
493© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_27

CHAPTER 27

Interactive Ray Tracing Techniques
for High-Fidelity Scientific Visualization
John E. Stone
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign

ABSTRACT

This chapter describes rendering techniques and implementation considerations
when using ray tracing for interactive scientific and technical visualization. Ray tracing
offers a convenient framework for building high-fidelity rendering engines that can
directly generate publication-quality images for scientific manuscripts while also
providing high interactivity in a what-you-see-is-what-you-get rendering experience.
The combination of interactivity with sophisticated rendering enables scientists who
are typically not experts in computer graphics or rendering technologies to be able
to immediately apply advanced rendering features in their daily work. This chapter
summarizes techniques and practical approaches learned from applying ray tracing
techniques to scientific visualization, and molecular visualization in particular.

27.1	 �INTRODUCTION

Scientific and technical visualizations are used to illustrate complex data, concepts,
and physical phenomena to aid in the development of hypotheses, discover design
problems, facilitate collaboration, and inform decision making. The scenes that
arise in such visualizations incorporate graphical representations of the details of
key structures and mechanisms and their relationships, or the dynamics of complex
processes under study. High-quality ray tracing techniques have been of great
use in the creation of visualizations that elucidate complex scenes. Interactivity is
a powerful aid to the effectiveness of scientific visualization because it allows the
visualization user to rapidly explore and manipulate data, models, and graphical
representations to obtain insights and to help confirm or deny hypotheses.

Some of the challenges that arise in creating easy-to-understand visualizations
involve compromises between what is shown in complete detail, what is shown just
to provide important visual context, and what has to be eliminated (often sacrificed)
for the sake of clarity of the visual communication. Advanced rendering techniques
offer a variety of solutions to these kinds of problems. The relative ease with which

https://doi.org/10.1007/978-1-4842-4427-2_27

494

ray tracing algorithms can incorporate advanced lighting and shading models,
and support a diverse range of geometric primitives and data types, make it a
powerful tool for interactive rendering of geometrically complex scenes that arise
in scientific and technical visualizations [2, 7, 17, 20, 24, 25].

Although ray tracing has been used for production of such visualizations in an
offline or batch mode basis for decades, it has only recently reached performance
levels that have made it strongly competitive with incumbent methods based on
rasterization, wherein interactivity is a key requirement. The development of high-
performance hardware-optimized ray tracing frameworks, and most recently ray
tracing–specific hardware acceleration technologies available in commodity GPUs,
has created the necessary conditions for broad use of interactive ray tracing for
scientific visualization [13, 25, 26]. ParaView, VisIt, Visual Molecular Dynamics (VMD),
and Visualization ToolKit (VTK)—several of the most widely used scientific
visualization tools in high-performance computing—have each incorporated
interactive ray tracing capabilities in the past few years. The performance gains
provided by recent and upcoming ray tracing–specific hardware acceleration will
hereafter create many new opportunities for interactive ray tracing to be applied in
routine scientific and technical visualizations.

The remaining discussions and code samples provided in this chapter are intended
to document some of the considerations, practical techniques, and elements of
future outlook gained from the experience of developing and integrating three
different interactive ray tracing engines within VMD, a widely used molecular
visualization tool [5, 17, 19, 20, 21].

27.2	 �CHALLENGES ASSOCIATED WITH RAY TRACING LARGE SCENES

One of the recurring challenges that frequently arises in scientific visualization is
the necessity to render scenes that reach the limits of available physical memory.
Visualization approaches based on rasterization benefit from its streaming nature
and typically low memory requirements. Conversely, ray tracing methods require
the entire scene description to be retained in memory or made available to the ray
tracing engine on demand. This is one of the key trade-offs of ray tracing methods
in exchange for their flexibility, elegance, and adaptability to a wide range of
rendering and visualization problems.

At the time of writing, tremendous gains in ray tracing performance have been
achieved on GPUs through dedicated hardware that accelerates both bounding
volume hierarchy (BVH) traversal and ray/triangle intersection tests. This advance
has increased ray tracing performance to such a degree that, for scientific

RAY TRACING GEMS

495

visualizations employing relatively low-cost shading, memory bandwidth is
now and will likely remain one of the critical factors limiting peak ray tracing
performance for the foreseeable future. Considering these issues together, it
is clear that the long-term successful application of ray tracing in challenging
scientific visualization scenarios will depend on the development and application
of techniques that make efficient use of both memory capacity and memory
bandwidth.

27.2.1	 �USING THE RIGHT GEOMETRIC PRIMITIVE FOR THE JOB

Some of the best opportunities for savings in memory capacity and memory
bandwidth relate to the choice of geometric primitives used to construct
visualizations. As an example, the memory footprint for a sphere position and
radius is just 4 floating-point values, whereas an individual triangle with per-vertex
normals and no shared vertices requires 18 values. When representing a triangle
mesh, shared vertices can be listed explicitly with vertex indices (three vertex array
indices per triangle), or better yet, when feasible, they can be implied by triangle
strip vertex index ordering (three indices for the first triangle, and only one index
for each subsequent triangle). The memory cost of surface normals can be reduced
by quantizing or compressing them significantly, further reducing the memory
cost per vertex and per triangle. Ultimately, while these and related techniques
can significantly reduce the memory cost for triangle meshes, direct ray tracing of
spheres, cylinders, or cones rather than small triangle meshes will likely always
use less memory and, more importantly in the long term, consume less memory
bandwidth. While it is clear that for some domains, such as molecular visualization,
large memory efficiency gains can be had through the use of a handful of bespoke
geometric primitive implementations, in other scientific domains it is less clear,
and the alternative geometric primitives available for consideration might involve
numerical precision or convergence challenges in ray/primitive intersection test
implementation, or performance attributes or anomalies that make them difficult
to use effectively in all cases.

27.2.2	 �ELIMINATION OF REDUNDANCY, COMPRESSION, AND QUANTIZATION

Once the best choice of geometric primitives has been made, the remaining low-
cost opportunities for reducing memory capacity and bandwidth requirements
tend to be methods that eliminate high-level redundancies within large batches
of geometric primitives. For example, particle advection streamlines used for
visualization of fluid flow, magnetic fields, or electrostatic potential fields may
contain millions of segments. Why store a radius per cylinder or per sphere when
drawing tubular streamlines if all constituent segments have the same radius?

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

496

In the same way that rasterization pipelines have supported a broad diversity of
triangle mesh formats and per-vertex data, ray tracing engines stand to benefit
from similar flexibility, but for a much broader range of potential geometric
primitives. For example, a ray tracing engine used to render scenes containing
large numbers of streamlines of various types might employ multiple specialized
geometry batch types, with radii specified per cylinder and per sphere, and with
constant radii for all constituent cylinders and spheres. Depending on the degree
of programmability of the underlying ray tracing framework, it might be possible to
cause cylinder and sphere primitives to share the same vertex data. Furthermore,
it might be possible to implement a fully customized streamline rendering primitive
that implements or emulates the effect of a swept sphere following a space curve
defined by the original streamline vertices themselves or by computed control
points fit to the original data [23]. The more programmability available in the ray
tracing framework, the more easily an application can choose the geometric
primitives and geometry batching approaches that are most beneficial for resolving
the memory capacity and performance issues posed by large visualizations.

After high-level redundancies have been eliminated from the encoding and
parameterization of large batches of geometry, the next areas to approach are
techniques that eliminate more-localized data redundancies at the level of groups
of neighboring or otherwise related geometric properties. Localized data size
reductions can often be made through data compression approaches and reduced-
precision quantized representations of geometric attributes, or combinations
of the two. When quantization or other lossy compression techniques are used,
acceptable error tolerances may depend on the details of the visualization problem
at hand. Two representative examples of these techniques are compression of
volumetric data, scalar fields, and tensors, e.g., as provided by the ZFP library [8, 9],
and quantized representations of surface normals, as in octahedron normal vector
encoding [4, 12]. See Listing 27-4 for an example implementation of normal packing
and unpacking using octahedron normal encoding.

Listing 27-1.  This code snippet lists the key functions required to implement normal packing and
unpacking using octahedron normal vector encoding. The routines convert back and forth between
normal vectors represented as three single-precision oating-point values and a single packed 32-bit
unsigned integer encoding. Many performance optimizations and improvements are possible here, but
these routines are easy to try out in your own ray tracing engine.

 1 �# include <optixu/optixu_math_namespace.h> // For make_xxx() functions

 2

 3 // Helper routines that implement the floating-point stages of

 4 // octahedron normal vector encoding

RAY TRACING GEMS

497

 5 static _ _host_ _ _ _device_ _ _ _inline_ _

 6 float3 OctDecode(float2 projected) {

 7 float3 n;

 8 n = make_float3(projected.x, projected.y,

 9 �1.0f - (fabsf(projected.x) + fabsf(projected.y)));

10 if (n.z < 0.0f) {

11 float oldX = n.x;

12 n.x = copysignf(1.0f - fabsf(n.y), oldX);

13 n.y = copysignf(1.0f - fabsf(oldX), n.y);

14 }

15 return n;

16 }

17

18 static _ _host_ _ _ _device_ _ _ _inline_ _

19 float2 OctEncode(float3 n) {

20 �const float invL1Norm = 1.0f / (fabsf(n.x)+fabsf(n.y)+fabsf(n.z));

21 float2 projected;

22 if (n.z < 0.0f) {

23 float2 tmp = make_float2(fabsf(n.y), fabsf(n.x));

24 projected = 1.0f - tmp * invL1Norm;

25 projected.x = copysignf(projected.x, n.x);

26 projected.y = copysignf(projected.y, n.y);

27 } else {

28 projected = make_float2(n.x, n.y) * invL1Norm;

29 }

30 return projected;

31 }

32

33 // Helper routines to quantize to or invert the quantization

34 // to and from packed unsigned integer representations

35 static _ _host_ _ _ _device_ _ _ _inline_ _

36 uint convfloat2uint32(float2 f2) {

37 f2 = f2 * 0.5f + 0.5f;

38 uint packed;

39 packed = ((uint) (f2.x * 65535)) | ((uint) (f2.y * 65535) << 16);

40 return packed;

41 }

42

43 static _ _host_ _ _ _device_ _ _ _inline_ _

44 float2 convuint32float2(uint packed) {

45 float2 f2;

46 f2.x = (float)((packed) & 0x0000ffff) / 65535;

47 f2.y = (float)((packed >> 16) & 0x0000ffff) / 65535;

48 return f2 * 2.0f - 1.0f;

49 }

50

51 // The routines to be called when preparing geometry buffers prior

52 �// to ray tracing and when decoding them on-the-fly during rendering

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

498

53 static _ _host_ _ _ _device_ _ _ _inline_ _

54 uint packNormal(const float3& normal) {

55 float2 octf2 = OctEncode(normal);

56 return convfloat2uint32(octf2);

57 }

58

59 static _ _host_ _ _ _device_ _ _ _inline_ _

60 float3 unpackNormal(uint packed) {

61 float2 octf2 = convuint32float2(packed);

62 return OctDecode(octf2);

63 }

The atomic-detail molecular structure shown in Figure 27-1 demonstrates the
use of all the techniques described in this section, using both triangle meshes
and bespoke geometric primitive implementations, with redundancy elimination
approaches applied to geometry encoding and batching, along with octahedron
normal vectors. An example implementation of normal packing using octahedron
normal encoding is included to demonstrate the value and application of the
technique in interactive ray tracing. Vertex normals are not required for ray/triangle
intersection tests. Normals are only referenced when the closest-hit result has been
found and must be shaded. As such, the costs of on-the-fly inverse quantization
or decompression during shading are low, and for interactive ray tracing of large,
geometrically complex scenes, they tend to have negligible impact on frame rates
while providing substantial memory savings. Similar approaches can be applied to
per-vertex colors and other attributes, potentially with even greater practical effect.

Figure 27-1.  Closeup visualization of an atomic-detail model of the lipid membrane in a photosynthetic
chromatophore structure. Contextual parts of the model are visualized with triangle mesh surface
representations using octahedron normal vectors. The atomic details shown in the lipid membrane are
composed of tens of millions of individual spheres and cylinders. The memory savings associated with
the use of direct ray tracing of custom sphere and cylinder arrays makes interactive ray tracing of this
large structure feasible while maintaining high performance on commodity GPUs [20].

RAY TRACING GEMS

499

27.2.3	 �CONSIDERATIONS FOR RAY TRACING ACCELERATION STRUCTURES

Beyond the direct memory cost associated with a given geometric primitive, it is
important to consider the per-primitive memory costs associated with the BVH or
other ray tracing acceleration structure that ultimately contains them. It can be
surprising that, despite the use of data compression techniques in state-of-the-
art ray tracing acceleration structures, the acceleration structures themselves
can sometimes end up being as large or larger in size than the scene geometry
they encode. Acceleration structures and their space-versus-time trade-offs are
therefore an area of significant concern for applications of ray tracing to scientific
visualizations. Since acceleration structure construction, storage, and traversal
are all performance-critical aspects of ray tracing, they are frequently proprietary,
highly hardware-optimized, and therefore often less flexible than one might prefer.

For visualization of static structures, large and highly optimized acceleration
structures yield the best performance since construction and update costs
are relatively unimportant. For interactive display of time series data such as
simulation trajectories, time spent on geometry buffer updates and acceleration
structure (re)builds becomes an important factor in interactivity. Time series
animation is a much more complex case that can benefit significantly from
increased concurrency, e.g., via multithreading techniques. To completely decouple
geometry updates and acceleration structure (re)builds from ongoing interactive
rendering and display, it is necessary to employ double- or multi-buffering of key
ray tracing data structures. Multi-buffering of ray tracing data structures permits
scene updates to occur concurrently and asynchronously with ongoing rendering.

The need for flexibility in ray tracing acceleration structure optimization is of
particular interest for both large, static scenes and for dynamic time series
visualizations. When visualizing large scientific scenes that have extremely high
geometric complexity, often the memory required by the acceleration structure
exceeds available capacity. In such cases it is usually preferable to build a
moderately coarser acceleration structure that sacrifices some performance in
favor of increased geometric capacity. The use of a coarser acceleration structure
may also turn out to be a desirable trade-off for time series visualizations.
Some existing ray tracing frameworks provide simple controls over acceleration
structure construction heuristics and tunables for these purposes. This remains
an area of active development where one can expect future ray tracing engines to
make significant advances.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

500

27.3	 �VISUALIZATION METHODS

In this section, several simple but extremely useful ray tracing–compatible
shading techniques are described, along with descriptions of their practical use
and implementation. Scientists and technicians who use visualization tools have
tremendous domain expertise, but they often have only moderate familiarity
with optics, lighting, shading, and computer graphics techniques in general.
A key component of the techniques described here is that they are easily used by
nonexpert visualization practitioners, particularly when implemented in a fully
interactive ray tracing engine with progressive refinement and other niceties.
A panoply of excellent shading techniques are available for scientific visualization
applications based on rasterization. However, many of these depend on
rasterization-specific techniques or API features, and they may not be compatible
with the range of lighting and shading techniques commonly used in interactive ray
tracing visualization engines. The techniques described next have low performance
costs, can be combined with other ray tracing features, and, most importantly, have
seen ongoing use in the creation of effective visualizations.

The ray tracing methods described here provide several useful scientific
visualization tools for ambient occlusion lighting, non-photorealistic transparent
surfaces, edge outlining of opaque surfaces, and clipping planes and spheres,
each of which can contribute to improving the clarity and interpretation of resulting
visualizations.

27.3.1	 �AMBIENT OCCLUSION LIGHTING IN SCIENTIFIC VISUALIZATION

A key value of ambient occlusion (AO) lighting for scientific and technical
visualization is its tremendous time savings, particularly when paired with
complex scenes and other high-fidelity ray tracing techniques. AO can be useful
for interactive viewing of complex models, but especially for time series data
such as simulation trajectories, when it is impractical for a user to continually
adjust manually placed lights to achieve a desirable lighting outcome [19, 22].
The “ambient” aspect of AO lighting is what makes it such a convenient tool for
nonexpert users. With interactive use of AO and progressive ray tracing, users
need not become experts at lighting design and can instead achieve a “good”
lighting arrangement by adjusting one or two key ambient occlusion lighting
parameters, typically in combination with one or two manually positioned
directional or point light sources. This is particularly true in domains such as
molecular visualization, where the visualization lighting design is solely for
elucidating details of molecular structure and is not an attempt to replicate a
photorealistic scene of some sort. One way in which the application of AO can be
made easy for beginners is to provide independent light scaling factors for both

RAY TRACING GEMS

501

AO (“ambient”) and manually placed (“direct”) light sources. By providing separate
easy-to-use global intensity scaling factors for ambient and direct lighting,
beginners find it easier to balance their lighting design and avoid both over-lit
and under-lit conditions that can otherwise easily occur in geometrically complex
scenes that contain pockets, pores/tunnels, or cavities that each pose lighting
challenges.

27.3.1.1  �AO WITH LIMITED OCCLUSION DISTANCE

A problem with AO that often arises when exploring scenes with densely packed
geometry is that there are few paths for the “ambient” light to get deep within a
complex structure, such as within a virus capsid or a cell membrane. A simple
but effective solution to this problem is to compute AO lighting with a maximum
occlusion distance, beyond which ambient occlusions are ignored. Using this
technique, one can choose a maximum occlusion distance that comfortably fits
within the confined viewing spaces of interest, maintaining the key benefits of AO
for visualization purposes, as shown in Figure 27-2. While a camera-centered point
light could be used to light dark interiors of largely or fully enclosed structures, it
would result in an undesirable flat-looking surface. This too could be resolved by
careful manual or offset placement of multiple point lights or area lights, but such
tasks are ultimately undesirable distractions that take away from unrestricted
interactive exploration of complex models or simulation results. The use of AO with
a limited occlusion distance avoids these undesirable issues while maintaining
unrestricted interactive scene navigation. A further, perhaps unanticipated,
benefit of this type of approach is that the maximum AO occlusion distance can
also be used to shadow only pores, pockets, and cavities of a particular maximum
diameter range, converting AO lighting into a tool capable of highlighting particular
geometric features with a mild degree of selectivity. This technique can be refined
further by incorporating user-specified AO falloff attenuation coefficients, if
desired. See Listing 27-2 for a simple example implementation.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

502

Listing 27-2.  This closest-hit shader code snippet skips shading of transparent surfaces when
the incident ray has crossed through a user-defined maximum number of transparent surfaces,
proceeding instead by shooting a transmission ray and continuing as though there had been no
ray/surface intersection.

 1 struct PerRayData_radiance {

 2 float3 result; // Final shaded surface color

 3 // ...

 4 }

 5

 6 struct PerRayData_shadow {

 7 float3 attenuation;

 8 };

 9

10 rtDeclareVariable(PerRayData_radiance, prd, rtPayload,);

11 rtDeclareVariable(PerRayData_shadow, prd_shadow, rtPayload,);

12

13 �rtDeclareVariable (float, ao_maxdist, ,); // max AO occluder distance

14

15 static _ _device_ _

16 float3 shade_ambient_occlusion(float3 hit, float3 N,

17 float aoimportance) {

18 // Skipping boilerplate AO shadowing material here ...

19

Figure 27-2.  Visualization of the interior of the HIV-1 capsid at various settings of the AO lighting
maximum occlusion distance. (a) Conventional AO lighting: since the virus capsid completely encloses
the viewpoint, only a few thin shafts of light enter the interior through pores in the capsid structure,
leaving it almost completely dark. (b) The user-specified maximum occlusion distance was set to
slightly less than the minor interior diameter of the capsid. The remaining images show this distance
decreased by a factor of(c) 2, (d) 8, and (e) 16.

RAY TRACING GEMS

503

20 for (int s=0; s<ao_samples; s++) {

21 Ray aoray;

22 // Skipping boilerplate AO shadowing material here ...

23 aoray = make_Ray (hit, dir, shadow_ray_type,

24 scene_epsilon, ao_maxdist);

25

26 shadow_prd.attenuation = make_float3(1.0f);

27 rtTrace(root_shadower, ambray, shadow_prd);

28 inten += ndotambl * shadow_prd.attenuation;

29 }

30

31 return inten * lightscale;

32 }

33

34 RT_PROGRAM void closest_hit_shader(...) {

35 // Skipping boilerplate closest-hit shader material here ...

36

37 // Add ambient occlusion diffuse lighting, if enabled.

38 if (AO_ON && ao_samples > 0) {

39 result *= ao_direct;

40 result += ao_ambient * col * p_Kd *

41 �shade_ambient_occlusion(hit_point, N, fogf * p_opacity);

42 }

43

44 // Continue with typical closest-hit shader contents ...

45

46 �prd.result = result; // Pass the resulting color back up the tree.

47 }

27.3.1.2  �REDUCING MONTE CARLO SAMPLING NOISE

Scientists who use visualization tools frequently need to generate quick “snapshot”
renderings for routine use in team meetings and presentations. Being perpetually
short of time, there is a tendency for users to prefer high-fidelity rendering
approaches, but with the condition that rendering can be halted at any point,
providing them with an image that is free of “grain” or “speckle,” albeit without
having fully converged lighting or depth of field focal blur.

A particularly promising class of state-of-the-art techniques for real-time
denoising employs carefully trained deep neural networks to eliminate grain
and speckle noise in undersampled regions of images produced by Monte
Carlo rendering [3, 6, 10, 15, 16]. The success of so-called artificially intelligent
(AI) denoisers often depends on the availability of auxiliary image data buffers
containing depth, surface normals, albedo, and other types of information that
help the denoiser do a better job of identifying noise and undersampled image

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

504

regions. The interactive-rate performance of AI denoisers also hinges upon the
availability of hardware-accelerated AI inferencing, which enables the denoiser
to outrun brute-force sampling, even on hardware platforms with dedicated ray
tracing hardware acceleration. It appears likely that AI denoising will remain one of
best and most broadly used approaches for denoising in sophisticated path tracing,
and in ray tracing engines more generally, because the techniques can be tuned or
trained specifically for particular renderers and scene content.

Besides sophisticated denoising techniques, one can also make potentially
beneficial trade-offs between high-frequency noise content and the correlation
of stochastic samples, e.g., resulting in visible AO shadow boundary edges in
undersampled interactive renderings. In conventional ray tracing technique,
ambient occlusion lighting and other Monte Carlo sampling implementations
typically use completely uncorrelated pseudo-random or quasi-random number
sequences to generate directions for AO lighting shadow feeler rays within the
hemisphere normal to the surface being shaded. With an uncorrelated sampling
approach, when a sufficient number of AO lighting samples have been taken, a
smooth grain-free image results. However, early termination of an unconverged
sampling process results in a grainy looking image. By purposefully correlating
AO samples in all image pixels, e.g., by seeding AO random number generators
or quasi-random sequence generators with the same seed, all pixels in the image
will choose the same AO shadow feeler directions, and there will be no image
grain from AO. This approach is particularly well suited for interactive ray tracing
of geometrically complex scenes that would otherwise require a large number of
samples to achieve grain-free images.

27.3.2	 �EDGE-ENHANCED TRANSPARENT SURFACES

A common problem that arises in molecular visualizations is the need to clearly
display the boundaries of molecular complexes or their constituent substructures,
while making it easy to see the details of their internal structures. Molecular
scientists spend significant effort selecting what should be shown and how it
should be displayed. Raster3D [11], Tachyon [18], and VMD [5, 20] employ special
shaders that make it easy to see the interior of a structure by making viewer-
directed surfaces entirely transparent, while leaving the boundary regions
that are seen edge-on largely opaque. The surface shader instantly adapts to
changes in viewing orientation, permitting the user to freely rotate the molecular
complex while maintaining an unobscured view of interior details. This technique
is demonstrated effectively in Figure 27-3, where it is applied to light-harvesting
complexes and photosynthetic reaction centers, and in Figure 27-4, where it is
applied to a solvent box and solvent/protein interface. See Listing 27-3 for the
details of the shader implementation.

RAY TRACING GEMS

505

Listing 27-3.  This example code snippet makes viewer-facing surfaces appear completely
transparent while leaving surfaces seen edge-on more visible and opaque. This type of rendering
is extremely useful to facilitate views into the interior of crowded scenes, such as densely packed
biomolecular complexes.

 1 RT_PROGRAM void closest_hit_shader(...) {

 2 // Skipping boilerplate closest-hit shader material here ...

 3

 4 // Exemplary simplified placeholder for typical

 5 // transmission ray launch code

Figure 27-3.  Visualization of the intracellular packing of chromatophore light-harvesting vesicles that
use photosynthesis to produce ATP, the chemical fuel for living cells. The foreground chromatophore
vesicle is shown with transparent molecular surfaces to reveal selected interior atomic structures
of the rings of chlorophyll pigments within each of its individual photosynthetic complexes and
reaction centers. Background instances of opaque chromatophores show the crowded packing of
chromatophore vesicles within the cytoplasm of a purple bacterium.

Figure 27-4.  Visualization of the molecular dynamics of an unfolding Ankyrin protein, with solvent
(water and ions) surfaces rendered using the edge-enhanced transparent surface shading technique [1].

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

506

 6 if (alpha < 0.999f) {

 7 �// Emulate Tachyon/Raster3D's angle-dependent surface opacity

 8 if (transmode) {

 9 alpha = 1.0f + cosf(3.1415926f * (1.0f-alpha) *

10 dot(N, ray.direction));

11 alpha = alpha*alpha * 0.25f;

12 }

13 result *= alpha; // Scale down lighting by any new transparency

14

15 // Skipping boilerplate code to prepare a new transmission ray ...

16 rtTrace(root_object, trans_ray, new_prd);

17 }

18 result += (1.0f - alpha) * new_prd.result;

19

20 // Continue with typical closest-hit shader contents ...

21

22 �prd.result = result; // Pass the resulting color back up the tree.

23 }

27.3.3	 �PEELING AWAY EXCESS TRANSPARENT SURFACES

Many domains within scientific visualization produce scenes that incorporate
significant amounts of partially transparent geometry, often to display surfaces
within volumetric data of various types, e.g., electron density maps, medical
images, tomograms from cryo-electron microscopy, or flow fields from
computational fluid dynamics simulations. When rendering scenes containing
complex or noisy volumetric data, transparent isosurfaces and contained geometry
may become more difficult to interpret visually, and it is often helpful to create
purposefully non-photorealistic renderings that “peel away” all but the first, or first
few, layers of transparent surfaces so they do not create a distracting background
behind features of particular interest. See Figure 27-5. Transparent surfaces can
be peeled as described by making a small modification to a canonical closest-hit
program: store an additional counter for transparent surface crossing as an extra
per-ray data item. When primary rays are generated, the crossing counter is
initially set to the maximum number of transparent surfaces to be shown. As the
ray is traced through the scene, the per-ray transparent surface crossing counter
is decremented on each transparent surface until it reaches zero. Once this
happens, all subsequent intersections with transparent surfaces are ignored, i.e.,
they are not shaded and do not contribute to the final color, and transmission rays
are generated to continue as if no intersection had occurred. See Listing 27-4 for an
example implementation.

RAY TRACING GEMS

507

Listing 27-4.  This closest-hit shader code snippet skips the shading of transparent surfaces when
the incident ray has crossed through a user-defined maximum number of transparent surfaces,
proceeding instead by shooting a transmission ray and continuing as though there had been no ray/
surface intersection.

 1 struct PerRayData_radiance {

 2 float3 result; // Final shaded surface color

 3 int transcnt; // Transmission ray surface count/depth

 4 int depth; // Current ray recursion depth

 5 // ...

 6 }

 7

 8 rtDeclareVariable(PerRayData_radiance, prd, rtPayload,);

 9

10 RT_PROGRAM void closest_hit_shader(...) {

11 // Skipping boilerplate closest-hit shader material here ...

12

13 // Do not shade transparent surface if the maximum

14 // transcnt has been reached.

15 if ((opacity < 1.0) && (transcnt < 1)) {

16 // Spawn transmission ray; shading behaves as if there

17 // had been no intersection.

18 PerRayData_radiance new_prd;

19 �new_prd.depth = prd.depth; // Do not increment recursion depth.

20 new_prd.transcnt = prd.transcnt - 1;

21 // Set/update various other properties of the new ray.

22

Figure 27-5.  Closeup visualization of an atomic-detail structure of rabbit hemorrhagic disease virus,
obtained through X-ray crystallography and computational modeling and fit into a low-resolution
electron density map from cryo-electron microscopy using molecular dynamics flexible fitting: the
results of conventional ray traced transparency (left), and the transparency peeling approach that
eliminates obscuration of details of the fitted interior atomic structures (right).

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

508

23 // Shoot the new transmission ray and return its color as if

24 // there had been no intersection with this transparent surface.

25 Ray trans_ray = make_Ray(hit_point, ray.direction,

26 radiance_ray_type, scene_epsilon,

27 RT_DEFAULT_MAX);

28 rtTrace(root_object, trans_ray, new_prd);

29 }

30

31 // Otherwise, continue shading this

32 // transparent surface hit point normally ...

33

34 // Continue with typical closest-hit shader contents ...

35 �prd.result = result; // Pass the resulting color back up the tree.

36 }

27.3.4	 �EDGE OUTLINES

The addition of edge outlining on opaque geometry is often helpful in making the
depth and spatial relationships between nearby objects or surfaces of the same
color much more obvious and easy to interpret. Edge outlining can be used both
to further enhance the visibility of salient details of surface structure, such as
protrusions, pores, or pockets, and can be used either with light effects for detailed
renderings or with a much stronger effect to remain visible when blurred or faded
by depth of field or depth cueing. Figure 27-6 shows two examples of edge outlining
applied to both foreground and background contextual structures in combination
with depth of field focal blur and depth cueing.

Figure 27-6.  Visualization of molecular surfaces with edge outlining applied to enhance the visibility of
significant structural features and with depth of field and depth cueing (fog) used. Top: edge outlining has
been applied relatively sparingly and is only easily visible on the in-focus foreground molecular surfaces.
Bottom: the edge outline width has been significantly increased. Although the wide edge outline might
be excessive when applied to in-focus foreground structures, it allows salient features of the molecular
structure to be seen even in the most distant structures that have been blurred and faded.

RAY TRACING GEMS

509

While many outlining techniques exist for conventional rasterization pipelines, they
are usually implemented in multi-pass rendering approaches that often require
access to a depth buffer, which is not well suited to the internal workings of most
ray tracing engines. For many years, VMD and Tachyon have implemented an easy-
to-use outline shader that is simple to implement within ray tracing engines as it
does not require depth buffer access, deferred shading, or other extra rendering
passes. See Listing 27-5 for an example implementation.

Listing 27-5.  This example code snippet adds a dark outline on the edges of geometry to help
accentuate objects that are packed closely together and may not otherwise be visually distinct.

 1 struct PerRayData_radiance {

 2 float3 result; // Final shaded surface color

 3 // ...

 4 }

 5

 6 rtDeclareVariable(PerRayData_radiance, prd, rtPayload,);

 7

 8 // Example of instantiating a shader with outlining enabled ...

 9 RT_PROGRAM void closest_hit_shader_outline(...) {

10 // Skipping boilerplate closest-hit shader material here ...

11

12 // Add edge shading, if applicable.

13 if (outline > 0.0f) {

14 float edgefactor = dot(N, ray.direction);

15 edgefactor *= edgefactor;

16 edgefactor = 1.0f - edgefactor;

17 �edgefactor = 1.0f - powf(edgefactor, (1.0f-outlinewidth) * 32.0f);

18 �result *= _ _saturatef((1.0f-outline) + (edgefactor * outline));

19 }

20

21 // Continue with typical closest -hit shader contents ...

22

23 �prd.result = result; // Pass the resulting color back up the tree.

24 }

27.3.5	 �CLIPPING PLANES AND SPHERES

One of the powerful rendering capabilities long enjoyed by users of advanced
ray tracing engines is constructive solid geometry (CSG), which models complex
geometry with unions, intersections, and differences between arbitrary numbers of
basic geometric primitives [14]. CSG can be a powerful tool for modeling complex
shapes, but in scientific visualization a user frequently needs easy-to-use tools
for cutting away visual obscuration, which can be performed using just CSG
differences. When interactively visualizing large scenes, it is often impractical to
make significant changes to the underlying model or data in the scene within the

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

510

available frame rate budget. However, approaches that leave the model unchanged
and instead manipulate only the low-level rendering process are often still feasible
under such constraints. Fully general CSG implementations require somewhat
extensive bookkeeping, but clipping geometry is a special case that can be achieved
far more simply. Since ray tracing engines do their work by computing and sorting
intersections, it is usually easy to implement user-defined clipping planes, spheres,
or other clipping geometry within the intersection management logic. This is
particularly true if clipping geometry applies globally to everything in the scene,
since that case incurs insignificant bookkeeping overhead. Global clipping geometry
can typically be added to any ray tracing engine by computing the clipping geometry
intersection distances and storing them in per-ray data for use when rendering the
rest of the scene geometry. See Listing 27-6 for an example implementation.

Listing 27-6.  This excerpt from Tachyon shows the simplicity with which one can implement a basic
user-defined clipping plane feature (that globally clips all objects, when enabled) by storing clipping
plane information in per-ray data and adding a simple distance comparison for each of the clipping
plane(s) to be tested.

 1 /* Only keeps closest intersection, no clipping, no CSG */

 2 �void add_regular_intersection(flt t, const object * obj, ray * ry) {

 3 if (t > EPSILON) {

 4 /* if we hit something before maxdist update maxdist */

 5 if (t < ry->maxdist) {

 6 ry->maxdist = t;

 7 ry->intstruct.num=1;

 8 ry->intstruct.closest.obj = obj;

 9 ry->intstruct.closest.t = t;

 10 }

 11 }

 12 }

 13

 14 /* Only keeps closest intersection, also handles clipping, no CSG */

 15 �void add_clipped_intersection(flt t, const object * obj, ray * ry) {

 16 if (t > EPSILON) {

 17 /* if we hit something before maxdist update maxdist */

 18 if (t < ry->maxdist) {

 19

 20 /* handle clipped object tests */

 21 if (obj->clip != NULL) {

 22 vector hit;

 23 int i;

 24

RAY TRACING GEMS

511

 25 �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 26 for (i =0; i<obj->clip->numplanes; i++) {

 27 if ((obj->clip->planes[i * 4] * hit.x +

 28 obj->clip->planes[i * 4 + 1] * hit.y +

 29 obj->clip->planes[i * 4 + 2] * hit.z) >

 30 obj->clip->planes[i * 4 + 3]) {

 31 return; /* hit point was clipped */

 32 }

 33 }

 34 }

 35

 36 ry->maxdist = t;

 37 ry->intstruct.num=1;

 38 ry->intstruct.closest.obj = obj;

 39 ry->intstruct.closest.t = t;

 40 }

 41 }

 42 }

 43

 44 /* Only meant for shadow rays, unsafe for anything else */

 45 �void add_shadow_intersection(flt t, const object * obj, ray * ry) {

 46 if (t > EPSILON) {

 47 /* if we hit something before maxdist update maxdist */

 48 if (t < ry->maxdist) {

 49 /* if this object doesn't cast a shadow, and we aren't */

 50 /* limiting the number of transparent surfaces to less */

 51 /* than 5, then modulate the light by its opacity value */

 52 if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 53 if (ry->scene->shadowfilter)

 54 �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 55 return;

 56 }

 57

 58 ry->maxdist = t;

 59 ry->intstruct.num=1;

 60

 61 /* if we hit *anything* before maxdist, and we're firing a */

 62 /* shadow ray, then we are finished ray tracing the shadow */

 63 ry->flags |= RT_RAY_FINISHED;

 64 }

 65 }

 66 }

 67

 68 /* Only meant for clipped shadow rays, unsafe for anything else */

 69 void add_clipped_shadow_intersection(flt t, const object * obj,

 70 ray * ry) {

 71 if (t > EPSILON) {

 72 /* if we hit something before maxdist update maxdist */

 73 if (t < ry->maxdist) {

 74 /* if this object doesn't cast a shadow, and we aren't */

 75 /* limiting the number of transparent surfaces to less */

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

512

 76 /* than 5, then modulate the light by its opacity value */

 77 if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 78 if (ry->scene->shadowfilter)

 79 �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 80 return;

 81 }

 82

 83 /* handle clipped object tests */

 84 if (obj->clip != NULL) {

 85 vector hit;

 86 int i;

 87

 88 �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 89 for (i=0; i<obj->clip->numplanes; i++) {

 90 if ((obj->clip->planes[i * 4] * hit.x +

 91 obj->clip->planes[i * 4 + 1] * hit.y +

 92 obj->clip->planes[i * 4 + 2] * hit.z) >

 93 obj->clip->planes[i * 4 + 3]) {

 94 return; /* hit point was clipped */

 95 }

 96 }

 97 }

 98

 99 ry->maxdist = t;

100 ry->intstruct.num=1;

101

102 /* if we hit *anything* before maxdist, and we're firing a */

103 /* shadow ray, then we are finished ray tracing the shadow */

104 ry->flags |= RT_RAY_FINISHED;

105 }

106 }

107 }

27.4	 �CLOSING THOUGHTS

This chapter has described many of the benefits and challenges associated with the
use of interactive ray tracing techniques for scientific visualization. Since the major
strengths of ray tracing are well known, this chapter included a few unconventional
techniques that combine non-photorealistic approaches with the classic strengths
of ray tracing to solve tricky visualization problems. Although most of the example
images and motivations given are biomolecular in nature, these approaches are of
value in many other areas as well.

An exciting area of my own and others’ research is the ongoing development
of using techniques such as interactive path tracing for scientific visualization.
Path tracing used to be too costly to be practical for many routine visualization

RAY TRACING GEMS

513

tasks that a scientist might perform on a daily basis. However, when the ray
tracing performance provided by state-of-the-art hardware is combined with
the latest techniques for Monte Carlo image denoising, interactive path tracing
becomes feasible for a wide spectrum of visualization workloads without having
to compromise on either interactivity or image quality. These developments are
of particular value for scientific and technical visualizations where improved
photorealism is important.

The code examples provided with the chapter are intended to serve as exemplary
starting points for further specialization. Each of the techniques can be significantly
extended to add new capabilities far beyond what is demonstrated here, and I have
tried to strike a balance between simplicity, reusability, and completeness.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health, under grant
P41-GM104601. The author thanks Melih Sener and Angela Barragan for the use
of the chromatophore models. The author wishes to thank many current and
former colleagues in the Theoretical and Computational Biophysics Group at the
University of Illinois for years of collaboration on the design of the VMD molecular
visualization software and the use of advanced rendering techniques for production
of effective visualizations.

REFERENCES

	 [1]	� Borkiewicz, K., Christensen, A. J., and Stone, J. E. Communicating Science Through Visualization
in an Age of Alternative Facts. In ACM SIGGRAPH Courses (2017), pp. 8:1–8:204.

	 [2]	� Brownlee, C., Patchett, J., Lo, L.-T., DeMarle, D., Mitchell, C., Ahrens, J., and Hansen, C. D.
A Study of Ray Tracing Large-Scale Scientific Data in Two Widely Used Parallel Visualization
Applications. In Eurographics Symposium on Parallel Graphics and Visualization (2012), pp. 51–60.

	 [3]	� Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D., and
Aila, T. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising
Autoencoder. ACM Transactions on Graphics 36, 4 (July 2017), 98:1–98:12.

	 [4]	� Cigolle, Z. H., Donow, S., Evangelakos, D., Mara, M., McGuire, M., and Meyer, Q. A Survey of
Efficient Representations for Independent Unit Vectors. Journal of Computer Graphics Techniques
3, 2 (April 2014), 1–30.

	 [5]	� Humphrey, W., Dalke, A., and Schulten, K. VMD—Visual Molecular Dynamics. Journal of Molecular
Graphics 14, 1 (1996), 33–38.

	 [6]	� Kalantari, N. K., Bako, S., and Sen, P. A Machine Learning Approach for Filtering Monte Carlo
Noise. ACM Transactions on Graphics 34, 4 (July 2015), 122:1–122:12.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

514

	 [7]	� Knoll, A., Wald, I., Navrátil, P. A., Papka, M. E., and Gaither, K. P. Ray Tracing and Volume
Rendering Large Molecular Data on Multi-Core and Many-Core Architectures. In International
Workshop on Ultrascale Visualization (2013), pp. 5:1–5:8.

	 [8]	� Lindstrom, P. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization
and Computer Graphics 20, 12 (Dec. 2014), 2674–2683.

	 [9]	� Lindstrom, P., and Isenburg, M. Fast and Efficient Compression of Floating-Point Data. IEEE
Transactions on Visualization and Computer Graphics 12, 5 (Sept. 2006), 1245–1250.

	 [10]	� Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. An Efficient Denoising Algorithm for Global
Illumination. In Proceedings of High-Performance Graphics (2017), pp. 3:1–3:7.

	 [11]	� Merritt, E. A., and Murphy, M. E. P. Raster3D Version 2.0—A Program for Photorealistic Molecular
Graphics. Acta Crystallography 50, 6 (1994), 869–873.

	 [12]	� Meyer, Q., Süßmuth, J., Sußner, G., Stamminger, M., and Greiner, G. On Floating-Point Normal
Vectors. In Eurographics Symposium on Rendering (2010), pp. 1405–1409.

	 [13]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D.,
McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [14]	� Roth, S. D. Ray Casting for Modeling Solids. Computer Graphics and Image Processing 18, 2 (1982),
109–144.

	 [15]	� Santos, J. D., Sen, P., and Oliveira, M. M. A Framework for Developing and Benchmarking
Sampling and Denoising Algorithms for Monte Carlo Rendering. The Visual Computer 34, 6-8
(June 2018), 765–778.

	 [16]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S.,
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics
(2017), pp. 2:1–2:12.

	 [17]	� Sener, M., Stone, J. E., Barragan, A., Singharoy, A., Teo, I., Vandivort, K. L., Isralewitz, B., Liu,
B., Goh, B. C., Phillips, J. C., Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Visualization of
Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail. In International
Conference on High Performance Computing, Networking, Storage and Analysis (2014).

	 [18]	� Stone, J. E. An Efficient Library for Parallel Ray Tracing and Animation. Master’s thesis,
Computer Science Department, University of Missouri-Rolla, April 1998.

	 [19]	� Stone, J. E., Isralewitz, B., and Schulten, K. Early Experiences Scaling VMD Molecular
Visualization and Analysis Jobs on Blue Waters. In Extreme Scaling Workshop (Aug. 2013),
pp. 43–50.

	 [20]	� Stone, J. E., Sener, M., Vandivort, K. L., Barragan, A., Singharoy, A., Teo, I., Ribeiro, J. V.,
Isralewitz, B., Liu, B., Goh, B. C., Phillips, J. C., MacGregor-Chatwin, C., Johnson, M. P.,
Kourkoutis, L. F., Hunter, C. N., and Schulten, K. Atomic Detail Visualization of Photosynthetic
Membranes with GPU-Accelerated Ray Tracing. Parallel Computing 55 (2016), 17–27.

RAY TRACING GEMS

515

	 [21]	� Stone, J. E., Sherman, W. R., and Schulten, K. Immersive Molecular Visualization with
Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. In IEEE International Parallel
and Distributed Processing Symposium Workshop (2016), pp. 1048–1057.

	 [22]	� Stone, J. E., Vandivort, K. L., and Schulten, K. GPU-Accelerated Molecular Visualization on
Petascale Supercomputing Platforms. In International Workshop on Ultrascale Visualization (2013),
pp. 6:1–6:8.

	 [23]	� Van Wijk, J. J. Ray Tracing Objects Defined by Sweeping a Sphere. Computers & Graphics 9,
3 (1985), 283–290.

	 [24]	� Wald, I., Friedrich, H., Knoll, A., and Hansen, C. Interactive Isosurface Ray Tracing of Time-
Varying Tetrahedral Volumes. IEEE Transactions on Visualization and Computer Graphics 13,
6 (11 2007), 1727–1734.

	 [25]	� Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gunther, J., and Navratil,
P. OSPRay—A CPU Ray Tracing Framework for Scientific Visualization. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 931–940.

	 [26]	� Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M. Embree: A Kernel Framework for
Efficient CPU Ray Tracing. ACM Transactions on Graphics 33, 4 (July 2014), 143:1–143:8.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 27: Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization
	27.1	 Introduction
	27.2	 Challenges Associated with Ray Tracing Large Scenes
	27.2.1	 Using the Right Geometric Primitive for the Job
	27.2.2	 Elimination of Redundancy, Compression, and Quantization
	27.2.3	 Considerations for Ray Tracing Acceleration Structures

	27.3	 Visualization Methods
	27.3.1	 Ambient Occlusion Lighting in Scientific Visualization
	27.3.1.1 AO with Limited Occlusion Distance
	27.3.1.2 Reducing Monte Carlo Sampling Noise

	27.3.2	 Edge-Enhanced Transparent Surfaces
	27.3.3	 Peeling Away Excess Transparent Surfaces
	27.3.4	 Edge Outlines
	27.3.5	 Clipping Planes and Spheres

	27.4	 Closing Thoughts

