

==8904== Address: 0x4027000 size: 4 state: DIRTY

==8904== Total memory not made persistent: 4

==8904== ERROR SUMMARY: 1 errors

See that pmemcheck detected that data is not being flushed after a write in

listing_12-9.c, line 56. To fix this, we create a new flush() function, accepting an

address and size, to flush all the CPU cache lines storing any part of the data using the

CLFLUSH machine instruction (__mm_clflush()). Listing 12-11 shows the modified

code.

Listing 12-11.  Example of writing to persistent memory using Valgrind with

flushing

 33 #include <emmintrin.h>

 34 #include <stdint.h>

 35 #include <stdio.h>

 36 #include <sys/mman.h>

 37 #include <fcntl.h>

 38 #include <valgrind/pmemcheck.h>

 39

Chapter 12 Debugging Persistent Memory Applications

218

 40 // flushing from user space

 41 void flush(const void *addr, size_t len) {

 42 uintptr_t flush_align = 64, uptr;

 43 for (uptr = (uintptr_t)addr & ~(flush_align - 1);

 44 uptr < (uintptr_t)addr + len;

 45 uptr += flush_align)

 46 _mm_clflush((char *)uptr);

 47 }

 48

 49 int main(int argc, char *argv[]) {

 50 int fd, *data;

 51

 52 // open the file and allocate space for one

 53 // integer

 54 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 55 posix_fallocate(fd, 0, sizeof(int));

 56

 57 // map the file and register it with VALGRIND

 58 data = (int *)mmap(NULL, sizeof(int),

 59 PROT_READ | PROT_WRITE,

 60 MAP_SHARED_VALIDATE | MAP_SYNC, fd, 0);

 61 VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

 62 sizeof(int));

 63

 64 // write and flush

 65 *data = 1234;

 66 flush((void *)data, sizeof(int));

 67

 68 // unmap and un-register

 69 munmap(data, sizeof(int));

 70 VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

 71 sizeof(int));

 72 return 0;

 73 }

Chapter 12 Debugging Persistent Memory Applications

219

Running the modified code through pmemcheck reports no issues, as shown in

Listing 12-12.

Listing 12-12.  Running pmemcheck with code Listing 12-11

$ valgrind --tool=pmemcheck ./listing_12-11

==9710== pmemcheck-1.0, a simple persistent store checker

...

==9710== Number of stores not made persistent: 0

==9710== ERROR SUMMARY: 0 errors

Because Intel Inspector – Persistence Inspector does not consider an unflushed write a

problem unless there is a write dependency with other variables, we need to show a more

complex example than writing a single variable in Listing 12-7. You need to understand

how programs writing to persistent memory are designed to know which parts of the data

written to the persistent media are valid and which parts are not. Remember that recent

writes may still be sitting on the CPU caches if they are not explicitly flushed.

Transactions solve the problem of half-written data by using logs to either roll back

or apply uncommitted changes; thus, programs reading the data back can be assured

that everything written is valid. In the absence of transactions, it is impossible to know

whether or not the data written on persistent memory is valid, especially if the program

crashes.

A writer can inform a reader that data is properly written in one of two ways, either

by setting a “valid” flag or by using a watermark variable with the address (or the index,

in the case of an array) of the last valid written memory position.

Listing 12-13 shows pseudocode for how the “valid” flag approach could be

implemented.

Listing 12-13.  Pseudocode showcasing write dependency of var1 with var1_valid

 1 writer() {

 2 var1 = "This is a persistent Hello World

 3 written to persistent memory!";

 4 flush (var1);

 5 var1_valid = True;

 6 flush (var1_valid);

 7 }

 8

Chapter 12 Debugging Persistent Memory Applications

220

 9 reader() {

 10 if (var1_valid == True) {

 11 print (var1);

 12 }

 14 }

The reader() will read the data in var1 if the var1_valid flag is set to True (line 10),

and var1_valid can only be True if var1 has been flushed (lines 4 and 5).

We can now modify the code from Listing 12-7 to introduce this “valid” flag. In

Listing 12-14, we separate the code into writer and reader programs and map two

integers instead of one (to accommodate for the flag). Listing 12-15 shows the reading to

persistent memory example.

Listing 12-14.  Example of writing to persistent memory with a write

dependency; the code does not flush

 33 #include <stdio.h>

 34 #include <sys/mman.h>

 35 #include <fcntl.h>

 36 #include <string.h>

 37

 38 int main(int argc, char *argv[]) {

 39 int fd, *ptr, *data, *flag;

 40

 41 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 42 posix_fallocate(fd, 0, sizeof(int)*2);

 43

 44 ptr = (int *) mmap(NULL, sizeof(int)*2,

 45 PROT_READ | PROT_WRITE,

 46 MAP_SHARED_VALIDATE | MAP_SYNC,

 47 fd, 0);

 48

 49 data = &(ptr[1]);

 50 flag = &(ptr[0]);

 51 *data = 1234;

 52 *flag = 1;

 53

Chapter 12 Debugging Persistent Memory Applications

221

 54 munmap(ptr, 2 * sizeof(int));

 55 return 0;

 56 }

Listing 12-15.  Example of reading from persistent memory with a write

dependency

 33 #include <stdio.h>

 34 #include <sys/mman.h>

 35 #include <fcntl.h>

 36

 37 int main(int argc, char *argv[]) {

 38 int fd, *ptr, *data, *flag;

 39

 40 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 41 posix_fallocate(fd, 0, 2 * sizeof(int));

 42

 43 ptr = (int *) mmap(NULL, 2 * sizeof(int),

 44 PROT_READ | PROT_WRITE,

 45 MAP_SHARED_VALIDATE | MAP_SYNC,

 46 fd, 0);

 47

 48 data = &(ptr[1]);

 49 flag = &(ptr[0]);

 50 if (*flag == 1)

 51 printf("data = %d\n", *data);

 52

 53 munmap(ptr, 2 * sizeof(int));

 54 return 0;

 55 }

Checking our code with Persistence Inspector is done in three steps.

Step 1: We must run the before-unfortunate-event phase analysis (see Listing 12-16),

which corresponds to the writer code in Listing 12-14.

Chapter 12 Debugging Persistent Memory Applications

222

Listing 12-16.  Running Intel Inspector – Persistence Inspector with code

Listing 12-14 for before-unfortunate-event phase analysis

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-14

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-14"

The parameter cb is an abbreviation of check-before-unfortunate-event, which

specifies the type of analysis. We must also pass the persistent memory file that will be

used by the application so that Persistence Inspector knows which memory accesses

correspond to persistent memory. By default, the output of the analysis is stored in

a local directory under the .pmeminspdata directory. (You can also specify a custom

directory; run pmeminsp -help for information on the available options.)

Step 2: We run the after-unfortunate-event phase analysis (see Listing 12-17). This

corresponds to the code that will read the data after an unfortunate event happens, such

as a process crash.

Listing 12-17.  Running Intel Inspector – Persistence Inspector with code Listing

12-15 for after-unfortunate-event phase analysis

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

The parameter ca is an abbreviation of check-after-unfortunate-event. Again, the

output of the analysis is stored in .pmeminspdata within the current working directory.

Step 3: We generate the final report. For this, we pass the option rp (abbreviation for

report) along with the name of both programs, as shown in Listing 12-18.

Chapter 12 Debugging Persistent Memory Applications

223

Listing 12-18.  Generating a final report with Intel Inspector – Persistence

Inspector from the analysis done in Listings 12-16 and 12-17

$ pmeminsp rp -- listing_12-16 listing_12-17

#===

Diagnostic # 1: Missing cache flush

#-------------------

 The first memory store

 of size 4 at address 0x7F9C68893004 (offset 0x4 in /mnt/pmem/file)

 in /data/listing_12-16!main at listing_12-16.c:51 - 0x67D

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

 is not flushed before

 the second memory store

 of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)

 in /data/listing_12-16!main at listing_12-16.c:52 - 0x687

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

 while

 memory load from the location of the first store

 in /data/listing_12-17!main at listing_12-17.c:51 - 0x6C8

 depends on

 memory load from the location of the second store

 in /data/listing_12-17!main at listing_12-17.c:50 - 0x6BD

#===

Diagnostic # 2: Missing cache flush

#-------------------

 Memory store

 of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)

 in /data/listing_12-16!main at listing_12-16.c:52 - 0x687

Chapter 12 Debugging Persistent Memory Applications

224

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

 is not flushed before

 memory is unmapped

 in /data/listing_12-16!main at listing_12-16.c:54 - 0x699

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

Analysis complete. 2 diagnostic(s) reported.

The output is very verbose, but it is easy to follow. We get two missing cache flushes

(diagnostics 1 and 2) corresponding to lines 51 and 52 of listing_12-16.c. We do these

writes to the locations in the mapped persistent memory pointed by variables flag

and data. The first diagnostic says that the first memory store is not flushed before the

second store, while, at the same time, there is a load dependency of the first store to the

second. This is exactly what we intended.

The second diagnostic says that the second store (to the flag) itself is never actually

flushed before ending. Even if we flush the first store correctly before we write the flag,

we must still flush the flag to make sure the dependency works.

To open the results in the Intel Inspector GUI, you can use the -insp option when

generating the report, for example:

$ pmeminsp rp -insp -- listing_12-16 listing_12-17

This generates a directory called r000pmem inside the analysis directory

(.pmeminspdata by default). Launch the GUI running inspxe-gui and open the result

file by going to File ➤ Open ➤ Result and selecting the file r000pmem/r000pmem.inspxe.

You should see something similar to what is shown in Figure 12-3.

Chapter 12 Debugging Persistent Memory Applications

225

The GUI shows the same information as the command-line analysis but in a more

readable way by highlighting the errors directly on our source code. As Figure 12-3

shows, the modification of the flag is called “primary store.”

In Figure 12-4, the second diagnosis is selected in the Problems pane, showing the

missing flush for the flag itself.

Figure 12-3.  GUI of Intel Inspector showing results for Listing 12-18 (diagnostic 1)

Chapter 12 Debugging Persistent Memory Applications

226

To conclude this section, we fix the code and rerun the analysis with Persistence

Inspector. The code in Listing 12-19 adds the necessary flushes to Listing 12-14.

Listing 12-19.  Example of writing to persistent memory with a write

dependency. The code flushes both writes

 33 #include <emmintrin.h>

 34 #include <stdint.h>

 35 #include <stdio.h>

 36 #include <sys/mman.h>

 37 #include <fcntl.h>

 38 #include <string.h>

 39

 40 void flush(const void *addr, size_t len) {

 41 uintptr_t flush_align = 64, uptr;

 42 for (uptr = (uintptr_t)addr & ~(flush_align - 1);

 43 uptr < (uintptr_t)addr + len;

 44 uptr += flush_align)

Figure 12-4.  GUI of Intel Inspector showing results for Listing 12-20 (diagnostic #2)

Chapter 12 Debugging Persistent Memory Applications

227

 45 _mm_clflush((char *)uptr);

 46 }

 47

 48 int main(int argc, char *argv[]) {

 49 int fd, *ptr, *data, *flag;

 50

 51 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 52 posix_fallocate(fd, 0, sizeof(int) * 2);

 53

 54 ptr = (int *) mmap(NULL, sizeof(int) * 2,

 55 PROT_READ | PROT_WRITE,

 56 MAP_SHARED_VALIDATE | MAP_SYNC,

 57 fd, 0);

 58

 59 data = &(ptr[1]);

 60 flag = &(ptr[0]);

 61 *data = 1234;

 62 flush((void *) data, sizeof(int));

 63 *flag = 1;

 64 flush((void *) flag, sizeof(int));

 65

 66 munmap(ptr, 2 * sizeof(int));

 67 return 0;

 68 }

Listing 12-20 executes Persistence Inspector against the modified code from

Listing 12-19, then the reader code from Listing 12-15, and finally running the report,

which says that no problems were detected.

Listing 12-20.  Running full analysis with Intel Inspector – Persistence Inspector

with code Listings 12-19 and 12-15

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-19

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-19"

Chapter 12 Debugging Persistent Memory Applications

228

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

$ pmeminsp rp -- listing_12-19 listing_12-15

Analysis complete. No problems detected.

�Stores Not Added into a Transaction
When working within a transaction block, it is assumed that all the modified persistent

memory addresses were added to it at the beginning, which also implies that their

previous values are copied to an undo log. This allows the transaction to implicitly flush

added memory addresses at the end of the block or roll back to the old values in the

event of an unexpected failure. A modification within a transaction to an address that is

not added to the transaction is a bug that you must be aware of.

Consider the code in Listing 12-21 that uses the libpmemobj library from PMDK. It

shows an example of writing within a transaction using a memory address that is not

explicitly tracked by the transaction.

Listing 12-21.  Example of writing within a transaction with a memory address

not added to the transaction

 33 #include <libpmemobj.h>

 34

 35 struct my_root {

 36 int value;

 37 int is_odd;

 38 };

 39

 40 // registering type 'my_root' in the layout

 41 POBJ_LAYOUT_BEGIN(example);

 42 POBJ_LAYOUT_ROOT(example, struct my_root);

 43 POBJ_LAYOUT_END(example);

 44

Chapter 12 Debugging Persistent Memory Applications

229

 45 int main(int argc, char *argv[]) {

 46 // creating the pool

 47 PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

 48 POBJ_LAYOUT_NAME(example),

 49 (1024 * 1024 * 100), 0666);

 50

 51 // transation

 52 TX_BEGIN(pop) {

 53 TOID(struct my_root) root

 54 = POBJ_ROOT(pop, struct my_root);

 55

 56 // adding root.value to the transaction

 57 TX_ADD_FIELD(root, value);

 58

 59 D_RW(root)->value = 4;

 60 D_RW(root)->is_odd = D_RO(root)->value % 2;

 61 } TX_END

 62

 63 return 0;

 64 }

Note  For a refresh on the definitions of a layout, root object, or macros used in
Listing 12-21, see Chapter 7 where we introduce libpmemobj.

In lines 35-38, we create a my_root data structure, which has two integer members:

value and is_odd. These integers are modified inside a transaction (lines 52-61),

setting value=4 and is_odd=0. On line 57, we are only adding the value variable to the

transaction, leaving is_odd out. Given that persistent memory is not natively supported

in C, there is no way for the compiler to warn you about this. The compiler cannot

distinguish between pointers to volatile memory vs. those to persistent memory.

Listing 12-22 shows the response from running the code through pmemcheck.

Chapter 12 Debugging Persistent Memory Applications

https://doi.org/10.1007/978-1-4842-4932-1_7

230

Listing 12-22.  Running pmemcheck with code Listing 12-21

$ valgrind --tool=pmemcheck ./listing_12-21

==48660== pmemcheck-1.0, a simple persistent store checker

==48660== Copyright (c) 2014-2016, Intel Corporation

==48660== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==48660== Command: ./listing_12-21

==48660==

==48660==

==48660== Number of stores not made persistent: 1

==48660== Stores not made persistent properly:

==48660== [0] at 0x400C2D: main (listing_12-25.c:60)

==48660== Address: 0x7dc0554 size: 4 state: DIRTY

==48660== Total memory not made persistent: 4

==48660==

==48660== Number of stores made without adding to transaction: 1

==48660== Stores made without adding to transactions:

==48660== [0] at 0x400C2D: main (listing_12-25.c:60)

==48660== Address: 0x7dc0554 size: 4

==48660== ERROR SUMMARY: 2 errors

Although they are both related to the same root cause, pmemcheck identified two

issues. One is the error we expected; that is, we have a store inside a transaction that

was not added to it. The other error says that we are not flushing the store. Since

transactional stores are flushed automatically when the program exits the transaction,

finding two errors per store to a location not included within a transaction should be

common in pmemcheck.

Persistence Inspector has a more user-friendly output, as shown in Listing 12-23.

Listing 12-23.  Generating a report with Intel Inspector – Persistence Inspector

for code Listing 12-21

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing_12-21

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-21"

$

Chapter 12 Debugging Persistent Memory Applications

231

$ pmeminsp rp -- ./listing_12-21

#===

Diagnostic # 1: Store without undo log

#-------------------

 Memory store

 of size 4 at address 0x7FAA84DC0554 (offset 0x3C0554 in /mnt/pmem/pool)

 in /data/listing_12-21!main at listing_12-21.c:60 - 0xC2D

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-21!_start at <unknown_file>:<unknown_line> - 0x954

 is not undo logged in

 transaction

 in /data/listing_12-21!main at listing_12-21.c:52 - 0xB67

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

 in /data/listing_12-21!_start at <unknown_file>:<unknown_line> - 0x954

Analysis complete. 1 diagnostic(s) reported.

We do not perform an after-unfortunate-event phase analysis here because we are

only concerned about transactions.

We can fix the problem reported in Listing 12-23 by adding the whole root object to

the transaction using TX_ADD(root), as shown on line 53 in Listing 12-24.

Listing 12-24.  Example of adding an object and writing it within a transaction

 32 #include <libpmemobj.h>

 33

 34 struct my_root {

 35 int value;

 36 int is_odd;

 37 };

 38

 39 POBJ_LAYOUT_BEGIN(example);

 40 POBJ_LAYOUT_ROOT(example, struct my_root);

 41 POBJ_LAYOUT_END(example);

 42

Chapter 12 Debugging Persistent Memory Applications

232

 43 int main(int argc, char *argv[]) {

 44 PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

 45 POBJ_LAYOUT_NAME(example),

 46 (1024 * 1024 * 100), 0666);

 47

 48 TX_BEGIN(pop) {

 49 TOID(struct my_root) root

 50 = POBJ_ROOT(pop, struct my_root);

 51

 52 // adding full root to the transaction

 53 TX_ADD(root);

 54

 55 D_RW(root)->value = 4;

 56 D_RW(root)->is_odd = D_RO(root)->value % 2;

 57 } TX_END

 58

 59 return 0;

 60 }

If we run the code through pmemcheck, as shown in Listing 12-25, no issues are

reported.

Listing 12-25.  Running pmemcheck with code Listing 12-24

$ valgrind --tool=pmemcheck ./listing_12-24

==80721== pmemcheck-1.0, a simple persistent store checker

==80721== Copyright (c) 2014-2016, Intel Corporation

==80721== �Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright

info

==80721== Command: ./listing_12-24

==80721==

==80721==

==80721== Number of stores not made persistent: 0

==80721== ERROR SUMMARY: 0 errors

Chapter 12 Debugging Persistent Memory Applications

233

Similarly, no issues are reported by Persistence Inspector in Listing 12-26.

Listing 12-26.  Generating report with Intel Inspector – Persistence Inspector for

code Listing 12-24

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing_12-24

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-24"

$

$ pmeminsp rp -- ./listing_12-24

Analysis complete. No problems detected.

After properly adding all the memory that will be modified to the transaction, both

tools report that no problems were found.

�Memory Added to Two Different Transactions
In the case where one program can work with multiple transactions simultaneously,

adding the same memory object to multiple transactions can potentially corrupt data.

This can occur in PMDK, for example, where the library maintains a different transaction

per thread. If two threads write to the same object within different transactions, after an

application crash, a thread might overwrite modifications made by another thread in a

different transaction. In database systems, this problem is known as dirty reads. Dirty

reads violate the isolation requirement of the ACID (atomicity, consistency, isolation,

durability) properties, as shown in Figure 12-5.

Chapter 12 Debugging Persistent Memory Applications

234

In Figure 12-5, time is shown in the y axis with time progressing downward. These

operations occur in the following order:

•	 Assume X=0 when the application starts.

•	 A main() function creates two threads: Thread 1 and Thread 2. Both

threads are intended to start their own transactions and acquire the

lock to modify X.

•	 Since Thread 1 runs first, it acquires the lock on X first. It then

adds the X variable to the transaction before incrementing X by 5.

Transparent to the program, the value of X (X=0) is added to the undo

log when X was added to the transaction. Since the transaction is not

yet complete, the application has not yet explicitly flushed the value.

•	 Thread 2 starts, begins its own transaction, acquires the lock, reads

the value of X (which is now 5), adds X=5 to the undo log, and

increments it by 5. The transaction completes successfully, and

Thread 2 flushes the CPU caches. Now, x=10.

Figure 12-5.  The rollback mechanism for the unfinished transaction in Thread 1
is also overriding the changes made by Thread 2, even though the transaction for
Thread 2 finishes correctly

Chapter 12 Debugging Persistent Memory Applications

235

•	 Unfortunately, the program crashes after Thread 2 successfully

completes its transaction but before Thread 1 was able to finish its

transaction and flush its value.

This scenario leaves the application with an invalid, but consistent, value of x=10.

Since transactions are atomic, all changes done within them are not valid until they

successfully complete.

When the application starts, it knows it must perform a recovery operation due

to the previous crash and will replay the undo logs to rewind the partial update made

by Thread 1. The undo log restores the value of X=0, which was correct when Thread 1

added its entry. The expected value of X should be X=5 in this situation, but the undo log

puts X=0. You can probably see the huge potential for data corruption that this situation

can produce.

We describe concurrency for multithreaded applications in Chapter 14. Using

libpmemobj-cpp, the C++ language binding library to libpmemobj, concurrency issues

are very easy to resolve because the API allows us to pass a list of locks using lambda

functions when transactions are created. Chapter 8 discusses libpmemobj-cpp and

lambda functions in more detail.

Listing 12-27 shows how you can use a single mutex to lock a whole transaction. This

mutex can either be a standard mutex (std::mutex) if the mutex object resides in volatile

memory or a pmem mutex (pmem::obj::mutex) if the mutex object resides in persistent

memory.

Listing 12-27.  Example of a libpmemobj++ transaction whose writes are both

atomic – with respect to persistent memory – and isolated – in a multithreaded

scenario. The mutex is passed to the transaction as a parameter

transaction::run (pop, [&] {

 ...

 // all writes here are atomic and thread safe

 ...

 }, mutex);

Consider the code in Listing 12-28 that simultaneously adds the same memory

region to two different transactions.

Chapter 12 Debugging Persistent Memory Applications

https://doi.org/10.1007/978-1-4842-4932-1_14
https://doi.org/10.1007/978-1-4842-4932-1_8

236

Listing 12-28.  Example of two threads simultaneously adding the same

persistent memory location to their respective transactions

 33 #include <libpmemobj.h>

 34 #include <pthread.h>

 35

 36 struct my_root {

 37 int value;

 38 int is_odd;

 39 };

 40

 41 POBJ_LAYOUT_BEGIN(example);

 42 POBJ_LAYOUT_ROOT(example, struct my_root);

 43 POBJ_LAYOUT_END(example);

 44

 45 pthread_mutex_t lock;

 46

 47 // function to be run by extra thread

 48 void *func(void *args) {

 49 PMEMobjpool *pop = (PMEMobjpool *) args;

 50

 51 TX_BEGIN(pop) {

 52 pthread_mutex_lock(&lock);

 53 TOID(struct my_root) root

 54 = POBJ_ROOT(pop, struct my_root);

 55 TX_ADD(root);

 56 D_RW(root)->value = D_RO(root)->value + 3;

 57 pthread_mutex_unlock(&lock);

 58 } TX_END

 59 }

 60

 61 int main(int argc, char *argv[]) {

 62 PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

 63 POBJ_LAYOUT_NAME(example),

 64 (1024 * 1024 * 10), 0666);

 65

Chapter 12 Debugging Persistent Memory Applications

237

 66 pthread_t thread;

 67 pthread_mutex_init(&lock, NULL);

 68

 69 TX_BEGIN(pop) {

 70 pthread_mutex_lock(&lock);

 71 TOID(struct my_root) root

 72 = POBJ_ROOT(pop, struct my_root);

 73 TX_ADD(root);

 74 pthread_create(&thread, NULL,

 75 func, (void *) pop);

 76 D_RW(root)->value = D_RO(root)->value + 4;

 77 D_RW(root)->is_odd = D_RO(root)->value % 2;

 78 pthread_mutex_unlock(&lock);

 79 // wait to make sure other thread finishes 1st

 80 pthread_join(thread, NULL);

 81 } TX_END

 82

 83 pthread_mutex_destroy(&lock);

 84 return 0;

 85 }

•	 Line 69: The main thread starts a transaction and adds the root data

structure to it (line 73).

•	 Line 74: We create a new thread by calling pthread_create() and

have it execute the func() function. This function also starts a

transaction (line 51) and adds the root data structure to it (line 55).

•	 Both threads will simultaneously modify all or part of the same data

before finishing their transactions. We force the second thread to

finish first by making the main thread wait on pthread_join().

Listing 12-29 shows code execution with pmemcheck, and the result warns us that we

have overlapping regions registered in different transactions.

Chapter 12 Debugging Persistent Memory Applications

238

Listing 12-29.  Running pmemcheck with Listing 12-28

$ valgrind --tool=pmemcheck ./listing_12-28

==97301== pmemcheck-1.0, a simple persistent store checker

==97301== Copyright (c) 2014-2016, Intel Corporation

==97301== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==97301== Command: ./listing_12-28

==97301==

==97301==

==97301== Number of stores not made persistent: 0

==97301==

==97301== �Number of overlapping regions registered in different

transactions: 1

==97301== Overlapping regions:

==97301== [0] �at 0x4E6B0BC: pmemobj_tx_add_snapshot (in /usr/lib64/

libpmemobj.so.1.0.0)

==97301== �by 0x4E6B5F8: pmemobj_tx_add_common.constprop.18 (in /usr/

lib64/libpmemobj.so.1.0.0)

==97301== �by 0x4E6C62F: pmemobj_tx_add_range (in /usr/lib64/libpmemobj.

so.1.0.0)

==97301== by 0x400DAC: func (listing_12-28.c:55)

==97301== by 0x4C2DDD4: start_thread (in /usr/lib64/libpthread-2.17.so)

==97301== by 0x5180EAC: clone (in /usr/lib64/libc-2.17.so)

==97301== Address: 0x7dc0550 size: 8 tx_id: 2

==97301== First registered here:

==97301== [0]' �at 0x4E6B0BC: pmemobj_tx_add_snapshot (in /usr/lib64/

libpmemobj.so.1.0.0)

==97301== �by 0x4E6B5F8: pmemobj_tx_add_common.constprop.18 (in /usr/

lib64/libpmemobj.so.1.0.0)

==97301== �by 0x4E6C62F: pmemobj_tx_add_range (in /usr/lib64/libpmemobj.

so.1.0.0)

==97301== by 0x400F23: main (listing_12-28.c:73)

==97301== Address: 0x7dc0550 size: 8 tx_id: 1

==97301== ERROR SUMMARY: 1 errors

Chapter 12 Debugging Persistent Memory Applications

239

Listing 12-30 shows the same code run with Persistence Inspector, which also reports

“Overlapping regions registered in different transactions” in diagnostic 25. The first 24

diagnostic results were related to stores not added to our transactions corresponding

with the locking and unlocking of our volatile mutex; these can be ignored.

Listing 12-30.  Generating a report with Intel Inspector – Persistence Inspector

for code Listing 12-28

$ pmeminsp rp -- ./listing_12-28

...

#===

Diagnostic # 25: Overlapping regions registered in different transactions

#-------------------

 transaction

 in /data/listing_12-28!main at listing_12-28.c:69 - 0xEB6

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-28!_start at <unknown_file>:<unknown_line> - 0xB44

 protects

 memory region

 in /data/listing_12-28!main at listing_12-28.c:73 - 0xF1F

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-28!_start at <unknown_file>:<unknown_line> - 0xB44

 overlaps with

 memory region

 in /data/listing_12-28!func at listing_12-28.c:55 - 0xDA8

 �in /lib64/libpthread.so.0!start_thread at <unknown_file>:<unknown_line>

- 0x7DCD

 in /lib64/libc.so.6!__clone at <unknown_file>:<unknown_line> - 0xFDEAB

Analysis complete. 25 diagnostic(s) reported.

Chapter 12 Debugging Persistent Memory Applications

240

�Memory Overwrites
When multiple modifications to the same persistent memory location occur before

the location is made persistent (that is, flushed), a memory overwrite occurs. This is

a potential data corruption source if a program crashes because the final value of the

persistent variable can be any of the values written between the last flush and the crash.

It is important to know that this may not be an issue if it is in the code by design. We

recommend using volatile variables for short-lived data and only write to persistent

variables when you want to persist data.

Consider the code in Listing 12-31, which writes twice to the data variable inside the

main() function (lines 62 and 63) before we call flush() on line 64.

Listing 12-31.  Example of persistent memory overwriting – variable data –

before flushing

 33 #include <emmintrin.h>

 34 #include <stdint.h>

 35 #include <stdio.h>

 36 #include <sys/mman.h>

 37 #include <fcntl.h>

 38 #include <valgrind/pmemcheck.h>

 39

 40 void flush(const void *addr, size_t len) {

 41 uintptr_t flush_align = 64, uptr;

 42 for (uptr = (uintptr_t)addr & ~(flush_align - 1);

 43 uptr < (uintptr_t)addr + len;

 44 uptr += flush_align)

 45 _mm_clflush((char *)uptr);

 46 }

 47

 48 int main(int argc, char *argv[]) {

 49 int fd, *data;

 50

 51 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 52 posix_fallocate(fd, 0, sizeof(int));

 53

Chapter 12 Debugging Persistent Memory Applications

241

 54 data = (int *)mmap(NULL, sizeof(int),

 55 PROT_READ | PROT_WRITE,

 56 MAP_SHARED_VALIDATE | MAP_SYNC,

 57 fd, 0);

 58 VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

 59 sizeof(int));

 60

 61 // writing twice before flushing

 62 *data = 1234;

 63 *data = 4321;

 64 flush((void *)data, sizeof(int));

 65

 66 munmap(data, sizeof(int));

 67 VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

 68 sizeof(int));

 69 return 0;

 70 }

Listing 12-32 shows the report from pmemcheck with the code from Listing 12-31.

To make pmemcheck look for overwrites, we must use the --mult-stores=yes option.

Listing 12-32.  Running pmemcheck with Listing 12-31

$ valgrind --tool=pmemcheck --mult-stores=yes ./listing_12-31

==25609== pmemcheck-1.0, a simple persistent store checker

==25609== Copyright (c) 2014-2016, Intel Corporation

==25609== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==25609== Command: ./listing_12-31

==25609==

==25609==

==25609== Number of stores not made persistent: 0

==25609==

==25609== Number of overwritten stores: 1

==25609== Overwritten stores before they were made persistent:

==25609== [0] at 0x400962: main (listing_12-31.c:62)

==25609== Address: 0x4023000 size: 4 state: DIRTY

==25609== ERROR SUMMARY: 1 errors

Chapter 12 Debugging Persistent Memory Applications

242

pmemcheck reports that we have overwritten stores. We can fix this problem by either

inserting a flushing instruction between both writes, if we forgot to flush, or by moving

one of the stores to volatile data if that store corresponds to short-lived data.

At the time of publication, Persistence Inspector does not support checking for

overwritten stores. As you have seen, Persistence Inspector does not consider a missing

flush an issue unless there is a write dependency. In addition, it does not consider this a

performance problem because writing to the same variable in a short time span is likely

to hit the CPU caches anyway, rendering the latency differences between DRAM and

persistent memory irrelevant.

�Unnecessary Flushes
Flushing should be done carefully. Detecting unnecessary flushes, such as redundant

ones, can help improve code performance. The code in Listing 12-33 shows a redundant

call to the flush() function on line 64.

Listing 12-33.  Example of redundant flushing of a persistent memory variable

 33 #include <emmintrin.h>

 34 #include <stdint.h>

 35 #include <stdio.h>

 36 #include <sys/mman.h>

 37 #include <fcntl.h>

 38 #include <valgrind/pmemcheck.h>

 39

 40 void flush(const void *addr, size_t len) {

 41 uintptr_t flush_align = 64, uptr;

 42 for (uptr = (uintptr_t)addr & ~(flush_align - 1);

 43 uptr < (uintptr_t)addr + len;

 44 uptr += flush_align)

 45 _mm_clflush((char *)uptr);

 46 }

 47

 48 int main(int argc, char *argv[]) {

 49 int fd, *data;

 50

Chapter 12 Debugging Persistent Memory Applications

243

 51 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 52 posix_fallocate(fd, 0, sizeof(int));

 53

 54 data = (int *)mmap(NULL, sizeof(int),

 55 PROT_READ | PROT_WRITE,

 56 MAP_SHARED_VALIDATE | MAP_SYNC,

 57 fd, 0);

 58

 59 VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

 60 sizeof(int));

 61

 62 *data = 1234;

 63 flush((void *)data, sizeof(int));

 64 flush((void *)data, sizeof(int)); // extra flush

 65

 66 munmap(data, sizeof(int));

 67 VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

 68 sizeof(int));

 69 return 0;

 70 }

We can use pmemcheck to detect redundant flushes using --flush-check=yes option,

as shown in Listing 12-34.

Listing 12-34.  Running pmemcheck with Listing 12-33

$ valgrind --tool=pmemcheck --flush-check=yes ./listing_12-33

==104125== pmemcheck-1.0, a simple persistent store checker

==104125== Copyright (c) 2014-2016, Intel Corporation

==104125== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==104125== Command: ./listing_12-33

==104125==

==104125==

==104125== Number of stores not made persistent: 0

==104125==

Chapter 12 Debugging Persistent Memory Applications

244

==104125== Number of unnecessary flushes: 1

==104125== [0] at 0x400868: flush (emmintrin.h:1459)

==104125== by 0x400989: main (listing_12-33.c:64)

==104125== Address: 0x4023000 size: 64

==104125== ERROR SUMMARY: 1 errors

To showcase Persistence Inspector, Listing 12-35 has code with a write dependency,

similar to what we did for Listing 12-11 in Listing 12-19. The extra flush occurs on line 65.

Listing 12-35.  Example of writing to persistent memory with a write

dependency. The code does an extra flush for the flag

 33 #include <emmintrin.h>

 34 #include <stdint.h>

 35 #include <stdio.h>

 36 #include <sys/mman.h>

 37 #include <fcntl.h>

 38 #include <string.h>

 39

 40 void flush(const void *addr, size_t len) {

 41 uintptr_t flush_align = 64, uptr;

 42 for (uptr = (uintptr_t)addr & ~(flush_align - 1);

 43 uptr < (uintptr_t)addr + len;

 44 uptr += flush_align)

 45 _mm_clflush((char *)uptr);

 46 }

 47

 48 int main(int argc, char *argv[]) {

 49 int fd, *ptr, *data, *flag;

 50

 51 fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

 52 posix_fallocate(fd, 0, sizeof(int) * 2);

 53

 54 ptr = (int *) mmap(NULL, sizeof(int) * 2,

 55 PROT_READ | PROT_WRITE,

 56 MAP_SHARED_VALIDATE | MAP_SYNC,

 57 fd, 0);

Chapter 12 Debugging Persistent Memory Applications

245

 58 data = &(ptr[1]);

 59 flag = &(ptr[0]);

 60

 61 *data = 1234;

 62 flush((void *) data, sizeof(int));

 63 *flag = 1;

 64 flush((void *) flag, sizeof(int));

 65 flush((void *) flag, sizeof(int)); // extra flush

 66

 67 munmap(ptr, 2 * sizeof(int));

 68 return 0;

 69 }

Listing 12-36 uses the same reader program from Listing 12-15 to show the analysis

from Persistence Inspector. As before, we first collect data from the writer program,

then the reader program, and finally run the report to identify any issues.

Listing 12-36.  Running Intel Inspector – Persistence Inspector with Listing 12-35

(writer) and Listing 12-15 (reader)

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-35

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-35"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

$ pmeminsp rp -- ./listing_12-35 ./listing_12-15

#===

Diagnostic # 1: Redundant cache flush

#-------------------

 Cache flush

Chapter 12 Debugging Persistent Memory Applications

246

 of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

 in /data/listing_12-35!flush at listing_12-35.c:45 - 0x674

 in /data/listing_12-35!main at listing_12-35.c:64 - 0x73F

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

 is redundant with regard to

 cache flush

 of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

 in /data/listing_12-35!flush at listing_12-35.c:45 - 0x674

 in /data/listing_12-35!main at listing_12-35.c:65 - 0x750

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

 of

 memory store

 of size 4 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

 in /data/listing_12-35!main at listing_12-35.c:63 - 0x72D

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

The Persistence Inspector report warns about the redundant cache flush within

the main() function on line 65 of the listing_12-35.c program file – “main at

listing_12-35.c:65”. Solving these issues is as easy as deleting all the unnecessary

flushes, and the result will improve the application’s performance.

Chapter 12 Debugging Persistent Memory Applications

247

�Out-of-Order Writes
When developing software for persistent memory, remember that even if a cache line is

not explicitly flushed, that does not mean the data is still in the CPU caches. For example,

the CPU could have evicted it due to cache pressure or other reasons. Furthermore, the

same way that writes that are not flushed properly may produce bugs in the event of an

unexpected application crash, so do automatically evicted dirty cache lines if they violate

some expected order of writes that the applications rely on.

To better understand this problem, explore how flushing works in the x86_64

and AMD64 architectures. From the user space, we can issue any of the following

instructions to ensure our writes reach the persistent media:

•	 CLFLUSH

•	 CLFLUSHOPT (needs SFENCE)

•	 CLWB (needs SFENCE)

•	 Non-temporal stores (needs SFENCE)

The only instruction that ensures each flush is issued in order is CLFUSH because

each CLFLUSH instruction always does an implicit fence instruction (SFENCE). The other

instructions are asynchronous and can be issued in parallel and in any order. The CPU

can only guarantee that all flushes issued since the previous SFENCE have completed

when a new SFENCE instruction is explicitly executed. Think of SFENCE instructions as

synchronization points (see Figure 12-6). For more information about these instructions,

refer to the Intel software developer manuals and the AMD software developer manuals.

Chapter 12 Debugging Persistent Memory Applications

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://developer.amd.com/resources/developer-guides-manuals/

248

As Figure 12-6 shows, we cannot guarantee the order with respect to how A and B

would be finally written to persistent memory. This happens because stores and flushes

to A and B are done between synchronization points. The case of C is different. Using

the SFENCE instruction, we can be assured that C will always go after A and B have been

flushed.

Knowing this, you can now imagine how out-of-order writes could be a problem in

a program crash. If assumptions are made with respect to the order of writes between

synchronization points, or if you forget to add synchronization points between writes

and flushes where strict order is essential (think of a “valid flag” for a variable write,

where the variable needs to be written before the flag is set to valid), you may encounter

data consistency issues. Consider the pseudocode in Listing 12-37.

Figure 12-6.  Example of how asynchronous flushing works. The SFENCE
instruction ensures a synchronization point between the writes to A and B on one
side and to C on the other side

Chapter 12 Debugging Persistent Memory Applications

249

Listing 12-37.  Pseudocode showcasing an out-of-order issue

 1 writer () {

 2 pcounter = 0;

 3 flush (pcounter);

 4 for (i=0; i<max; i++) {

 5 pcounter++;

 6 if (rand () % 2 == 0) {

 7 pcells[i].data = data ();

 8 flush (pcells[i].data);

 9 pcells[i].valid = True;

10 } else {

11 pcells[i].valid = False;

12 }

13 flush (pcells[i].valid);

14 }

15 flush (pcounter);

16 }

17

18 reader () {

19 for (i=0; i<pcounter; i++) {

20 if (pcells[i].valid == True) {

21 print (pcells[i].data);

22 }

23 }

24 }

For simplicity, assume that all flushes in Listing 12-37 are also synchronization

points; that is, flush() uses CLFLUSH. The logic of the program is very simple. There are

two persistent memory variables: pcells and pcounter. The first is an array of tuples

{data, valid} where data holds the data and valid is a flag indicating if data is valid

or not. The second variable is a counter indicating how many elements in the array have

been written correctly to persistent memory. In this case, the valid flag is not the one

indicating whether or not the array position was written correctly to persistent memory.

In this case, the flag’s meaning only indicates if the function data() was called, that is,

whether or not data has meaningful data.

Chapter 12 Debugging Persistent Memory Applications

250

At first glance, the program appears correct. With every new iteration of the loop,

the counter is incremented, and then the array position is written and flushed. However,

pcounter is incremented before we write to the array, thus creating a discrepancy

between pcounter and the actual number of committed entries in the array. Although it

is true that pcounter is not flushed until after the loop, the program is only correct after

a crash if we assume that the changes to pcounter stay in the CPU caches (in that case, a

program crash in the middle of the loop would simply leave the counter to zero).

As mentioned at the beginning of this section, we cannot make that assumption. A

cache line can be evicted at any time. In the pseudocode example in Listing 12-37, we

could run into a bug where pcounter indicates that the array is longer than it really is,

making the reader() read uninitialized memory.

The code in Listings 12-38 and 12-39 provide a C++ implementation of the

pseudocode from Listing 12-37. Both use libpmemobj-cpp from the PMDK. Listing 12-38

is the writer program, and Listing 12-39 is the reader.

Listing 12-38.  Example of writing to persistent memory with an out-of-order

write bug

 33 #include <emmintrin.h>

 34 #include <unistd.h>

 35 #include <stdio.h>

 36 #include <string.h>

 37 #include <stdint.h>

 38 #include <libpmemobj++/persistent_ptr.hpp>

 39 #include <libpmemobj++/make_persistent.hpp>

 40 #include <libpmemobj++/make_persistent_array.hpp>

 41 #include <libpmemobj++/transaction.hpp>

 42 #include <valgrind/pmemcheck.h>

 43

 44 using namespace std;

 45 namespace pobj = pmem::obj;

 46

 47 struct header_t {

 48 uint32_t counter;

 49 uint8_t reserved[60];

 50 };

Chapter 12 Debugging Persistent Memory Applications

251

 51 struct record_t {

 52 char name[63];

 53 char valid;

 54 };

 55 struct root {

 56 pobj::persistent_ptr<header_t> header;

 57 pobj::persistent_ptr<record_t[]> records;

 58 };

 59

 60 pobj::pool<root> pop;

 61

 62 int main(int argc, char *argv[]) {

 63

 64 // everything between BEGIN and END can be

 65 // assigned a particular engine in pmreorder

 66 VALGRIND_PMC_EMIT_LOG("PMREORDER_TAG.BEGIN");

 67

 68 pop = pobj::pool<root>::open("/mnt/pmem/file",

 69 "RECORDS");

 70 auto proot = pop.root();

 71

 72 // allocation of memory and initialization to zero

 73 pobj::transaction::run(pop, [&] {

 74 proot->header

 75 = pobj::make_persistent<header_t>();

 76 proot->header->counter = 0;

 77 proot->records

 78 = pobj::make_persistent<record_t[]>(10);

 79 proot->records[0].valid = 0;

 80 });

 81

 82 pobj::persistent_ptr<header_t> header

 83 = proot->header;

 84 pobj::persistent_ptr<record_t[]> records

 85 = proot->records;

 86

Chapter 12 Debugging Persistent Memory Applications

252

 87 VALGRIND_PMC_EMIT_LOG("PMREORDER_TAG.END");

 88

 89 header->counter = 0;

 90 for (uint8_t i = 0; i < 10; i++) {

 91 header->counter++;

 92 if (rand() % 2 == 0) {

 93 snprintf(records[i].name, 63,

 94 "record #%u", i + 1);

 95 pop.persist(records[i].name, 63); // flush

 96 records[i].valid = 2;

 97 } else

 98 records[i].valid = 1;

 99 pop.persist(&(records[i].valid), 1); // flush

 100 }

 101 pop.persist(&(header->counter), 4); // flush

 102

 103 pop.close();

 104 return 0;

 105 }

Listing 12-39.  Reading the data structure written by Listing 12-38 to persistent

memory

 33 #include <stdio.h>

 34 #include <stdint.h>

 35 #include <libpmemobj++/persistent_ptr.hpp>

 36

 37 using namespace std;

 38 namespace pobj = pmem::obj;

 39

 40 struct header_t {

 41 uint32_t counter;

 42 uint8_t reserved[60];

 43 };

Chapter 12 Debugging Persistent Memory Applications

253

 44 struct record_t {

 45 char name[63];

 46 char valid;

 47 };

 48 struct root {

 49 pobj::persistent_ptr<header_t> header;

 50 pobj::persistent_ptr<record_t[]> records;

 51 };

 52

 53 pobj::pool<root> pop;

 54

 55 int main(int argc, char *argv[]) {

 56

 57 pop = pobj::pool<root>::open("/mnt/pmem/file",

 58 "RECORDS");

 59 auto proot = pop.root();

 60 pobj::persistent_ptr<header_t> header

 61 = proot->header;

 62 pobj::persistent_ptr<record_t[]> records

 63 = proot->records;

 64

 65 for (uint8_t i = 0; i < header->counter; i++) {

 66 if (records[i].valid == 2) {

 67 printf("found valid record\n");

 68 printf(" name = %s\n",

 69 records[i].name);

 70 }

 71 }

 72

 73 pop.close();

 74 return 0;

 75 }

Listing 12-38 (writer) uses the VALGRIND_PMC_EMIT_LOG macro to emit a pmreorder

message when we get to lines 66 and 87. This will make sense later when we introduce

out-of-order analysis using pmemcheck.

Chapter 12 Debugging Persistent Memory Applications

254

Now we will run Persistence Inspector first. To perform out-of-order analysis, we

must use the -check-out-of-order-store option to the report phase. Listing 12-40

shows collecting the before and after data and then running the report.

Listing 12-40.  Running Intel Inspector – Persistence Inspector with Listing 12-38

(writer) and Listing 12-39 (reader)

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-38

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-38"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-39

++ Analysis starts

found valid record

 name = record #2

found valid record

 name = record #7

found valid record

 name = record #8

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-39"

$ pmeminsp rp -check-out-of-order-store -- ./listing_12-38 ./listing_12-39

#===

Diagnostic # 1: Out-of-order stores

#-------------------

 Memory store

 of size 4 at address 0x7FD7BEBC05D0 (offset 0x3C05D0 in /mnt/pmem/file)

 in /data/listing_12-38!main at listing_12-38.cpp:91 - 0x1D0C

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-38!_start at <unknown_file>:<unknown_line> - 0x1624

Chapter 12 Debugging Persistent Memory Applications

255

 is out of order with respect to

 memory store

 of size 1 at address 0x7FD7BEBC068F (offset 0x3C068F in /mnt/pmem/file)

 in /data/listing_12-38!main at listing_12-38.cpp:98 - 0x1DAF

 �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line>

- 0x223D3

 in /data/listing_12-38!_start at <unknown_file>:<unknown_line> - 0x1624

The Persistence Inspector report identifies an out-of-order store issue. The tool

says that incrementing the counter in line 91 (main at listing_12-38.cpp:91) is

out of order with respect to writing the valid flag inside a record in line 98 (main at

listing_12-38.cpp:98).

To perform out-of-order analysis with pmemcheck, we must introduce a new tool

called pmreorder. The pmreorder tool is included in PMDK from version 1.5 onward.

This stand-alone Python tool performs a consistency check of persistent programs

using a store reordering mechanism. The pmemcheck tool cannot do this type of analysis,

although it is still used to generate a detailed log of all the stores and flushes issued by an

application that pmreorder can parse. For example, consider Listing 12-41.

Listing 12-41.  Running pmemcheck to generate a detailed log of all the stores

and flushes issued by Listing 12-38

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-

stacktraces=yes

 --log-stores-stacktraces-depth=2 --print-summary=yes

 --log-file=store_log.log ./listing_12-38

The meaning of each parameter is as follows:

•	 -q silences unnecessary pmemcheck logs that pmreorder cannot parse.

•	 --log-stores=yes tells pmemcheck to log all stores.

•	 --log-stores-stacktraces=yes dumps stacktrace with each logged

store. This helps locate issues in your source code.

•	 --log-stores-stacktraces-depth=2 is the depth of logged

stacktraces. Adjust according to the level of information you need.

Chapter 12 Debugging Persistent Memory Applications

256

•	 --print-summary=yes prints a summary on program exit. Why not?

•	 --log-file=store_log.log logs everything to store_log.log.

The pmreorder tool works with the concept of “engines.” For example, the ReorderFull

engine checks consistency for all the possible combinations of reorders of stores and

flushes. This engine can be extremely slow for some programs, so you can use other

engines such as ReorderPartial or NoReorderDoCheck. For more information, refer to the

pmreorder page, which has links to the man pages (https://pmem.io/pmdk/pmreorder/).

Before we run pmreorder, we need a program that can walk the list of records

contained within the memory pool and return 0 when the data structure is consistent, or

1 otherwise. This program is similar to the reader shown in Listing 12-42.

Listing 12-42.  Checking the consistency of the data structure written in

Listing 12-38

 33 #include <stdio.h>

 34 #include <stdint.h>

 35 #include <libpmemobj++/persistent_ptr.hpp>

 36

 37 using namespace std;

 38 namespace pobj = pmem::obj;

 39

 40 struct header_t {

 41 uint32_t counter;

 42 uint8_t reserved[60];

 43 };

 44 struct record_t {

 45 char name[63];

 46 char valid;

 47 };

 48 struct root {

 49 pobj::persistent_ptr<header_t> header;

 50 pobj::persistent_ptr<record_t[]> records;

 51 };

 52

Chapter 12 Debugging Persistent Memory Applications

https://pmem.io/pmdk/pmreorder/

257

 53 pobj::pool<root> pop;

 54

 55 int main(int argc, char *argv[]) {

 56

 57 pop = pobj::pool<root>::open("/mnt/pmem/file",

 58 "RECORDS");

 59 auto proot = pop.root();

 60 pobj::persistent_ptr<header_t> header

 61 = proot->header;

 62 pobj::persistent_ptr<record_t[]> records

 63 = proot->records;

 64

 65 for (uint8_t i = 0; i < header->counter; i++) {

 66 if (records[i].valid < 1 or

 67 records[i].valid > 2)

 68 return 1; // data struc. corrupted

 69 }

 70

 71 pop.close();

 72 return 0; // everything ok

 73 }

The program in Listing 12-42 iterates over all the records that we expect should have

been written correctly to persistent memory (lines 65-69). It checks the valid flag for

each record, which should be either 1 or 2 for the record to be correct (line 66). If an

issue is detected, the checker will return 1 indicating data corruption.

Listing 12-43 shows a three-step process for analyzing the program:

	 1.	 Create an object type persistent memory pool, known as a

memory-mapped file, on /mnt/pmem/file of size 100MiB, and

name the internal layout “RECORDS.”

	 2.	 Use the pmemcheck Valgrind tool to record data and call stacks

while the program is running.

	 3.	 The pmreorder utility processes the store.log output file from

pmemcheck using the ReorderFull engine to produce a final report.

Chapter 12 Debugging Persistent Memory Applications

258

Listing 12-43.  First, a pool is created for Listing 12-38. Then, pmemcheck is run

to get a detailed log of all the stores and flushes issued by Listing 12-38. Finally,

pmreorder is run with engine ReorderFull

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-

stacktraces=yes --log-stores-stacktraces-depth=2 --print-summary=yes

--log-file=store.log ./listing_12-38

$ pmreorder -l store.log -o output_file.log -x PMREORDER_

TAG=NoReorderNoCheck -r ReorderFull -c prog -p ./listing_12-38

The meaning of each pmreorder option is as follows:

•	 -l store_log.log is the input file generated by pmemcheck with all

the stores and flushes issued by the application.

•	 -o output_file.log is the output file with the out-of-order analysis

results.

•	 -x PMREORDER_TAG=NoReorderNoCheck assigns the engine

NoReorderNoCheck to the code enclosed by the tag PMREORDER_TAG

(see lines 66-87 from Listing 12-38). This is done to focus the analysis

on the loop only (lines 89-105 from Listing 12-38).

•	 -r ReorderFull sets the initial reorder engine. In our case, ReorderFull.

•	 -c prog is the consistency checker type. It can be prog (program) or

lib (library).

•	 -p ./checker is the consistency checker.

Opening the generated file output_file.log, you should see entries similar to those

in Listing 12-44 that highlight detected inconsistencies and problems within the code.

Listing 12-44.  Content from “output_file.log” generated by pmreorder showing a

detected inconsistency during the out-of-order analysis

WARNING:pmreorder:File /mnt/pmem/file inconsistent

WARNING:pmreorder:Call trace:

Store [0]:

 by 0x401D0C: main (listing_12-38.cpp:91)

Chapter 12 Debugging Persistent Memory Applications

259

The report states that the problem resides at line 91 of the listing_12-38.cpp writer

program. To fix listing_12-38.cpp, move the counter incrementation after all the data

in the record has been flushed all the way to persistent media. Listing 12-45 shows the

corrected part of the code.

Listing 12-45.  Fix Listing 12-38 by moving the incrementation of the counter to

the end of the loop (line 95)

 86 for (uint8_t i = 0; i < 10; i++) {

 87 if (rand() % 2 == 0) {

 88 snprintf(records[i].name, 63,

 89 "record #%u", i + 1);

 90 pop.persist(records[i].name, 63);

 91 records[i].valid = 2;

 92 } else

 93 records[i].valid = 1;

 94 pop.persist(&(records[i].valid), 1);

 95 header->counter++;

 96 }

�Summary
This chapter provided an introduction to each tool and described how to use them.

Catching issues early in the development cycle can save countless hours of debugging

complex code later on. This chapter introduced three valuable tools – Persistence

Inspector, pmemcheck, and pmreorder – that persistent memory programmers will want

to integrate into their development and testing cycles to detect issues. We demonstrated

how useful these tools are at detecting many different types of common programming

errors.

The Persistent Memory Development Kit (PMDK) uses the tools described here to

ensure each release is fully validated before it is shipped. The tools are tightly integrated

into the PMDK continuous integration (CI) development cycle, so you can quickly catch

and fix issues.

Chapter 12 Debugging Persistent Memory Applications

260

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 12 Debugging Persistent Memory Applications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 12: Debugging Persistent Memory Applications
	pmemcheck for Valgrind
	Stack Overflow Example
	Memory Leak Example

	Intel Inspector – Persistence Inspector
	Stack Overflow Example
	Memory Leak Example

	Common Persistent Memory Programming Problems
	Nonpersistent Stores
	Stores Not Added into a Transaction
	Memory Added to Two Different Transactions
	Memory Overwrites
	Unnecessary Flushes
	Out-of-Order Writes

	Summary

