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ABSTRACT

This chapter describes rendering techniques and implementation considerations 
when using ray tracing for interactive scientific and technical visualization. Ray tracing 
offers a convenient framework for building high-fidelity rendering engines that can 
directly generate publication-quality images for scientific manuscripts while also 
providing high interactivity in a what-you-see-is-what-you-get rendering experience. 
The combination of interactivity with sophisticated rendering enables scientists who 
are typically not experts in computer graphics or rendering technologies to be able 
to immediately apply advanced rendering features in their daily work. This chapter 
summarizes techniques and practical approaches learned from applying ray tracing 
techniques to scientific visualization, and molecular visualization in particular.

27.1	 �INTRODUCTION

Scientific and technical visualizations are used to illustrate complex data, concepts, 
and physical phenomena to aid in the development of hypotheses, discover design 
problems, facilitate collaboration, and inform decision making. The scenes that 
arise in such visualizations incorporate graphical representations of the details of 
key structures and mechanisms and their relationships, or the dynamics of complex 
processes under study. High-quality ray tracing techniques have been of great 
use in the creation of visualizations that elucidate complex scenes. Interactivity is 
a powerful aid to the effectiveness of scientific visualization because it allows the 
visualization user to rapidly explore and manipulate data, models, and graphical 
representations to obtain insights and to help confirm or deny hypotheses.

Some of the challenges that arise in creating easy-to-understand visualizations 
involve compromises between what is shown in complete detail, what is shown just 
to provide important visual context, and what has to be eliminated (often sacrificed) 
for the sake of clarity of the visual communication. Advanced rendering techniques 
offer a variety of solutions to these kinds of problems. The relative ease with which 
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ray tracing algorithms can incorporate advanced lighting and shading models, 
and support a diverse range of geometric primitives and data types, make it a 
powerful tool for interactive rendering of geometrically complex scenes that arise 
in scientific and technical visualizations [2, 7, 17, 20, 24, 25].

Although ray tracing has been used for production of such visualizations in an 
offline or batch mode basis for decades, it has only recently reached performance 
levels that have made it strongly competitive with incumbent methods based on 
rasterization, wherein interactivity is a key requirement. The development of high-
performance hardware-optimized ray tracing frameworks, and most recently ray 
tracing–specific hardware acceleration technologies available in commodity GPUs, 
has created the necessary conditions for broad use of interactive ray tracing for 
scientific visualization [13, 25, 26]. ParaView, VisIt, Visual Molecular Dynamics (VMD),  
and Visualization ToolKit (VTK)—several of the most widely used scientific 
visualization tools in high-performance computing—have each incorporated 
interactive ray tracing capabilities in the past few years. The performance gains 
provided by recent and upcoming ray tracing–specific hardware acceleration will 
hereafter create many new opportunities for interactive ray tracing to be applied in 
routine scientific and technical visualizations.

The remaining discussions and code samples provided in this chapter are intended 
to document some of the considerations, practical techniques, and elements of 
future outlook gained from the experience of developing and integrating three 
different interactive ray tracing engines within VMD, a widely used molecular 
visualization tool [5, 17, 19, 20, 21].

27.2	 �CHALLENGES ASSOCIATED WITH RAY TRACING LARGE SCENES

One of the recurring challenges that frequently arises in scientific visualization is 
the necessity to render scenes that reach the limits of available physical memory. 
Visualization approaches based on rasterization benefit from its streaming nature 
and typically low memory requirements. Conversely, ray tracing methods require 
the entire scene description to be retained in memory or made available to the ray 
tracing engine on demand. This is one of the key trade-offs of ray tracing methods 
in exchange for their flexibility, elegance, and adaptability to a wide range of 
rendering and visualization problems.

At the time of writing, tremendous gains in ray tracing performance have been 
achieved on GPUs through dedicated hardware that accelerates both bounding 
volume hierarchy (BVH) traversal and ray/triangle intersection tests. This advance 
has increased ray tracing performance to such a degree that, for scientific 
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visualizations employing relatively low-cost shading, memory bandwidth is 
now and will likely remain one of the critical factors limiting peak ray tracing 
performance for the foreseeable future. Considering these issues together, it 
is clear that the long-term successful application of ray tracing in challenging 
scientific visualization scenarios will depend on the development and application 
of techniques that make efficient use of both memory capacity and memory 
bandwidth.

27.2.1	 �USING THE RIGHT GEOMETRIC PRIMITIVE FOR THE JOB

Some of the best opportunities for savings in memory capacity and memory 
bandwidth relate to the choice of geometric primitives used to construct 
visualizations. As an example, the memory footprint for a sphere position and 
radius is just 4 floating-point values, whereas an individual triangle with per-vertex 
normals and no shared vertices requires 18 values. When representing a triangle 
mesh, shared vertices can be listed explicitly with vertex indices (three vertex array 
indices per triangle), or better yet, when feasible, they can be implied by triangle 
strip vertex index ordering (three indices for the first triangle, and only one index 
for each subsequent triangle). The memory cost of surface normals can be reduced 
by quantizing or compressing them significantly, further reducing the memory 
cost per vertex and per triangle. Ultimately, while these and related techniques 
can significantly reduce the memory cost for triangle meshes, direct ray tracing of 
spheres, cylinders, or cones rather than small triangle meshes will likely always 
use less memory and, more importantly in the long term, consume less memory 
bandwidth. While it is clear that for some domains, such as molecular visualization, 
large memory efficiency gains can be had through the use of a handful of bespoke 
geometric primitive implementations, in other scientific domains it is less clear, 
and the alternative geometric primitives available for consideration might involve 
numerical precision or convergence challenges in ray/primitive intersection test 
implementation, or performance attributes or anomalies that make them difficult 
to use effectively in all cases.

27.2.2	 �ELIMINATION OF REDUNDANCY, COMPRESSION, AND QUANTIZATION

Once the best choice of geometric primitives has been made, the remaining low-
cost opportunities for reducing memory capacity and bandwidth requirements 
tend to be methods that eliminate high-level redundancies within large batches 
of geometric primitives. For example, particle advection streamlines used for 
visualization of fluid flow, magnetic fields, or electrostatic potential fields may 
contain millions of segments. Why store a radius per cylinder or per sphere when 
drawing tubular streamlines if all constituent segments have the same radius? 
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In the same way that rasterization pipelines have supported a broad diversity of 
triangle mesh formats and per-vertex data, ray tracing engines stand to benefit 
from similar flexibility, but for a much broader range of potential geometric 
primitives. For example, a ray tracing engine used to render scenes containing 
large numbers of streamlines of various types might employ multiple specialized 
geometry batch types, with radii specified per cylinder and per sphere, and with 
constant radii for all constituent cylinders and spheres. Depending on the degree 
of programmability of the underlying ray tracing framework, it might be possible to 
cause cylinder and sphere primitives to share the same vertex data. Furthermore, 
it might be possible to implement a fully customized streamline rendering primitive 
that implements or emulates the effect of a swept sphere following a space curve 
defined by the original streamline vertices themselves or by computed control 
points fit to the original data [23]. The more programmability available in the ray 
tracing framework, the more easily an application can choose the geometric 
primitives and geometry batching approaches that are most beneficial for resolving 
the memory capacity and performance issues posed by large visualizations.

After high-level redundancies have been eliminated from the encoding and 
parameterization of large batches of geometry, the next areas to approach are 
techniques that eliminate more-localized data redundancies at the level of groups 
of neighboring or otherwise related geometric properties. Localized data size 
reductions can often be made through data compression approaches and reduced-
precision quantized representations of geometric attributes, or combinations 
of the two. When quantization or other lossy compression techniques are used, 
acceptable error tolerances may depend on the details of the visualization problem 
at hand. Two representative examples of these techniques are compression of 
volumetric data, scalar fields, and tensors, e.g., as provided by the ZFP library [8, 9], 
and quantized representations of surface normals, as in octahedron normal vector 
encoding [4, 12]. See Listing 27-4 for an example implementation of normal packing 
and unpacking using octahedron normal encoding.

Listing 27-1.  This code snippet lists the key functions required to implement normal packing and 
unpacking using octahedron normal vector encoding. The routines convert back and forth between 
normal vectors represented as three single-precision oating-point values and a single packed 32-bit 
unsigned integer encoding. Many performance optimizations and improvements are possible here, but 
these routines are easy to try out in your own ray tracing engine.

 1 �# include <optixu/optixu_math_namespace.h> // For make_xxx() functions

 2

 3 // Helper routines that implement the floating-point stages of

 4 // octahedron normal vector encoding
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 5 static _ _host_ _ _ _device_ _ _ _inline_ _

 6 float3 OctDecode(float2 projected) {

 7   float3 n;

 8   n = make_float3(projected.x, projected.y,

 9                   �1.0f - (fabsf(projected.x) + fabsf(projected.y)));

10   if (n.z < 0.0f) {

11     float oldX = n.x;

12     n.x = copysignf(1.0f - fabsf(n.y), oldX);

13     n.y = copysignf(1.0f - fabsf(oldX), n.y);

14   }

15   return n;

16 }

17

18 static _ _host_ _ _ _device_ _ _ _inline_ _

19 float2 OctEncode(float3 n) {

20   �const float invL1Norm = 1.0f / (fabsf(n.x)+fabsf(n.y)+fabsf(n.z));

21   float2 projected;

22   if (n.z < 0.0f) {

23     float2 tmp = make_float2(fabsf(n.y), fabsf(n.x));

24     projected = 1.0f - tmp * invL1Norm;

25     projected.x = copysignf(projected.x, n.x);

26     projected.y = copysignf(projected.y, n.y);

27   } else {

28     projected = make_float2(n.x, n.y) * invL1Norm;

29   }

30   return projected;

31 }

32

33 // Helper routines to quantize to or invert the quantization

34 // to and from packed unsigned integer representations

35 static _ _host_ _ _ _device_ _ _ _inline_ _

36 uint convfloat2uint32(float2 f2) {

37   f2 = f2 * 0.5f + 0.5f;

38   uint packed;

39   packed = ((uint) (f2.x * 65535)) | ((uint) (f2.y * 65535) << 16);

40   return packed;

41 }

42

43 static _ _host_ _ _ _device_ _ _ _inline_ _

44 float2 convuint32float2(uint packed) {

45   float2 f2;

46   f2.x = (float)((packed      ) & 0x0000ffff) / 65535;

47   f2.y = (float)((packed >> 16) & 0x0000ffff) / 65535;

48   return f2 * 2.0f - 1.0f;

49 }

50

51 // The routines to be called when preparing geometry buffers prior

52 �// to ray tracing and when decoding them on-the-fly during rendering
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53 static _ _host_ _ _ _device_ _ _ _inline_ _

54 uint packNormal(const float3& normal) {

55   float2 octf2 = OctEncode(normal);

56   return convfloat2uint32(octf2);

57 }

58

59 static _ _host_ _ _ _device_ _ _ _inline_ _

60 float3 unpackNormal(uint packed) {

61   float2 octf2 = convuint32float2(packed);

62   return OctDecode(octf2);

63 }

The atomic-detail molecular structure shown in Figure 27-1 demonstrates the 
use of all the techniques described in this section, using both triangle meshes 
and bespoke geometric primitive implementations, with redundancy elimination 
approaches applied to geometry encoding and batching, along with octahedron 
normal vectors. An example implementation of normal packing using octahedron 
normal encoding is included to demonstrate the value and application of the 
technique in interactive ray tracing. Vertex normals are not required for ray/triangle 
intersection tests. Normals are only referenced when the closest-hit result has been 
found and must be shaded. As such, the costs of on-the-fly inverse quantization 
or decompression during shading are low, and for interactive ray tracing of large, 
geometrically complex scenes, they tend to have negligible impact on frame rates 
while providing substantial memory savings. Similar approaches can be applied to 
per-vertex colors and other attributes, potentially with even greater practical effect.

Figure 27-1.  Closeup visualization of an atomic-detail model of the lipid membrane in a photosynthetic 
chromatophore structure. Contextual parts of the model are visualized with triangle mesh surface 
representations using octahedron normal vectors. The atomic details shown in the lipid membrane are 
composed of tens of millions of individual spheres and cylinders. The memory savings associated with 
the use of direct ray tracing of custom sphere and cylinder arrays makes interactive ray tracing of this 
large structure feasible while maintaining high performance on commodity GPUs [20].
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27.2.3	 �CONSIDERATIONS FOR RAY TRACING ACCELERATION STRUCTURES

Beyond the direct memory cost associated with a given geometric primitive, it is 
important to consider the per-primitive memory costs associated with the BVH or 
other ray tracing acceleration structure that ultimately contains them. It can be 
surprising that, despite the use of data compression techniques in state-of-the-
art ray tracing acceleration structures, the acceleration structures themselves 
can sometimes end up being as large or larger in size than the scene geometry 
they encode. Acceleration structures and their space-versus-time trade-offs are 
therefore an area of significant concern for applications of ray tracing to scientific 
visualizations. Since acceleration structure construction, storage, and traversal 
are all performance-critical aspects of ray tracing, they are frequently proprietary, 
highly hardware-optimized, and therefore often less flexible than one might prefer.

For visualization of static structures, large and highly optimized acceleration 
structures yield the best performance since construction and update costs 
are relatively unimportant. For interactive display of time series data such as 
simulation trajectories, time spent on geometry buffer updates and acceleration 
structure (re)builds becomes an important factor in interactivity. Time series 
animation is a much more complex case that can benefit significantly from 
increased concurrency, e.g., via multithreading techniques. To completely decouple 
geometry updates and acceleration structure (re)builds from ongoing interactive 
rendering and display, it is necessary to employ double- or multi-buffering of key 
ray tracing data structures. Multi-buffering of ray tracing data structures permits 
scene updates to occur concurrently and asynchronously with ongoing rendering.

The need for flexibility in ray tracing acceleration structure optimization is of 
particular interest for both large, static scenes and for dynamic time series 
visualizations. When visualizing large scientific scenes that have extremely high 
geometric complexity, often the memory required by the acceleration structure 
exceeds available capacity. In such cases it is usually preferable to build a 
moderately coarser acceleration structure that sacrifices some performance in 
favor of increased geometric capacity. The use of a coarser acceleration structure 
may also turn out to be a desirable trade-off for time series visualizations. 
Some existing ray tracing frameworks provide simple controls over acceleration 
structure construction heuristics and tunables for these purposes. This remains 
an area of active development where one can expect future ray tracing engines to 
make significant advances.
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27.3	 �VISUALIZATION METHODS

In this section, several simple but extremely useful ray tracing–compatible 
shading techniques are described, along with descriptions of their practical use 
and implementation. Scientists and technicians who use visualization tools have 
tremendous domain expertise, but they often have only moderate familiarity  
with optics, lighting, shading, and computer graphics techniques in general.  
A key component of the techniques described here is that they are easily used by 
nonexpert visualization practitioners, particularly when implemented in a fully 
interactive ray tracing engine with progressive refinement and other niceties.  
A panoply of excellent shading techniques are available for scientific visualization 
applications based on rasterization. However, many of these depend on 
rasterization-specific techniques or API features, and they may not be compatible 
with the range of lighting and shading techniques commonly used in interactive ray 
tracing visualization engines. The techniques described next have low performance 
costs, can be combined with other ray tracing features, and, most importantly, have 
seen ongoing use in the creation of effective visualizations.

The ray tracing methods described here provide several useful scientific 
visualization tools for ambient occlusion lighting, non-photorealistic transparent 
surfaces, edge outlining of opaque surfaces, and clipping planes and spheres, 
each of which can contribute to improving the clarity and interpretation of resulting 
visualizations.

27.3.1	 �AMBIENT OCCLUSION LIGHTING IN SCIENTIFIC VISUALIZATION

A key value of ambient occlusion (AO) lighting for scientific and technical 
visualization is its tremendous time savings, particularly when paired with 
complex scenes and other high-fidelity ray tracing techniques. AO can be useful 
for interactive viewing of complex models, but especially for time series data 
such as simulation trajectories, when it is impractical for a user to continually 
adjust manually placed lights to achieve a desirable lighting outcome [19, 22]. 
The “ambient” aspect of AO lighting is what makes it such a convenient tool for 
nonexpert users. With interactive use of AO and progressive ray tracing, users 
need not become experts at lighting design and can instead achieve a “good” 
lighting arrangement by adjusting one or two key ambient occlusion lighting 
parameters, typically in combination with one or two manually positioned 
directional or point light sources. This is particularly true in domains such as 
molecular visualization, where the visualization lighting design is solely for 
elucidating details of molecular structure and is not an attempt to replicate a 
photorealistic scene of some sort. One way in which the application of AO can be 
made easy for beginners is to provide independent light scaling factors for both 
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AO (“ambient”) and manually placed (“direct”) light sources. By providing separate 
easy-to-use global intensity scaling factors for ambient and direct lighting, 
beginners find it easier to balance their lighting design and avoid both over-lit 
and under-lit conditions that can otherwise easily occur in geometrically complex 
scenes that contain pockets, pores/tunnels, or cavities that each pose lighting 
challenges.

27.3.1.1  �AO WITH LIMITED OCCLUSION DISTANCE

A problem with AO that often arises when exploring scenes with densely packed 
geometry is that there are few paths for the “ambient” light to get deep within a 
complex structure, such as within a virus capsid or a cell membrane. A simple 
but effective solution to this problem is to compute AO lighting with a maximum 
occlusion distance, beyond which ambient occlusions are ignored. Using this 
technique, one can choose a maximum occlusion distance that comfortably fits 
within the confined viewing spaces of interest, maintaining the key benefits of AO 
for visualization purposes, as shown in Figure 27-2. While a camera-centered point 
light could be used to light dark interiors of largely or fully enclosed structures, it 
would result in an undesirable flat-looking surface. This too could be resolved by 
careful manual or offset placement of multiple point lights or area lights, but such 
tasks are ultimately undesirable distractions that take away from unrestricted 
interactive exploration of complex models or simulation results. The use of AO with 
a limited occlusion distance avoids these undesirable issues while maintaining 
unrestricted interactive scene navigation. A further, perhaps unanticipated, 
benefit of this type of approach is that the maximum AO occlusion distance can 
also be used to shadow only pores, pockets, and cavities of a particular maximum 
diameter range, converting AO lighting into a tool capable of highlighting particular 
geometric features with a mild degree of selectivity. This technique can be refined 
further by incorporating user-specified AO falloff attenuation coefficients, if 
desired. See Listing 27-2 for a simple example implementation.

 Interactive Ray Tracing Techniques for High-Fidelity Scientific Visualization



502

Listing 27-2.  This closest-hit shader code snippet skips shading of transparent surfaces when 
the incident ray has crossed through a user-defined maximum number of transparent surfaces, 
proceeding instead by shooting a transmission ray and continuing as though there had been no  
ray/surface intersection.

 1 struct PerRayData_radiance {

 2   float3 result;    // Final shaded surface color

 3   // ...

 4 }

 5

 6 struct PerRayData_shadow {

 7   float3 attenuation;

 8 };

 9

10 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

11 rtDeclareVariable(PerRayData_shadow, prd_shadow, rtPayload, );

12

13 �rtDeclareVariable (float, ao_maxdist, , ); // max AO occluder distance

14

15 static _ _device_ _

16 float3 shade_ambient_occlusion(float3 hit, float3 N,

17                                float aoimportance) {

18   // Skipping boilerplate AO shadowing material here ...

19

Figure 27-2.  Visualization of the interior of the HIV-1 capsid at various settings of the AO lighting 
maximum occlusion distance. (a) Conventional AO lighting: since the virus capsid completely encloses 
the viewpoint, only a few thin shafts of light enter the interior through pores in the capsid structure, 
leaving it almost completely dark. (b) The user-specified maximum occlusion distance was set to 
slightly less than the minor interior diameter of the capsid. The remaining images show this distance 
decreased by a factor of(c) 2, (d) 8, and (e) 16.
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20   for (int s=0; s<ao_samples; s++) {

21     Ray aoray;

22     // Skipping boilerplate AO shadowing material here ...

23     aoray = make_Ray (hit, dir, shadow_ray_type,

24                       scene_epsilon, ao_maxdist);

25

26     shadow_prd.attenuation = make_float3(1.0f);

27     rtTrace(root_shadower, ambray, shadow_prd);

28     inten += ndotambl * shadow_prd.attenuation;

29   }

30

31   return inten * lightscale;

32 }

33

34 RT_PROGRAM void closest_hit_shader( ... ) {

35   // Skipping boilerplate closest-hit shader material here ...

36

37   // Add ambient occlusion diffuse lighting, if enabled.

38   if (AO_ON && ao_samples > 0) {

39     result *= ao_direct;

40     result += ao_ambient * col * p_Kd *

41               �shade_ambient_occlusion(hit_point, N, fogf * p_opacity);

42   }

43

44   // Continue with typical closest-hit shader contents ...

45

46   �prd.result = result; // Pass the resulting color back up the tree.

47 }

27.3.1.2  �REDUCING MONTE CARLO SAMPLING NOISE

Scientists who use visualization tools frequently need to generate quick “snapshot” 
renderings for routine use in team meetings and presentations. Being perpetually 
short of time, there is a tendency for users to prefer high-fidelity rendering 
approaches, but with the condition that rendering can be halted at any point, 
providing them with an image that is free of “grain” or “speckle,” albeit without 
having fully converged lighting or depth of field focal blur.

A particularly promising class of state-of-the-art techniques for real-time 
denoising employs carefully trained deep neural networks to eliminate grain 
and speckle noise in undersampled regions of images produced by Monte 
Carlo rendering [3, 6, 10, 15, 16]. The success of so-called artificially intelligent 
(AI) denoisers often depends on the availability of auxiliary image data buffers 
containing depth, surface normals, albedo, and other types of information that 
help the denoiser do a better job of identifying noise and undersampled image 
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regions. The interactive-rate performance of AI denoisers also hinges upon the 
availability of hardware-accelerated AI inferencing, which enables the denoiser 
to outrun brute-force sampling, even on hardware platforms with dedicated ray 
tracing hardware acceleration. It appears likely that AI denoising will remain one of 
best and most broadly used approaches for denoising in sophisticated path tracing, 
and in ray tracing engines more generally, because the techniques can be tuned or 
trained specifically for particular renderers and scene content.

Besides sophisticated denoising techniques, one can also make potentially 
beneficial trade-offs between high-frequency noise content and the correlation 
of stochastic samples, e.g., resulting in visible AO shadow boundary edges in 
undersampled interactive renderings. In conventional ray tracing technique, 
ambient occlusion lighting and other Monte Carlo sampling implementations 
typically use completely uncorrelated pseudo-random or quasi-random number 
sequences to generate directions for AO lighting shadow feeler rays within the 
hemisphere normal to the surface being shaded. With an uncorrelated sampling 
approach, when a sufficient number of AO lighting samples have been taken, a 
smooth grain-free image results. However, early termination of an unconverged 
sampling process results in a grainy looking image. By purposefully correlating 
AO samples in all image pixels, e.g., by seeding AO random number generators 
or quasi-random sequence generators with the same seed, all pixels in the image 
will choose the same AO shadow feeler directions, and there will be no image 
grain from AO. This approach is particularly well suited for interactive ray tracing 
of geometrically complex scenes that would otherwise require a large number of 
samples to achieve grain-free images.

27.3.2	 �EDGE-ENHANCED TRANSPARENT SURFACES

A common problem that arises in molecular visualizations is the need to clearly 
display the boundaries of molecular complexes or their constituent substructures, 
while making it easy to see the details of their internal structures. Molecular 
scientists spend significant effort selecting what should be shown and how it 
should be displayed. Raster3D [11], Tachyon [18], and VMD [5, 20] employ special 
shaders that make it easy to see the interior of a structure by making viewer-
directed surfaces entirely transparent, while leaving the boundary regions 
that are seen edge-on largely opaque. The surface shader instantly adapts to 
changes in viewing orientation, permitting the user to freely rotate the molecular 
complex while maintaining an unobscured view of interior details. This technique 
is demonstrated effectively in Figure 27-3, where it is applied to light-harvesting 
complexes and photosynthetic reaction centers, and in Figure 27-4, where it is 
applied to a solvent box and solvent/protein interface. See Listing 27-3 for the 
details of the shader implementation.
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Listing 27-3.  This example code snippet makes viewer-facing surfaces appear completely 
transparent while leaving surfaces seen edge-on more visible and opaque. This type of rendering 
is extremely useful to facilitate views into the interior of crowded scenes, such as densely packed 
biomolecular complexes.

 1 RT_PROGRAM void closest_hit_shader( ... ) {

 2   // Skipping boilerplate closest-hit shader material here ...

 3

 4   // Exemplary simplified placeholder for typical

 5   // transmission ray launch code

Figure 27-3.  Visualization of the intracellular packing of chromatophore light-harvesting vesicles that 
use photosynthesis to produce ATP, the chemical fuel for living cells. The foreground chromatophore 
vesicle is shown with transparent molecular surfaces to reveal selected interior atomic structures 
of the rings of chlorophyll pigments within each of its individual photosynthetic complexes and 
reaction centers. Background instances of opaque chromatophores show the crowded packing of 
chromatophore vesicles within the cytoplasm of a purple bacterium.

Figure 27-4.  Visualization of the molecular dynamics of an unfolding Ankyrin protein, with solvent 
(water and ions) surfaces rendered using the edge-enhanced transparent surface shading technique [1].
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 6   if (alpha < 0.999f) {

 7     �// Emulate Tachyon/Raster3D's angle-dependent surface opacity

 8     if (transmode) {

 9       alpha = 1.0f + cosf(3.1415926f * (1.0f-alpha) *

10                      dot(N, ray.direction));

11       alpha = alpha*alpha * 0.25f;

12     }

13     result *= alpha; // Scale down lighting by any new transparency

14

15     // Skipping boilerplate code to prepare a new transmission ray ...

16     rtTrace(root_object, trans_ray, new_prd);

17   }

18   result += (1.0f - alpha) * new_prd.result;

19

20   // Continue with typical closest-hit shader contents ...

21

22   �prd.result = result; // Pass the resulting color back up the tree.

23 }

27.3.3	 �PEELING AWAY EXCESS TRANSPARENT SURFACES

Many domains within scientific visualization produce scenes that incorporate 
significant amounts of partially transparent geometry, often to display surfaces 
within volumetric data of various types, e.g., electron density maps, medical 
images, tomograms from cryo-electron microscopy, or flow fields from 
computational fluid dynamics simulations. When rendering scenes containing 
complex or noisy volumetric data, transparent isosurfaces and contained geometry 
may become more difficult to interpret visually, and it is often helpful to create 
purposefully non-photorealistic renderings that “peel away” all but the first, or first 
few, layers of transparent surfaces so they do not create a distracting background 
behind features of particular interest. See Figure 27-5. Transparent surfaces can 
be peeled as described by making a small modification to a canonical closest-hit 
program: store an additional counter for transparent surface crossing as an extra 
per-ray data item. When primary rays are generated, the crossing counter is 
initially set to the maximum number of transparent surfaces to be shown. As the 
ray is traced through the scene, the per-ray transparent surface crossing counter 
is decremented on each transparent surface until it reaches zero. Once this 
happens, all subsequent intersections with transparent surfaces are ignored, i.e., 
they are not shaded and do not contribute to the final color, and transmission rays 
are generated to continue as if no intersection had occurred. See Listing 27-4 for an 
example implementation.
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Listing 27-4.  This closest-hit shader code snippet skips the shading of transparent surfaces when 
the incident ray has crossed through a user-defined maximum number of transparent surfaces, 
proceeding instead by shooting a transmission ray and continuing as though there had been no ray/
surface intersection.

 1 struct PerRayData_radiance {

 2   float3 result;     // Final shaded surface color

 3   int transcnt;      // Transmission ray surface count/depth

 4   int depth;         // Current ray recursion depth

 5   // ...

 6 }

 7

 8 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

 9

10 RT_PROGRAM void closest_hit_shader( ... ) {

11   // Skipping boilerplate closest-hit shader material here ...

12

13   // Do not shade transparent surface if the maximum

14   // transcnt has been reached.

15   if ((opacity < 1.0) && (transcnt < 1)) {

16     // Spawn transmission ray; shading behaves as if there

17     // had been no intersection.

18     PerRayData_radiance new_prd;

19     �new_prd.depth = prd.depth; // Do not increment recursion depth.

20     new_prd.transcnt = prd.transcnt - 1;

21     // Set/update various other properties of the new ray.

22

Figure 27-5.  Closeup visualization of an atomic-detail structure of rabbit hemorrhagic disease virus, 
obtained through X-ray crystallography and computational modeling and fit into a low-resolution 
electron density map from cryo-electron microscopy using molecular dynamics flexible fitting: the 
results of conventional ray traced transparency (left), and the transparency peeling approach that 
eliminates obscuration of details of the fitted interior atomic structures (right).
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23     // Shoot the new transmission ray and return its color as if

24     // there had been no intersection with this transparent surface.

25     Ray trans_ray = make_Ray(hit_point, ray.direction,

26                              radiance_ray_type, scene_epsilon,

27                              RT_DEFAULT_MAX);

28     rtTrace(root_object, trans_ray, new_prd);

29   }

30

31   // Otherwise, continue shading this

32   // transparent surface hit point normally ...

33

34   // Continue with typical closest-hit shader contents ...

35   �prd.result = result; // Pass the resulting color back up the tree.

36 }

27.3.4	 �EDGE OUTLINES

The addition of edge outlining on opaque geometry is often helpful in making the 
depth and spatial relationships between nearby objects or surfaces of the same 
color much more obvious and easy to interpret. Edge outlining can be used both 
to further enhance the visibility of salient details of surface structure, such as 
protrusions, pores, or pockets, and can be used either with light effects for detailed 
renderings or with a much stronger effect to remain visible when blurred or faded 
by depth of field or depth cueing. Figure 27-6 shows two examples of edge outlining 
applied to both foreground and background contextual structures in combination 
with depth of field focal blur and depth cueing.

Figure 27-6.  Visualization of molecular surfaces with edge outlining applied to enhance the visibility of 
significant structural features and with depth of field and depth cueing (fog) used. Top: edge outlining has 
been applied relatively sparingly and is only easily visible on the in-focus foreground molecular surfaces. 
Bottom: the edge outline width has been significantly increased. Although the wide edge outline might 
be excessive when applied to in-focus foreground structures, it allows salient features of the molecular 
structure to be seen even in the most distant structures that have been blurred and faded.
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While many outlining techniques exist for conventional rasterization pipelines, they 
are usually implemented in multi-pass rendering approaches that often require 
access to a depth buffer, which is not well suited to the internal workings of most 
ray tracing engines. For many years, VMD and Tachyon have implemented an easy-
to-use outline shader that is simple to implement within ray tracing engines as it 
does not require depth buffer access, deferred shading, or other extra rendering 
passes. See Listing 27-5 for an example implementation.

Listing 27-5.  This example code snippet adds a dark outline on the edges of geometry to help 
accentuate objects that are packed closely together and may not otherwise be visually distinct.

 1 struct PerRayData_radiance {

 2   float3 result;      // Final shaded surface color

 3   // ...

 4 }

 5

 6 rtDeclareVariable(PerRayData_radiance, prd, rtPayload, );

 7

 8 // Example of instantiating a shader with outlining enabled ...

 9 RT_PROGRAM void closest_hit_shader_outline( ... ) {

10   // Skipping boilerplate closest-hit shader material here ...

11

12   // Add edge shading, if applicable.

13   if (outline > 0.0f) {

14     float edgefactor = dot(N, ray.direction);

15     edgefactor *= edgefactor;

16     edgefactor = 1.0f - edgefactor;

17     �edgefactor = 1.0f - powf(edgefactor, (1.0f-outlinewidth) * 32.0f);

18     �result *= _ _saturatef((1.0f-outline) + (edgefactor * outline));

19   }

20

21   // Continue with typical closest -hit shader contents ...

22

23   �prd.result = result; // Pass the resulting color back up the tree.

24 }

27.3.5	 �CLIPPING PLANES AND SPHERES

One of the powerful rendering capabilities long enjoyed by users of advanced 
ray tracing engines is constructive solid geometry (CSG), which models complex 
geometry with unions, intersections, and differences between arbitrary numbers of 
basic geometric primitives [14]. CSG can be a powerful tool for modeling complex 
shapes, but in scientific visualization a user frequently needs easy-to-use tools 
for cutting away visual obscuration, which can be performed using just CSG 
differences. When interactively visualizing large scenes, it is often impractical to 
make significant changes to the underlying model or data in the scene within the 
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available frame rate budget. However, approaches that leave the model unchanged 
and instead manipulate only the low-level rendering process are often still feasible 
under such constraints. Fully general CSG implementations require somewhat 
extensive bookkeeping, but clipping geometry is a special case that can be achieved 
far more simply. Since ray tracing engines do their work by computing and sorting 
intersections, it is usually easy to implement user-defined clipping planes, spheres, 
or other clipping geometry within the intersection management logic. This is 
particularly true if clipping geometry applies globally to everything in the scene, 
since that case incurs insignificant bookkeeping overhead. Global clipping geometry 
can typically be added to any ray tracing engine by computing the clipping geometry 
intersection distances and storing them in per-ray data for use when rendering the 
rest of the scene geometry. See Listing 27-6 for an example implementation.

Listing 27-6.  This excerpt from Tachyon shows the simplicity with which one can implement a basic 
user-defined clipping plane feature (that globally clips all objects, when enabled) by storing clipping 
plane information in per-ray data and adding a simple distance comparison for each of the clipping 
plane(s) to be tested.

 1 /* Only keeps closest intersection, no clipping, no CSG */

 2 �void add_regular_intersection(flt t, const object * obj, ray * ry) {

 3   if (t > EPSILON) {

 4     /* if we hit something before maxdist update maxdist */

 5     if (t < ry->maxdist) {

 6       ry->maxdist = t;

 7       ry->intstruct.num=1;

 8       ry->intstruct.closest.obj = obj;

 9       ry->intstruct.closest.t = t;

 10     }

 11   }

 12 }

 13

 14 /* Only keeps closest intersection, also handles clipping, no CSG */

 15 �void add_clipped_intersection(flt t, const object * obj, ray * ry) {

 16   if (t > EPSILON) {

 17     /* if we hit something before maxdist update maxdist */

 18     if (t < ry->maxdist) {

 19

 20       /* handle clipped object tests */

 21       if (obj->clip != NULL) {

 22         vector hit;

 23         int i;

 24
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 25         �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 26         for (i =0; i<obj->clip->numplanes; i++) {

 27           if ((obj->clip->planes[i * 4    ] * hit.x +

 28                obj->clip->planes[i * 4 + 1] * hit.y +

 29                obj->clip->planes[i * 4 + 2] * hit.z) >

 30                obj->clip->planes[i * 4 + 3]) {

 31             return; /* hit point was clipped */

 32           }

 33         }

 34       }

 35

 36       ry->maxdist = t;

 37       ry->intstruct.num=1;

 38       ry->intstruct.closest.obj = obj;

 39       ry->intstruct.closest.t = t;

 40     }

 41   }

 42 }

 43

 44 /* Only meant for shadow rays, unsafe for anything else */

 45 �void add_shadow_intersection(flt t, const object * obj, ray * ry) {

 46   if (t > EPSILON) {

 47     /* if we hit something before maxdist update maxdist */

 48     if (t < ry->maxdist) {

 49       /* if this object doesn't cast a shadow, and we aren't  */

 50       /* limiting the number of transparent surfaces to less  */

 51       /* than 5, then modulate the light by its opacity value */

 52       if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 53         if (ry->scene->shadowfilter)

 54           �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 55         return;

 56       }

 57

 58       ry->maxdist = t;

 59       ry->intstruct.num=1;

 60

 61       /* if we hit *anything* before maxdist, and we're firing a */

 62       /* shadow ray, then we are finished ray tracing the shadow */

 63       ry->flags |= RT_RAY_FINISHED;

 64     }

 65   }

 66 }

 67

 68 /* Only meant for clipped shadow rays, unsafe for anything else */

 69 void add_clipped_shadow_intersection(flt t, const object * obj,

 70                                      ray * ry) {

 71   if (t > EPSILON) {

 72     /* if we hit something before maxdist update maxdist */

 73     if (t < ry->maxdist) {

 74       /* if this object doesn't cast a shadow, and we aren't */

 75       /* limiting the number of transparent surfaces to less */
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 76       /* than 5, then modulate the light by its opacity value */

 77       if (!(obj->tex->flags & RT_TEXTURE_SHADOWCAST)) {

 78         if (ry->scene->shadowfilter)

 79           �ry->intstruct.shadowfilter *= (1.0 - obj->tex->opacity);

 80         return;

 81       }

 82

 83       /* handle clipped object tests */

 84       if (obj->clip != NULL) {

 85         vector hit;

 86         int i;

 87

 88         �RAYPNT(hit, (*ry), t); /* find hit point for further tests */

 89         for (i=0; i<obj->clip->numplanes; i++) {

 90           if ((obj->clip->planes[i * 4    ] * hit.x +

 91                obj->clip->planes[i * 4 + 1] * hit.y +

 92                obj->clip->planes[i * 4 + 2] * hit.z) >

 93                obj->clip->planes[i * 4 + 3]) {

 94             return; /* hit point was clipped */

 95           }

 96         }

 97       }

 98

 99       ry->maxdist = t;

100       ry->intstruct.num=1;

101

102       /* if we hit *anything* before maxdist, and we're firing a */

103       /* shadow ray, then we are finished ray tracing the shadow */

104       ry->flags |= RT_RAY_FINISHED;

105     }

106   }

107 }

27.4	 �CLOSING THOUGHTS

This chapter has described many of the benefits and challenges associated with the 
use of interactive ray tracing techniques for scientific visualization. Since the major 
strengths of ray tracing are well known, this chapter included a few unconventional 
techniques that combine non-photorealistic approaches with the classic strengths 
of ray tracing to solve tricky visualization problems. Although most of the example 
images and motivations given are biomolecular in nature, these approaches are of 
value in many other areas as well.

An exciting area of my own and others’ research is the ongoing development 
of using techniques such as interactive path tracing for scientific visualization. 
Path tracing used to be too costly to be practical for many routine visualization 
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tasks that a scientist might perform on a daily basis. However, when the ray 
tracing performance provided by state-of-the-art hardware is combined with 
the latest techniques for Monte Carlo image denoising, interactive path tracing 
becomes feasible for a wide spectrum of visualization workloads without having 
to compromise on either interactivity or image quality. These developments are 
of particular value for scientific and technical visualizations where improved 
photorealism is important.

The code examples provided with the chapter are intended to serve as exemplary 
starting points for further specialization. Each of the techniques can be significantly 
extended to add new capabilities far beyond what is demonstrated here, and I have 
tried to strike a balance between simplicity, reusability, and completeness.
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