
155
© The Author(s) 2020
S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_10

CHAPTER 10

Volatile Use of Persistent
Memory
�Introduction
This chapter discusses how applications that require a large quantity of volatile memory

can leverage high-capacity persistent memory as a complementary solution to dynamic

random-access memory (DRAM).

Applications that work with large data sets, like in-memory databases, caching

systems, and scientific simulations, are often limited by the amount of volatile

memory capacity available in the system or the cost of the DRAM required to load a

complete data set. Persistent memory provides a high capacity memory tier to solve

these memory-hungry application problems.

In the memory-storage hierarchy (described in Chapter 1), data is stored in tiers with

frequently accessed data placed in DRAM for low-latency access, and less frequently

accessed data is placed in larger capacity, higher latency storage devices. Examples of

such solutions include Redis on Flash (https://redislabs.com/redis-enterprise/

technology/redis-on-flash/) and Extstore for Memcached (https://memcached.org/

blog/extstore-cloud/).

For memory-hungy applications that do not require persistence, using the larger

capacity persistent memory as volatile memory provides new opportunities and

solutions.

Using persistent memory as a volatile memory solution is advantageous when an

application:

•	 Has control over data placement between DRAM and other storage

tiers within the system

•	 Does not need to persist data

https://doi.org/10.1007/978-1-4842-4932-1_10
https://doi.org/10.1007/978-1-4842-4932-1_1
https://redislabs.com/redis-enterprise/technology/redis-on-flash/
https://redislabs.com/redis-enterprise/technology/redis-on-flash/
https://memcached.org/blog/extstore-cloud/
https://memcached.org/blog/extstore-cloud/

156

•	 Can use the native latencies of persistent memory, which may be

slower than DRAM but are faster than non-volatile memory express

(NVMe) solid-state drives (SSDs).

�Background
Applications manage different kinds of data structures such as user data, key-value

stores, metadata, and working buffers. Architecting a solution that uses tiered memory

and storage may enhance application performance, for example, placing objects that

are accessed frequently and require low-latency access in DRAM while storing objects

that require larger allocations that are not as latency-sensitive on persistent memory.

Traditional storage devices are used to provide persistence.

�Memory Allocation
As described in Chapters 1 through 3, persistent memory is exposed to the application

using memory-mapped files on a persistent memory-aware file system that provides

direct access to the application. Since malloc() and free() do not operate on different

types of memory or memory-mapped files, an interface is needed that provides malloc()

and free() semantics for multiple memory types. This interface is implemented as the

memkind library (http://memkind.github.io/memkind/).

�How it Works
The memkind library is a user-extensible heap manager built on top of jemalloc, which

enables partitioning of the heap between multiple kinds of memory. Memkind was

created to support different kinds of memory when high bandwidth memory (HBM) was

introduced. A PMEM kind was introduced to support persistent memory.

Different “kinds” of memory are defined by the operating system memory policies

that are applied to virtual address ranges. Memory characteristics supported by

memkind without user extension include the control of non-uniform memory access

(NUMA) and page sizes. Figure 10-1 shows an overview of libmemkind components and

hardware support.

Chapter 10 Volatile Use of Persistent Memory

https://doi.org/10.1007/978-1-4842-4932-1_1
https://doi.org/10.1007/978-1-4842-4932-1_3
http://memkind.github.io/memkind/

157

The memkind library serves as a wrapper that redirects memory allocation requests

from an application to an allocator that manages the heap. At the time of publication,

only the jemalloc allocator is supported. Future versions may introduce and support

multiple allocators. Memkind provides jemalloc with different kinds of memory: A static

kind is created automatically, whereas a dynamic kind is created by an application using

memkind_create_kind().

�Supported “Kinds” of Memory
The dynamic PMEM kind is best used with memory-addressable persistent storage

through a DAX-enabled file system that supports load/store operations that are

not paged via the system page cache. For the PMEM kind, the memkind library supports

the traditional malloc/free-like interfaces on a memory-mapped file. When an

application calls memkind_create_kind() with PMEM, a temporary file (tmpfile(3))

is created on a mounted DAX file system and is memory-mapped into the application’s

virtual address space. This temporary file is deleted automatically when the program

terminates, giving the perception of volatility.

Figure 10-2 shows memory mappings from two memory sources: DRAM

(MEMKIND_DEFAULT) and persistent memory (PMEM_KIND).

For allocations from DRAM, rather than using the common malloc(), the

application can call memkind_malloc() with the kind argument set to MEMKIND_DEFAULT.

MEMKIND_DEFAULT is a static kind that uses the operating system’s default page size for

allocations. Refer to the memkind documentation for large and huge page support.

Figure 10-1.  An overview of the memkind components and hardware support

Chapter 10 Volatile Use of Persistent Memory

158

When using libmemkind with DRAM and persistent memory, the key points to

understand are:

•	 Two pools of memory are available to the application, one from

DRAM and another from persistent memory.

•	 Both pools of memory can be accessed simultaneously by setting

the kind type to PMEM_KIND to use persistent memory and MEMKIND_

DEFAULT to use DRAM.

•	 jemalloc is the single memory allocator used to manage all kinds of

memory.

•	 The memkind library is a wrapper around jemalloc that provides a

unified API for allocations from different kinds of memory.

•	 PMEM_KIND memory allocations are provided by a temporary file

(tmpfile(3)) created on a persistent memory-aware file system.

The file is destroyed when the application exits. Allocations are not

persistent.

•	 Using libmemkind for persistent memory requires simple

modifications to the application.

Figure 10-2.  An application using different “kinds” of memory

Chapter 10 Volatile Use of Persistent Memory

159

�The memkind API
The memkind API functions related to persistent memory programming are shown in

Listing 10-1 and described in this section. The complete memkind API is available in the

memkind man pages (http://memkind.github.io/memkind/man_pages/memkind.html).

Listing 10-1.  Persistent memory-related memkind API functions

KIND CREATION MANAGEMENT:

int memkind_create_pmem(const char *dir, size_t max_size, memkind_t *kind);

int memkind_create_pmem_with_config(struct memkind_config *cfg, memkind_t

*kind);

memkind_t memkind_detect_kind(void *ptr);

int memkind_destroy_kind(memkind_t kind);

KIND HEAP MANAGEMENT:

void *memkind_malloc(memkind_t kind, size_t size);

void *memkind_calloc(memkind_t kind, size_t num, size_t size);

void *memkind_realloc(memkind_t kind, void *ptr, size_t size);

void memkind_free(memkind_t kind, void *ptr);

size_t memkind_malloc_usable_size(memkind_t kind, void *ptr);

memkind_t memkind_detect_kind(void *ptr);

KIND CONFIGURATION MANAGEMENT:

struct memkind_config *memkind_config_new();

void memkind_config_delete(struct memkind_config *cfg);

void memkind_config_set_path(struct memkind_config *cfg, const char

*pmem_dir);

void memkind_config_set_size(struct memkind_config *cfg, size_t pmem_size);

void memkind_config_set_memory_usage_policy(struct memkind_config *cfg,

memkind_mem_usage_policy policy);

�Kind Management API
The memkind library supports a plug-in architecture to incorporate new memory kinds,

which are referred to as dynamic kinds. The memkind library provides the API to create

and manage the heap for the dynamic kinds.

Chapter 10 Volatile Use of Persistent Memory

http://memkind.github.io/memkind/man_pages/memkind.html

160

�Kind Creation

Use the memkind_create_pmem() function to create a PMEM kind of memory from a

file-backed source. This file is created as a tmpfile(3) in a specified directory (PMEM_DIR)

and is unlinked, so the file name is not listed under the directory. The temporary file is

automatically removed when the program terminates.

Use memkind_create_pmem() to create a fixed or dynamic heap size depending on

the application requirement. Additionally, configurations can be created and supplied

rather than passing in configuration options to the *_create_* function.

Creating a Fixed-Size Heap

Applications that require a fixed amount of memory can specify a nonzero value for the

PMEM_MAX_SIZE argument to memkind_create_pmem(), shown below. This defines the

size of the memory pool to be created for the specified kind of memory. The value of

PMEM_MAX_SIZE should be less than the available capacity of the file system specified in

PMEM_DIR to avoid ENOMEM or ENOSPC errors. An internal data structure struct memkind is

populated internally by the library and used by the memory management functions.

int memkind_create_pmem(PMEM_DIR, PMEM_MAX_SIZE, &pmem_kind)

The arguments to memkind_create_pmem() are

•	 PMEM_DIR is the directory where the temp file is created.

•	 PMEM_MAX_SIZE is the size, in bytes, of the memory region to be

passed to jemalloc.

•	 &pmem_kind is the address of a memkind data structure.

If successful, memkind_create_pmem() returns zero. On failure, an error number is

returned that memkind_error_message() can convert to an error message string.

Listing 10-2 shows how a 32MiB PMEM kind is created on a /daxfs file system. Included in

this listing is the definition of memkind_fatal() to print a memkind error message and exit.

The rest of the examples in this chapter assume this routine is defined as shown below.

Listing 10-2.  Creating a 32MiB PMEM kind

void memkind_fatal(int err)

{

 char error_message[MEMKIND_ERROR_MESSAGE_SIZE];

Chapter 10 Volatile Use of Persistent Memory

161

 memkind_error_message(err, error_message,

 MEMKIND_ERROR_MESSAGE_SIZE);

 fprintf(stderr, "%s\n", error_message);

 exit(1);

}

/* ... in main() ... */

#define PMEM_MAX_SIZE (1024 * 1024 * 32)

struct memkind *pmem_kind;

int err;

// Create PMEM memory pool with specific size

err = memkind_create_pmem("/daxfs",PMEM_MAX_SIZE, &pmem_kind);

if (err) {

 memkind_fatal(err);

}

You can also create a heap with a specific configuration using the function memkind_

create_pmem_with_config(). This function uses a memkind_config structure with

optional parameters such as size, file path, and memory usage policy. Listing 10-3

shows how to build a test_cfg using memkind_config_new(), then passing that

configuration to memkind_create_pmem_with_config() to create a PMEM kind. We use

the same path and size parameters from the Listing 10-2 example for comparison.

Listing 10-3.  Creating PMEM kind with configuration

struct memkind_config *test_cfg = memkind_config_new();

memkind_config_set_path(test_cfg, "/daxfs");

memkind_config_set_size(test_cfg, 1024 * 1024 * 32);

memkind_config_set_memory_usage_policy(test_cfg, MEMKIND_MEM_USAGE_POLICY_

CONSERVATIVE);

// create a PMEM partition with specific configuration

err = memkind_create_pmem_with_config(test_cfg, &pmem_kind);

if (err) {

 memkind_fatal(err);

}

Chapter 10 Volatile Use of Persistent Memory

162

Creating a Variable Size Heap

When PMEM_MAX_SIZE is set to zero, as shown below, allocations are satisfied as long as

the temporary file can grow. The maximum heap size growth is limited by the capacity of

the file system mounted under the PMEM_DIR argument.

memkind_create_pmem(PMEM_DIR, 0, &pmem_kind)

The arguments to memkind_create_pmem() are:

•	 PMEM_DIR is the directory where the temp file is created.

•	 PMEM_MAX_SIZE is 0.

•	 &pmem_kind is the address of a memkind data structure.

If the PMEM kind is created successfully, memkind_create_pmem() returns zero. On

failure, memkind_error_message() can be used to convert an error number returned by

memkind_create_pmem() to an error message string, as shown in the memkind_fatal()

routine in Listing 10-2.

Listing 10-4 shows how to create a PMEM kind with variable size.

Listing 10-4.  Creating a PMEM kind with variable size

struct memkind *pmem_kind;

int err;

err = memkind_create_pmem("/daxfs",0,&pmem_kind);

if (err) {

 memkind_fatal(err);

}

�Detecting the Memory Kind

Memkind supports both automatic detection of the kind as well as a function to detect

the kind associated with a memory referenced by a pointer.

Automatic Kind Detection

Automatically detecting the kind of memory is supported to simplify code changes when

using libmemkind. Thus, the memkind library will automatically retrieve the kind of

memory pool the allocation was made from, so the heap management functions listed in

Table 10-1 can be called without specifying the kind.

Chapter 10 Volatile Use of Persistent Memory

163

The memkind library internally tracks the kind of a given object from the allocator

metadata. However, to get this information, some of the operations may need to

acquire a lock to prevent accesses from other threads, which may negatively affect the

performance in a multithreaded environment.

Memory Kind Detection

Memkind also provides the memkind_detect_kind() function, shown below, to query

and return the kind of memory referenced by the pointer passed into the function.

If the input pointer argument is NULL, the function returns NULL. The input pointer

argument passed into memkind_detect_kind() must have been returned by a previous

call to memkind_malloc(), memkind_calloc(), memkind_realloc(), or memkind_posix_

memalign().

memkind_t memkind_detect_kind(void *ptr)

Similar to the automatic detection approach, this function has nontrivial

performance overhead. Listing 10-5 shows how to detect the kind type.

Listing 10-5.  pmem_detect_kind.c – how to automatically detect the ‘kind’ type

 73 err = memkind_create_pmem(path, 0, &pmem_kind);

 74 if (err) {

 75 memkind_fatal(err);

 76 }

 77

Table 10-1.  Automatic kind detection functions and their equivalent specified

kind functions and operations

Operation Memkind API with Kind Memkind API Using Automatic Detection

free memkind_free(kind, ptr) memkind_free(NULL, ptr)

realloc memkind_realloc(kind, ptr, size) memkind_realloc(NULL, ptr, size)

Get size of allocated

memory

memkind_malloc_usable_

size(kind, ptr)

memkind_malloc_usable_size(NULL, ptr)

Chapter 10 Volatile Use of Persistent Memory

164

 78 /* do some allocations... */

 79 buf0 = memkind_malloc(pmem_kind, 1000);

 80 buf1 = memkind_malloc(MEMKIND_DEFAULT, 1000);

 81

 82 /* look up the kind of an allocation */

 83 if (memkind_detect_kind(buf0) == MEMKIND_DEFAULT) {

 84 printf("buf0 is DRAM\n");

 85 } else {

 86 printf("buf0 is pmem\n");

 87 }

�Destroying Kind Objects

Use the memkind_destroy_kind() function, shown below, to delete the kind object that

was previously created using the memkind_create_pmem() or memkind_create_pmem_

with_config() function.

int memkind_destroy_kind(memkind_t kind);

Using the same pmem_detect_kind.c code from Listing 10-5, Listing 10-6 shows how

the kind is destroyed before the program exits.

Listing 10-6.  Destroying a kind object

 89 err = memkind_destroy_kind(pmem_kind);

 90 if (err) {

 91 memkind_fatal(err);

 92 }

When the kind returned by memkind_create_pmem() or memkind_create_pmem_with_

config() is successfully destroyed, all the allocated memory for the kind object is freed.

�Heap Management API
The heap management functions described in this section have an interface modeled on

the ISO C standard API, with an additional “kind” parameter to specify the memory type

used for allocation.

Chapter 10 Volatile Use of Persistent Memory

165

�Allocating Memory

The memkind library provides memkind_malloc(), memkind_calloc(), and memkind_

realloc() functions for allocating memory, defined as follows:

void *memkind_malloc(memkind_t kind, size_t size);

void *memkind_calloc(memkind_t kind, size_t num, size_t size);

void *memkind_realloc(memkind_t kind, void *ptr, size_t size);

memkind_malloc() allocates size bytes of uninitialized memory of the specified kind.

The allocated space is suitably aligned (after possible pointer coercion) for storage of any

object type. If size is 0, then memkind_malloc() returns NULL.

memkind_calloc() allocates space for num objects, each is size bytes in length. The

result is identical to calling memkind_malloc() with an argument of num * size. The

exception is that the allocated memory is explicitly initialized to zero bytes. If num or size

is 0, then memkind_calloc() returns NULL.

memkind_realloc() changes the size of the previously allocated memory

referenced by ptr to size bytes of the specified kind. The contents of the memory

remain unchanged, up to the lesser of the new and old sizes. If the new size is larger,

the contents of the newly allocated portion of the memory are undefined. If successful,

the memory referenced by ptr is freed, and a pointer to the newly allocated memory is

returned.

The code example in Listing 10-7 shows how to allocate memory from DRAM and

persistent memory (pmem_kind) using memkind_malloc(). Rather than using the

common C library malloc() for DRAM and memkind_malloc() for persistent memory,

we recommend using a single library to simplify the code.

Listing 10-7.  An example of allocating memory from both DRAM and persistent

memory

/*

 * Allocates 100 bytes using appropriate "kind"

 * of volatile memory

 */

Chapter 10 Volatile Use of Persistent Memory

166

// Create a PMEM memory pool with a specific size

 err = memkind_create_pmem(path, PMEM_MAX_SIZE, &pmem_kind);

 if (err) {

 memkind_fatal(err);

 }

 char *pstring = memkind_malloc(pmem_kind, 100);

 char *dstring = memkind_malloc(MEMKIND_DEFAULT, 100);

�Freeing Allocated Memory

To avoid memory leaks, allocated memory can be freed using the memkind_free()

function, defined as:

void memkind_free(memkind_t kind, void *ptr);

memkind_free() causes the allocated memory referenced by ptr to be made

available for future allocations. This pointer must be returned by a previous call to

memkind_malloc(), memkind_calloc(), memkind_realloc(), or memkind_posix_

memalign(). Otherwise, if memkind_free(kind, ptr) was previously called, undefined

behavior occurs. If ptr is NULL, no operation is performed. In cases where the kind is

unknown in the context of the call to memkind_free(), NULL can be given as the kind

specified to memkind_free(), but this will require an internal lookup for the correct kind.

Always specify the correct kind because the lookup for kind could result in a serious

performance penalty.

Listing 10-8 shows four examples of memkind_free() being used. The first two specify

the kind, and the second two use NULL to detect the kind automatically.

Listing 10-8.  Examples of memkind_free() usage

/* Free the memory by specifying the kind */

memkind_free(MEMKIND_DEFAULT, dstring);

memkind_free(PMEM_KIND, pstring);

/* Free the memory using automatic kind detection */

memkind_free(NULL, dstring);

memkind_free(NULL, pstring);

Chapter 10 Volatile Use of Persistent Memory

167

�Kind Configuration Management
You can also create a heap with a specific configuration using the function memkind_

create_pmem_with_config(). This function requires completing a memkind_config

structure with optional parameters such as size, path to file, and memory usage policy.

�Memory Usage Policy

In jemalloc, a runtime option called dirty_decay_ms determines how fast it returns

unused memory back to the operating system. A shorter decay time purges unused

memory pages faster, but the purging costs CPU cycles. Trade-offs between memory and

CPU cycles needed for this operation should be carefully thought out before using this

parameter.

The memkind library supports two policies related to this feature:

	 1.	 MEMKIND_MEM_USAGE_POLICY_DEFAULT

	 2.	 MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE

The minimum and maximum values for dirty_decay_ms using the MEMKIND_MEM_

USAGE_POLICY_DEFAULT are 0ms to 10,000ms for arenas assigned to a PMEM kind.

Setting MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE sets shorter decay times to purge

unused memory faster, reducing memory usage. To define the memory usage policy, use

memkind_config_set_memory_usage_policy(), shown below:

void memkind_config_set_memory_usage_policy (struct memkind_config *cfg,

memkind_mem_usage_policy policy);

•	 MEMKIND_MEM_USAGE_POLICY_DEFAULT is the default memory usage

policy.

•	 MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE allows changing the

dirty_decay_ms parameter.

Listing 10-9 shows how to use memkind_config_set_memory_usage_policy() with a

custom configuration.

Chapter 10 Volatile Use of Persistent Memory

168

Listing 10-9.  An example of a custom configuration and memory policy use

 73 struct memkind_config *test_cfg =

 74 memkind_config_new();

 75 if (test_cfg == NULL) {

 76 fprintf(stderr,

 77 "memkind_config_new: out of memory\n");

 78 exit(1);

 79 }

 80

 81 memkind_config_set_path(test_cfg, path);

 82 memkind_config_set_size(test_cfg, PMEM_MAX_SIZE);

 83 memkind_config_set_memory_usage_policy(test_cfg,

 84 MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE);

 85

 86 // Create PMEM partition with the configuration

 87 err = memkind_create_pmem_with_config(test_cfg,

 88 &pmem_kind);

 89 if (err) {

 90 memkind_fatal(err);

 91 }

�Additional memkind Code Examples
The memkind source tree contains many additional code examples, available on GitHub

at https://github.com/memkind/memkind/tree/master/examples.

�C++ Allocator for PMEM Kind
A new pmem::allocator class template is created to support allocations from persistent

memory, which conforms to C++11 allocator requirements. It can be used with C++

compliant data structures from:

•	 Standard Template Library (STL)

•	 Intel® Threading Building Blocks (Intel® TBB) library

Chapter 10 Volatile Use of Persistent Memory

https://github.com/memkind/memkind/tree/master/examples

169

The pmem::allocator class template uses the memkind_create_pmem() function

described previously. This allocator is stateful and has no default constructor.

�pmem::allocator methods
pmem::allocator(const char *dir, size_t max_size);

pmem::allocator(const std::string& dir, size_t max_size) ;

template <typename U> pmem::allocator<T>::allocator(const

pmem::allocator<U>&);

template <typename U> pmem::allocator(allocator<U>&& other);

pmem::allocator<T>::~allocator();

T* pmem::allocator<T>::allocate(std::size_t n) const;

void pmem::allocator<T>::deallocate(T* p, std::size_t n) const ;

template <class U, class... Args> void pmem::allocator<T>::construct(U* p,

Args... args) const;

void pmem::allocator<T>::destroy(T* p) const;

For more information about the pmem::allocator class template, refer to the pmem

allocator(3) man page.

�Nested Containers
Multilevel containers such as a vector of lists, tuples, maps, strings, and so on pose

challenges in handling the nested objects.

Imagine you need to create a vector of strings and store it in persistent memory. The

challenges – and their solutions – for this task include:

	 1.	 Challenge: The std::string cannot be used for this purpose because

it is an alias of the std::basic_string. The std::allocator requires a

new alias that uses pmem:allocator.

Solution: A new alias called pmem_string is defined as a typedef

of std::basic_string when created with pmem::allocator.

Chapter 10 Volatile Use of Persistent Memory

170

	 2.	 Challenge: How to ensure that an outermost vector will properly

construct nested pmem_string with a proper instance of

pmem::allocator.

Solution: From C++11 and later, the std::scoped_allocator_

adaptor class template can be used with multilevel containers.

The purpose of this adaptor is to correctly initialize stateful

allocators in nested containers, such as when all levels of a nested

container must be placed in the same memory segment.

�C++ Examples
This section presents several full-code examples demonstrating the use of libmemkind

using C and C++.

�Using the pmem::allocator
As mentioned earlier, you can use pmem::allocator with any STL-like data structure.

The code sample in Listing 10-10 includes a pmem_allocator.h header file to use

pmem::allocator.

Listing 10-10.  pmem_allocator.cpp: using pmem::allocator with std:vector

 37 #include <pmem_allocator.h>

 38 #include <vector>

 39 #include <cassert>

 40

 41 int main(int argc, char *argv[]) {

 42 const size_t pmem_max_size = 64 * 1024 * 1024; //64 MB

 43 const std::string pmem_dir("/daxfs");

 44

 45 // Create allocator object

 46 libmemkind::pmem::allocator<int>

 47 alc(pmem_dir, pmem_max_size);

 48

Chapter 10 Volatile Use of Persistent Memory

171

 49 // Create std::vector with our allocator.

 50 std::vector<int,

 51 libmemkind::pmem::allocator<int>> v(alc);

 52

 53 for (int i = 0; i < 100; ++i)

 54 v.push_back(i);

 55

 56 for (int i = 0; i < 100; ++i)

 57 assert(v[i] == i);

•	 Line 43: We define a persistent memory pool of 64MiB.

•	 Lines 46-47: We create an allocator object alc of type

pmem::allocator<int>.

•	 Line 50: We create a vector object v of type std::vector<int,

pmem::allocator<int> > and pass in the alc from line 47 object as

an argument. The pmem::allocator is stateful and has no default

constructor. This requires passing the allocator object to the vector

constructor; otherwise, a compilation error occurs if the default

constructor of std::vector<int, pmem::allocator<int> > is called

because the vector constructor will try to call the default constructor

of pmem::allocator, which does not exist yet.

�Creating a Vector of Strings
Listing 10-11 shows how to create a vector of strings that resides in persistent memory.

We define pmem_string as a typedef of std::basic_string with pmem::allocator.

In this example, std::scoped_allocator_adaptor allows the vector to propagate the

pmem::allocator instance to all pmem_string objects stored in the vector object.

Listing 10-11.  vector_of_strings.cpp: creating a vector of strings

 37 #include <pmem_allocator.h>

 38 #include <vector>

 39 #include <string>

 40 #include <scoped_allocator>

 41 #include <cassert>

Chapter 10 Volatile Use of Persistent Memory

172

 42 #include <iostream>

 43

 44 typedef libmemkind::pmem::allocator<char> str_alloc_type;

 45

 46 �typedef std::basic_string<char, std::char_traits<char>,

str_alloc_type> pmem_string;

 47

 48 typedef libmemkind::pmem::allocator<pmem_string> vec_alloc_type;

 49

 50 �typedef std::vector<pmem_string, std::scoped_allocator_adaptor

<vec_alloc_type> > vector_type;

 51

 52 int main(int argc, char *argv[]) {

 53 const size_t pmem_max_size = 64 * 1024 * 1024; //64 MB

 54 const std::string pmem_dir("/daxfs");

 55

 56 // Create allocator object

 57 vec_alloc_type alc(pmem_dir, pmem_max_size);

 58 // Create std::vector with our allocator.

 59 vector_type v(alc);

 60

 61 v.emplace_back("Foo");

 62 v.emplace_back("Bar");

 63

 64 for (auto str : v) {

 65 std::cout << str << std::endl;

 66 }

•	 Line 46: We define pmem_string as a typedef of std::basic_string.

•	 Line 48: We define the pmem::allocator using the pmem_string type.

•	 Line 50: Using std::scoped_allocator_adaptor allows the vector to

propagate the pmem::allocator instance to all pmem_string objects

stored in the vector object.

Chapter 10 Volatile Use of Persistent Memory

173

�Expanding Volatile Memory Using
Persistent Memory
Persistent memory is treated by the kernel as a device. In a typical use-case, a persistent

memory-aware file system is created and mounted with the –o dax option, and files are

memory-mapped into the virtual address space of a process to give the application direct

load/store access to persistent memory regions.

A new feature was added to the Linux kernel v5.1 such that persistent memory

can be used more broadly as volatile memory. This is done by binding a persistent

memory device to the kernel, and the kernel manages it as an extension to DRAM. Since

persistent memory has different characteristics than DRAM, memory provided by this

device is visible as a separate NUMA node on its corresponding socket.

To use the MEMKIND_DAX_KMEM kind, you need pmem to be available using device

DAX, which exposes pmem as devices with names like /dev/dax*. If you have an existing

dax device and want to migrate the device model type to use DEV_DAX_KMEM, use:

$ sudo daxctl migrate-device-model

To create a new dax device using all available capacity on the first available region

(NUMA node), use:

$ sudo ndctl create-namespace --mode=devdax --map=mem

To create a new dax device specifying the region and capacity, use:

$ sudo ndctl create-namespace --mode=devdax --map=mem --region=region0

--size=32g

To display a list of namespaces, use:

$ ndctl list

If you have already created a namespace in another mode, such as the default fsdax,

you can reconfigure the device using the following where namespace0.0 is the existing

namespace you want to reconfigure:

$ sudo ndctl create-namespace --mode=devdax --map=mem --force -e namespace0.0

For more details about creating new namespace read https://docs.pmem.io/

ndctl-users-guide/managing-namespaces#creating-namespaces.

Chapter 10 Volatile Use of Persistent Memory

https://docs.pmem.io/ndctl-users-guide/managing-namespaces#creating-namespaces
https://docs.pmem.io/ndctl-users-guide/managing-namespaces#creating-namespaces

174

DAX devices must be converted to use the system-ram mode. Converting a dax

device to a NUMA node suitable for use with system memory can be performed using

following command:

$ sudo daxctl reconfigure-device dax2.0 --mode=system-ram

This will migrate the device from using the device_dax driver to the dax_pmem

driver. The following shows an example output with dax1.0 configured as the default

devdax type and dax2.0 is system-ram:

$ daxctl list

 [

 {

 "chardev":"dax1.0",

 "size":263182090240,

 "target_node":3,

 "mode":"devdax"

 },

 {

 "chardev":"dax2.0",

 "size":263182090240,

 "target_node":4,

 "mode":"system-ram"

 }

]

You can now use numactl -H to show the hardware NUMA configuration.

The following example output is collected from a 2-socket system and shows node 4

is a new system-ram backed NUMA node created from persistent memory:

$ numactl -H

 available: 3 nodes (0-1,4)

 node 0 cpus: �0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 56 57 58 59 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 80 81 82 83

 node 0 size: 192112 MB

 node 0 free: 185575 MB

Chapter 10 Volatile Use of Persistent Memory

175

 node 1 cpus: �28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 84 85 86 87 88 89 90 91 92 93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

110 111

 node 1 size: 193522 MB

 node 1 free: 193107 MB

 node 4 cpus:

 node 4 size: 250880 MB

 node 4 free: 250879 MB

 node distances:

 node 0 1 4

 0: 10 21 17

 1: 21 10 28

 4: 17 28 10

To online the NUMA node and have the Kernel manage the new memory, use:

$ sudo daxctl online-memory dax0.1

dax0.1: 5 sections already online

dax0.1: 0 new sections onlined

onlined memory for 1 device

At this point, the kernel will use the new capacity for normal operation. The new

memory shows itself in tools such lsmem example shown below where we see an additional

10GiB of system-ram in the 0x0000003380000000-0x00000035ffffffff address range:

$ lsmem

RANGE SIZE STATE REMOVABLE BLOCK

0x0000000000000000-0x000000007fffffff 2G online no 0

0x0000000100000000-0x000000277fffffff 154G online yes 2-78

0x0000002780000000-0x000000297fffffff 8G online no 79-82

0x0000002980000000-0x0000002effffffff 22G online yes 83-93

0x0000002f00000000-0x0000002fffffffff 4G online no 94-95

0x0000003380000000-0x00000035ffffffff 10G online yes 103-107

0x000001aa80000000-0x000001d0ffffffff 154G online yes 853-929

0x000001d100000000-0x000001d37fffffff 10G online no 930-934

0x000001d380000000-0x000001d8ffffffff 22G online yes 935-945

0x000001d900000000-0x000001d9ffffffff 4G online no 946-947

Chapter 10 Volatile Use of Persistent Memory

176

Memory block size: 2G

Total online memory: 390G

Total offline memory: 0B

To programmatically allocate memory from a NUMA node created using persistent

memory, a new static kind, called MEMKIND_DAX_KMEM, was added to libmemkind

that uses the system-ram DAX device.

Using MEMKIND_DAX_KMEM as the first argument to memkind_malloc(), shown below,

you can use persistent memory from separate NUMA nodes in a single application.

The persistent memory is still physically connected to a CPU socket, so the application

should take care to ensure CPU affinity for optimal performance.

memkind_malloc(MEMKIND_DAX_KMEM, size_t size)

Figure 10-3 shows an application that created two static kind objects: MEMKIND_

DEFAULT and MEMKIND_DAX_KMEM.

The difference between the PMEM_KIND described earlier and MEMKIND_DAX_

KMEM is that the MEMKIND_DAX_KMEM is a static kind and uses mmap() with the

MAP_PRIVATE flag, while the dynamic PMEM_KIND is created with memkind_create_

pmem() and uses the MAP_SHARED flag when memory-mapping files on a DAX-

enabled file system.

Figure 10-3.  An application that created two kind objects from different types of
memory

Chapter 10 Volatile Use of Persistent Memory

177

Child processes created using the fork(2) system call inherit the MAP_PRIVATE

mappings from the parent process. When memory pages are modified by the parent

process, a copy-on-write mechanism is triggered by the kernel to create an unmodified

copy for the child process. These pages are allocated on the same NUMA node as the

original page.

�libvmemcache: An Efficient Volatile Key-Value
Cache for Large-Capacity Persistent Memory
Some existing in-memory databases (IMDB) rely on manual dynamic memory allocations

(malloc, jemalloc, tcmalloc), which can exhibit external and internal memory

fragmentation when run for a long period of time, leaving large amounts of memory

un-allocatable. Internal and external fragmentation is briefly explained as follows:

•	 Internal fragmentation occurs when more memory is allocated

than is required, and the unused memory is contained within the

allocated region. For example, if the requested allocation size is 200

bytes, a chunk of 256 bytes is allocated.

•	 External fragmentation occurs when variable memory sizes are

allocated dynamically, resulting in a failure to allocate a contiguous

chunk of memory, although the requested chunk of memory remains

available in the system. This problem is more pronounced when large

capacities of persistent memory are being used as volatile memory.

Applications with substantially long runtimes need to solve this

problem, especially if the allocated sizes have considerable variation.

Applications and runtime environments handle this problem in

different ways, for example:

•	 Java and .NET use compacting garbage collection

•	 Redis and Apache Ignite* use defragmentation algorithms

•	 Memcached uses a slab allocator

Each of the above allocator mechanisms has pros and cons. Garbage collection and

defragmentation algorithms require processing to occur on the heap to free unused

allocations or move data to create contiguous space. Slab allocators usually define a fixed

set of different sized buckets at initialization without knowing how many of each bucket

Chapter 10 Volatile Use of Persistent Memory

178

the application will need. If the slab allocator depletes a certain bucket size, it allocates

from larger sized buckets, which reduces the amount of free space. These mechanisms

can potentially block the application’s processing and reduce its performance.

�libvmemcache Overview
libvmemcache is an embeddable and lightweight in-memory caching solution with a

key-value store at its core. It is designed to take full advantage of large-capacity memory,

such as persistent memory, efficiently using memory mapping in a scalable way. It

is optimized for use with memory-addressable persistent storage through a DAX-

enabled file system that supports load/store operations. libvmemcache has these unique

characteristics:

•	 The extent-based memory allocator sidesteps the fragmentation

problem that affects most in-memory databases, and it allows the

cache to achieve very high space utilization for most workloads.

•	 Buffered LRU (least recently used) combines a traditional LRU

doubly linked list with a non-blocking ring buffer to deliver high

scalability on modern multicore CPUs.

•	 A unique indexing critnib data structure delivers high performance

and is very space efficient.

The cache for libvmemcache is tuned to work optimally with relatively large value

sizes. While the smallest possible size is 256 bytes, libvmemcache performs best if the

expected value sizes are above 1 kilobyte.

libvmemcache has more control over the allocation because it implements a custom

memory-allocation scheme using an extents-based approach (like that of file system

extents). libvmemcache can, therefore, concatenate and achieve substantial space

efficiency. Additionally, because it is a cache, it can evict data to allocate new entries in

a worst-case scenario. libvmemcache will always allocate exactly as much memory as it

freed, minus metadata overhead. This is not true for caches based on common memory

allocators such as memkind. libvmemcache is designed to work with terabyte-sized

in-memory workloads, with very high space utilization.

Chapter 10 Volatile Use of Persistent Memory

179

libvmemcache works by automatically creating a temporary file on a DAX-enabled

file system and memory-mapping it into the application’s virtual address space. The

temporary file is deleted when the program terminates and gives the perception of

volatility. Figure 10-4 shows the application using traditional malloc() to allocate

memory from DRAM and using libvmemcache to memory map a temporary file residing

on a DAX-enabled file system from persistent memory.

Although libmemkind supports different kinds of memory and memory consumption

policies, the underlying allocator is jemalloc, which uses dynamic memory allocation.

Table 10-2 compares the implementation details of libvmemcache and libmemkind.

Figure 10-4.  An application using libvmemcache memory-maps a temporary file
from a DAX-enabled file system

Chapter 10 Volatile Use of Persistent Memory

180

�libvmemcache Design
libvmemcache has two main design aspects:

	 1.	 Allocator design to improve/resolve fragmentation issues

	 2.	 A scalable and efficient LRU policy

�Extent-Based Allocator

libvmemcache can solve fragmentation issues when working with terabyte-sized in-

memory workloads and provide high space utilization. Figure 10-5 shows a workload

example that creates many small objects, and over time, the allocator stops due to

fragmentation.

Table 10-2.  Design aspects of libmemkind and libvmemcache

libmemkind (PMEM) libvmemcache

Allocation
Scheme

Dynamic allocator Extent based (not restricted to

sector, page, etc.)

Purpose General purpose Lightweight in-memory cache

Fragmentation Apps with random size allocations/

deallocations that run for a longer period

Minimized

Chapter 10 Volatile Use of Persistent Memory

181

libvmemcache uses an extent-based allocator, where an extent is a contiguous set of

blocks allocated for storing the data in a database. Extents are typically used with large

blocks supported by file systems (sectors, pages, etc.), but such restrictions do not apply

when working with persistent memory that supports smaller block sizes (cache line).

Figure 10-6 shows that if a single contiguous free block is not available to allocate an

object, multiple, noncontiguous blocks are used to satisfy the allocation request. The

noncontiguous allocations appear as a single allocation to the application.

Figure 10-5.  An example of a workload that creates many small objects, and the
allocator stops due to fragmentation

Figure 10-6.  Using noncontiguous free blocks to fulfill a larger allocation request

Chapter 10 Volatile Use of Persistent Memory

182

�Scalable Replacement Policy

An LRU cache is traditionally implemented as a doubly linked list. When an item is

retrieved from this list, it gets moved from the middle to the front of the list, so it is not

evicted. In a multithreaded environment, multiple threads may contend with the front

element, all trying to move elements being retrieved to the front. Therefore, the front

element is always locked (along with other locks) before moving the element being

retrieved, which results in lock contention. This method is not scalable and is inefficient.

A buffer-based LRU policy creates a scalable and efficient replacement policy. A non-

blocking ring buffer is placed in front of the LRU linked list to track the elements being

retrieved. When an element is retrieved, it is added to this buffer, and only when the

buffer is full (or the element is being evicted), the linked list is locked, and the elements

in that buffer are processed and moved to the front of the list. This method preserves the

LRU policy and provides a scalable LRU mechanism with minimal performance impact.

Figure 10-7 shows a ring buffer-based design for the LRU algorithm.

Figure 10-7.  A ring buffer-based LRU design

Chapter 10 Volatile Use of Persistent Memory

183

�Using libvmemcache
Table 10-3 lists the basic functions that libvmemcache provides. For a complete list,

see the libvmemcache man pages (https://pmem.io/vmemcache/manpages/master/

vmemcache.3.html).

Table 10-3.  The libvmemcache functions

Function Name Description

vmemcache_new Creates an empty unconfigured vmemcache instance with default

values: Eviction_policy=VMEMCACHE_REPLACEMENT_LRU

Extent_size = VMEMCAHE_MIN_EXTENT

VMEMCACHE_MIN_POOL

vmemcache_add Associates the cache with a path.

vmemcache_set_size Sets the size of the cache.

vmemcache_set_extent_size Sets the block size of the cache (256 bytes minimum).

vmemcache_set_eviction_policy Sets the eviction policy:

1. VMEMCACHE_REPLACEMENT_NONE

2. VMEMCACHE_REPLACEMENT_LRU

vmemcache_add Associates the cache with a given path on a DAX-enabled file

system or non-DAX-enabled file system.

vmemcache_delete Frees any structures associated with the cache.

vmemcache_get Searches for an entry with the given key, and if found, the entry’s

value is copied to vbuf.

vmemcache_put Inserts the given key-value pair into the cache.

vmemcache_evict Removes the given key from the cache.

vmemcache_callback_on_evict Called when an entry is being removed from the cache.

vmemcache_callback_on_miss Called when a get query fails to provide an opportunity to insert

the missing key.

Chapter 10 Volatile Use of Persistent Memory

https://pmem.io/vmemcache/manpages/master/vmemcache.3.html
https://pmem.io/vmemcache/manpages/master/vmemcache.3.html

184

To illustrate how libvmemcache is used, Listing 10-12 shows how to create an

instance of vmemcache using default values. This example uses a temporary file on a

DAX-enabled file system and shows how a callback is registered after a cache miss for a

key “meow.”

Listing 10-12.  vmemcache.c: An example program using libvmemcache

 37 #include <libvmemcache.h>

 38 #include <stdio.h>

 39 #include <stdlib.h>

 40 #include <string.h>

 41

 42 #define STR_AND_LEN(x) (x), strlen(x)

 43

 44 VMEMcache *cache;

 45

 46 void on_miss(VMEMcache *cache, const void *key,

 47 size_t key_size, void *arg)

 48 {

 49 vmemcache_put(cache, STR_AND_LEN("meow"),

 50 STR_AND_LEN("Cthulhu fthagn"));

 51 }

 52

 53 void get(const char *key)

 54 {

 55 char buf[128];

 56 ssize_t len = vmemcache_get(cache,

 57 STR_AND_LEN(key), buf, sizeof(buf), 0, NULL);

 58 if (len >= 0)

 59 printf("%.*s\n", (int)len, buf);

 60 else

 61 printf("(key not found: %s)\n", key);

 62 }

 63

 64 int main()

 65 {

Chapter 10 Volatile Use of Persistent Memory

185

 66 cache = vmemcache_new();

 67 if (vmemcache_add(cache, "/daxfs")) {

 68 fprintf(stderr, "error: vmemcache_add: %s\n",

 69 vmemcache_errormsg());

 70 exit(1);

 71 }

 72

 73 // Query a non-existent key

 74 get("meow");

 75

 76 // Insert then query

 77 vmemcache_put(cache, STR_AND_LEN("bark"),

 78 STR_AND_LEN("Lorem ipsum"));

 79 get("bark");

 80

 81 // Install an on-miss handler

 82 vmemcache_callback_on_miss(cache, on_miss, 0);

 83 get("meow");

 84

 85 vmemcache_delete(cache);

•	 Line 66: Creates a new instance of vmemcache with default values for

eviction_policy and extent_size.

•	 Line 67: Calls the vmemcache_add() function to associate cache with a

given path.

•	 Line 74: Calls the get() function to query on an existing key. This

function calls the vmemcache_get() function with error checking for

success/failure of the function.

•	 Line 77: Calls vmemcache_put() to insert a new key.

•	 Line 82: Adds an on-miss callback handler to insert the key “meow”

into the cache.

•	 Line 83: Retrieves the key “meow” using the get() function.

•	 Line 85: Deletes the vmemcache instance.

Chapter 10 Volatile Use of Persistent Memory

186

�Summary
This chapter showed how persistent memory’s large capacity can be used to hold volatile

application data. Applications can choose to allocate and access data from DRAM or

persistent memory or both.

memkind is a very flexible and easy-to-use library with semantics that are similar to

the libc malloc/free APIs that developers frequently use.

libvmemcache is an embeddable and lightweight in-memory caching solution that

allows applications to efficiently use persistent memory’s large capacity in a scalable

way. libvmemcache is an open source project available on GitHub at https://github.

com/pmem/vmemcache.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 10 Volatile Use of Persistent Memory

https://github.com/pmem/vmemcache
https://github.com/pmem/vmemcache
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 10: Volatile Use of Persistent Memory
	Introduction
	Background
	Memory Allocation
	How it Works
	Supported “Kinds” of Memory

	The memkind API
	Kind Management API
	Kind Creation
	Creating a Fixed-Size Heap
	Creating a Variable Size Heap

	Detecting the Memory Kind
	Automatic Kind Detection
	Memory Kind Detection

	Destroying Kind Objects

	Heap Management API
	Allocating Memory
	Freeing Allocated Memory

	Kind Configuration Management
	Memory Usage Policy

	Additional memkind Code Examples

	C++ Allocator for PMEM Kind
	pmem::allocator methods
	Nested Containers

	C++ Examples
	Using the pmem::allocator
	Creating a Vector of Strings

	Expanding Volatile Memory Using Persistent Memory
	libvmemcache: An Efficient Volatile Key-Value Cache for Large-Capacity Persistent Memory
	libvmemcache Overview
	libvmemcache Design
	Extent-Based Allocator
	Scalable Replacement Policy

	Using libvmemcache

	Summary

