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CHAPTER 24

Real-Time Global Illumination 
with Photon Mapping
Niklas Smal and Maksim Aizenshtein 
UL Benchmarks

ABSTRACT

Indirect lighting, also known as global illumination, is a crucial effect in 
photorealistic images. While there are a number of effective global illumination 
techniques based on precomputation that work well with static scenes, including 
global illumination for scenes with dynamic lighting and dynamic geometry 
remains a challenging problem. In this chapter, we describe a real-time global 
illumination algorithm based on photon mapping that evaluates several bounces of 
indirect lighting without any precomputed data in scenes with both dynamic lighting 
and fully dynamic geometry. We explain both the pre- and post-processing steps 
required to achieve dynamic high-quality illumination within the limits of a real-
time frame budget.

24.1	 �INTRODUCTION

As the scope of what is possible with real-time graphics has grown with the 
advancing capabilities of graphics hardware, scenes have become increasingly 
complex and dynamic. However, most of the current real-time global illumination 
algorithms (e.g., light maps and light probes) do not work well with moving lights 
and geometry due to these methods’ dependence on precomputed data.

In this chapter, we describe an approach based on an implementation of photon 
mapping [7], a Monte Carlo method that approximates lighting by first tracing paths 
of light-carrying photons in the scene to create a data structure that represents 
the indirect illumination and then using that structure to estimate indirect light 
at points being shaded. See Figure 24-1. Photon mapping has a number of useful 
properties, including that it is compatible with precomputed global illumination, 
provides a result with similar quality to current static techniques, can easily trade 
off quality and computation time, and requires no significant artist work. Our 
implementation of photon mapping is based on DirectX Raytracing (DXR) and gives 
high-quality global illumination with dynamic scenes. The overall structure of our 
approach is shown in Figure 24-2.
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Figure 24-1.  Final result using our system.

Figure 24-2.  The structure of the algorithm at the pass level. The first set of photons leaving the lights 
are taken care of using rasterization, producing a reflective shadow map. Points in these maps are sampled 
according to the power that their respective photons carry, and then ray tracing is used for subsequent photon 
bounces. To add indirect illumination to the final image, we splat photon contributions into the framebuffer 
using additive blending. Finally, temporal and spatial filtering are applied to improve image quality.
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Adapting photon mapping to real-time rendering on the GPU requires addressing 
a number of challenges. One is how to find nearby photons at points shaded in the 
scene so the photons can contribute indirect illumination to these locations. We 
found that an approach based on splatting, where each photon is rasterized into 
the image based on its contribution’s extent, works well and is straightforward to 
implement.

Another challenge is that traditional photon mapping algorithms may not be able 
to reach the desired illumination quality within the computational constraints of 
real-time rendering. Therefore, we optimized the generation of photons using 
reflective shadow maps (RSMs) [2] to avoid tracing the first bounce of a ray from a 
light, replacing that step with rasterization. We are then able to apply importance 
sampling to the RSMs, choosing locations with high contributions more often to 
generate subsequent photon paths.

Finally, as is always the case when applying Monte Carlo techniques to real-time 
rendering, effective filtering is crucial to remove image artifacts due to low sample 
counts. To mitigate noise, we use temporal accumulation with an exponentially 
moving average and apply an edge-aware spatial filter.

24.2	 �PHOTON TRACING

While general ray tracing is necessary for following the paths of photons that 
have reflected from surfaces, it is possible to take advantage of the fact that 
all the photons leaving a single point light source have a common origin. In our 
implementation, the first segment of each photon path is handled via rasterization. 
For each emitter, we generate a reflective shadow map [2, 3], which is effectively a 
G-buffer of uniform samples of visible surfaces as seen from a light, where each 
pixel also stores the incident illumination. This basic approach was first introduced 
by McGuire and Luebke [10] nearly a decade ago, though they traced rays on the 
CPU at much lower performance and thus also had to transfer a significant amount 
of data between the CPU and the GPU—all of this fortunately no longer necessary 
with DXR.

After the initial intersection points are found with rasterization, photon paths 
continue by sampling the surface’s BRDF and tracing rays. Photons are stored at 
all subsequent intersection points, to be used for reconstructing the illumination, 
as will be described in Section 24.3.
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24.2.1	 �RSM-BASED FIRST BOUNCE

We start by selecting a total number of photons to emit from all light sources 
and then allocate these to lights proportional to each light’s intensity. Hence, all 
photons initially carry roughly the same power. The RSM must contain all surface 
properties needed to generate rays for the initial bounce of the photons.

We choose to implement RSM generation as a separate pass that is executed after 
generating a traditional shadow map. Doing so allows us to make the resolution 
of the RSM map independent from the shadow map and keep its size constant, 
avoiding the need to allocate RSMs during runtime. As an optimization, it is possible 
to use the regular shadow map for depth culling. Without matching resolutions, 
this will give incorrect results for some pixels, but in our testing, we have not found 
it to cause visible artifacts.

After the RSMs are generated, we generate an importance map for sampling 
starting points for the first bounce where each RSM pixel is first given a weight 
based on the luminance of the product of the emitted power carried by the photon, 
including artist-controlled parameters such as directional falloff and the surface 
albedo. This weight value is directly related to the amount of power carried by 
photons that leave the surface.

This importance map is not normalized, which would be required for most 
sampling techniques. Rather than normalizing the map and generating sampling 
distributions, we instead apply a hierarchical sampling algorithm based on wavelet 
importance sampling, introduced by Clarberg et al. [1].

Wavelet importance sampling is a two-step algorithm. First, we apply the discrete 
Haar wavelet transform to the probability map, effectively generating a pyramid 
representation of the image. Second, we reconstruct the signal for each sample 
location in a low-discrepancy sequence and warp the sampling positions based 
on the scaling coefficient of each iteration in a wavelet transformation. This 
warping scheme is illustrated in Figure 24-3. See also Chapter 16, “Sampling 
Transformations Zoo,” for more information about it.
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The wavelet transformation must be applied across the entire image pyramid, 
at halved resolutions at each step, ending at 2 × 2 resolution. Because launching 
individual compute shader passes for such small dimensions is inefficient, we 
implement a separate compute shader pass for the final levels that uses memory 
similarly to a standard reduction implementation.

Importance sampling transforms the low-discrepancy samples into sample 
positions in the RSM with associated probabilities. In turn, a direction for an 
outgoing ray is found using importance sampling. Sampled rays are represented 
using the format presented in Table 24-1. Because each sample is independent 
from the other samples, there is no need for synchronization between sample 
points, except for an atomic counter to allocate a location in the output buffer. 
However, we must generate the seeds for the random number generator at this 
stage using the sampling index instead of later in photon tracing using the sample 
buffer location; doing so keeps photon paths deterministic between frames.

Figure 24-3.  Warping a set of sampling positions by an iteration of the wavelet transformation. (a) The 
initial sampling positions are (c–d) first warped horizontally and (e–f) then vertically using (b) the ratios 
of the scaling coefficients in the active quad. (Illustration after Clarberg et al. [1].)
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By using importance sampling to select the pixels in the RSM from which photons 
are traced, we are able to select the pixels whose photons carry more power more 
frequently. This in turn leads to less variation in photon power. Another advantage 
of RSMs is that they make it easy to trace multiple photon paths from an RSM point, 
selecting a different direction for each one. Doing so is useful when the desired 
photon count becomes high compared to the resolution of the RSM.

24.2.2	 �FOLLOWING PHOTON PATHS

Starting with the sampled RSM points and then at each subsequent photon/surface 
intersection, we generate an outgoing direction ω using importance sampling with 
a sampling distribution p(ω) that is similar to the surface’s BRDF. For example, we 
use a cosine-weighted distribution for diffuse surfaces, and we sample the visible 
microfacet distribution for microfacet BRDFs [5].

Before tracing the reflected photon, however, we apply Russian roulette, randomly 
terminating the photon based on the ratio between the BRDF times (ω⋅ωg) and the 
sampled direction probability. Photons that survive this test have their contribution 
adjusted accordingly so that the end result is correct. In this way, when a ray 
encounters a surface that reflects little light, fewer photons continue than if the 
surface reflects most of the incident light. Just like allocating photons to lights 
based on their emitted power, this also improves results by ensuring that all live 
photons have roughly the same contribution.

Since the power of a photon has multiple channels (in the RGB color model), the 
Russian roulette test can be modified so that it is done once, instead of per channel. 
We choose to handle this with the solution described by Jensen [7], setting the 
termination probability as
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Table 24-1.  Format for sampled points.
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where q is the scalar termination probability, Φi is the incoming power of the 
photon, and ρ is the ratio between the BRDF times (ω⋅ωg) and the scattering 
direction probability density function (PDF). The outgoing photon power is then 

i q
r

F  with component-wise multiplication.

Instead of using the same random samples for every frame, we are careful to use 
a new random seed each time. This causes the paths for the photons traced to vary 
for each frame, thus providing a different sample set and leading to accumulation 
of the larger sample set over multiple frames.

Photons are stored in an array where entries are allocated by atomically 
incrementing a global counter. Since our purpose is to calculate only indirect 
lighting, we do not store a photon for the initial photon/surface intersection in 
the RSM, as it represents direct illumination, which is better handled using other 
techniques (e.g., shadow maps or tracing shadow rays). We also do not store 
photons at surfaces with normals facing away from the camera or photons that are 
located outside of the camera frustum—both types do not contribute to the final 
image and are best culled before splatting. Note that our frustum culling considers 
photons only as points and ignores their splat radius. Thus, some photons at the 
edge of the frustum that actually would contribute to the radiance estimate are 
incorrectly culled. This issue could possibly be addressed by expanding the camera 
frustum used for the culling. However, this error does not seem to cause any 
significant visual artifacts when the kernel size in screen space is sufficiently small.

The representation of each photon is 32 bytes and is presented in Table 24-2.

Table 24-2.  Representation of a photon.
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24.2.3	 �DXR IMPLEMENTATION

Implementing photon tracing using DXR is fairly simple: a ray generation shader 
is invoked for all the RSM points that have been sampled, using each as a starting 
point for subsequent photon rays. It is then responsible for tracing subsequent 
rays until either a maximum number of bounces is reached or the path is 
terminated by Russian roulette.

Two optimizations are important for performance. The first is minimizing the size 
of the ray payload. We used a 32-byte ray payload, encoding the ray direction using 
16-bit float16 values and the RGB photon power as a 32-bit rgb9e5 value. Other 
fields in the payload store the state of the pseudo-random number generator, the 
length of the ray, and the number of bounces.

The second key optimization is to move the logic for sampling new ray directions 
and applying Russian roulette to the closest-hit shader. Doing so significantly 
improves performance by reducing register pressure. Together, we have the 
following for the ray generation shader:

 1 struct Payload

 2 {

 3     // Next ray direction, last element is padding

 4     half4 direction;

 5     // RNG state

 6     uint2 random;

 7     // Packed photon power

 8     uint power;

 9     // Ray length

10     float t;

11     // Bounce count

12     uint bounce;

13 };

14

15 [shader("raygeneration")]

16 void rayGen()

17 {

18     Payload p;

19     RayDesc ray;

20

21     // First, we read the initial sample from the RSM.

22     ReadRSMSamplePosition(p);

23

24     // We check if bounces continue by the bounce count

25     // and ray length (zero for terminated trace or miss).

26     while (p.bounce < MAX_BOUNCE_COUNT && p.t != 0)

27     {

28         // We get the ray origin and direction for the state.

29         ray.Origin = get_hit_position_in_world(p, ray);

30         ray.Direction = p.direction.xyz;

31
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32         �TraceRay(gRtScene, RAY_FLAG_FORCE_OPAQUE, 0xFF, 0,1,0, ray, p);

33         p.bounce++;

34     }

35 }

The closest-hit shader unpacks the required values from the ray payload and 
then determines which ray to trace next. The validate_and_add_photon() 
function, to be defined shortly, stores the photon in the array of saved photons, if it 
is potentially visible to the camera.

 1 [shader("closesthit")]

 2 void closestHitShader(inout Payload p : SV_RayPayload,

 3     in IntersectionAttributes attribs : SV_IntersectionAttributes)

 4 {

 5     // Load surface attributes for the hit.

 6     surface_attributes surface = LoadSurface(attribs);

 7

 8     float3 ray_direction = WorldRayDirection();

 9     float3 hit_pos = WorldRayOrigin() + ray_direction * t;

10     float3 incoming_power = from_rbge5999(p.power);

11     float3 outgoing_power = .0f;

12

13     RandomStruct r;

14     r.seed = p.random.x;

15     r.key = p.random.y;

16

17     // Russian roulette check

18     float3 outgoing_direction = .0f;

19     float3 store_power = .0f;

20     �bool keep_going = russian_roulette(incoming_power, ray_direction,

21         �surface, r, outgoing_power, out_going_direction, store_power);

22

23     repack_the_state_to_payload(r.key, outgoing_power,

24     outgoing_direction, keep_going);

25

26     validate_and_add_photon(surface, hit_pos, store_power,

27             ray_direction, t);

28 }

Finally, as described earlier in Section 24.2, the photons that are stored are added 
to a linear buffer, using atomic operations to allocate entries.

 1 void validate_and_add_photon(Surface_attributes surface,

 2     float3 position_in_world, float3 power,

 3     float3 incoming_direction, float t)

 4 {

 5     if (is_in_camera_frustum(position) &&

 6         is_normal_direction_to_camera(surface.normal))
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 7     {

 8         uint tile_index =

 9             get_tile_index_in_flattened_buffer(position_in_world);

10         uint photon_index;

11         // Offset in the photon buffer and the indirect argument

12         DrawArgumentBuffer.InterlockedAdd(4, 1, photon_index);

13         // Photon is packed and stored with correct offset.

14         �add_photon_to_buffer(position_in_world, power, surface.normal,

15             power, incoming_direction, photon_index, t);

16         // Tile-based photon density estimation

17         DensityEstimationBuffer.InterlockedAdd(tile_i * 4, 1);

18     }

19 }

24.3	 �SCREEN-SPACE IRRADIANCE ESTIMATION

Given the array of photons, the next task is to use them to reconstruct indirect 
illumination in the image. Each photon has a kernel associated with it that 
represents the extent of the scene (and thus, the image) to which it possibly 
contributes. The task is to accumulate each photon’s contribution at each pixel.

Two general approaches have been applied to this problem: gathering and 
scattering. Gathering is essentially a loop over pixels, where at each pixel nearby 
photons are found using a spatial data structure. Scattering is essentially a loop 
over photons, where each photon contributes to the pixels that it overlaps. See 
Mara et al. [9] for a comprehensive overview of both real-time gathering and 
scattering techniques. Given highly efficient ray tracing on modern GPUs to 
generate photon maps, it is also important that reconstruction be efficient. Our 
implementation is based on scattering and we take advantage of rasterization 
hardware to efficiently draw the splatting kernels. Results are accumulated using 
blending.

We use photons to reconstruct irradiance, which is the cosine-weighted distribution 
of light arriving at a point. We then approximate the light reflected from a surface 
by the product of the photon’s irradiance and the surface’s BRDF using a mean 
incoming direction. In doing so, we discard the directional distribution of indirect 
illumination and avoid a costly evaluation of the reflection model for every photon 
that influences a point’s shading. This gives the correct result for diffuse surfaces, 
but it introduces error as surfaces become more glossy and as the distribution 
of indirect lighting becomes more irregular. In practice, we have not seen 
objectionable errors from this approximation.

RAY TRACING GEMS
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24.3.1	 �DEFINING THE SPLATTING KERNEL

Selecting a good kernel size for each photon is important: if the kernels are too 
wide, the lighting will be excessively blurry, and if they are too narrow, it will be 
blotchy. It is particularly important to avoid too-wide kernels because a wider 
kernel makes a photon cover more pixels and thus leads to more rasterization, 
shading, and blending work for the photon. Incorrect kernel selection for photon 
mapping can cause several types of biases and errors [14]; minimization of these 
has been the focus of a substantial amount of research.

In our approach, we start with a spherical kernel and then apply a number of 
modifications to it in order to minimize various types of error. These modifications 
can be categorized into two main types: uniform scaling and modification of the 
kernel’s shape.

24.3.1.1  �UNIFORM SCALING OF THE KERNEL

Uniform scaling of the kernel is a product of two terms, the first one based on the 
ray length and the second on an estimation of the photon density distribution.

Ray Length  We scale the kernel according to the ray length using linear 
interpolation to a constant maximum length. This method is an approximation of 
the ray differential and can be interpreted as treating the photon as traveling along 
a cone instead of a ray and factoring in the growth of the cone base as its height 
increases. Also, we can assume lower photon densities as the ray length increases, 
since it is probable that photons scatter to a larger world-space volume. Thus, we 
want a relatively wide kernel in that case. The scaling factor is
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where l is the ray length and lmax is a constant defining the maximum ray length. 
However, lmax is not required to be the maximum length of the rays cast during 
photon tracing but instead the length that we consider to be the maximum height of 
the cone. This constant should be related to the overall scale of the scene and can 
be derived from its bounding box.

Photon Density  We would like to further scale each photon’s kernel based on 
the local photon density around it: the more photons that are nearby, the smaller 
the kernel can (and should) be. The challenge is efficiently determining how many 
photons are near each one. We apply the simple approximation of maintaining a 
counter for each screen-space tile. When a photon is deposited in a tile, the counter 
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is atomically incremented. This is obviously a crude approximation of the density 
function, but it seems to produce fairly good results.

We then implement density-based scaling as a function of the area of the tile in 
view space:
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where αx and αy are the apertures of the camera frustum, zview is the distance from 
the camera, tx and ty are the tile dimensions in pixels, and rx and ry represent the 
image’s resolution. In most cases a tile does not have a uniform depth, so we use 
the depth of the photon position. Most of this arithmetic can be precalculated and 
replaced with a camera constant:
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Thus, scaling the circular kernel to have the same area in the view space as the tile 
can be calculated as
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where np is the number of photons in the tile. This value is clamped to remove 
any extreme cases and then multiplied by the constant ntile, which is equal to the 
number of photons that we expect to contribute to each pixel:

			   ( )min max tileclamp .ds r , r , r n= 	 (6)

The HLSL implementation of these equations is straightforward:

 1 float uniform_scaling(float3 pp_in_view, float ray_length)

 2 {

 3     // Tile-based culling as photon density estimation

 4     int n_p = load_number_of_photons_in_tile(pp_in_view);

 5     float r = .1f;

 6

 7     if (layers > .0f)

 8     {

 9         // Equation 5

10         �float a_view = pp_in_view.z * pp_in_view.z * TileAreaConstant;

11         r = sqrt(a_view / (PI * n_p));

12     }
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13     // Equation 6

14     float s_d = clamp(r, DYNAMIC_KERNEL_SCALE_MIN,

15         DYNAMIC_KERNEL_SCALE_MAX) * n_tile;

16

17     // Equation 2

18     float s_l = clamp(ray_length / MAX_RAY_LENGTH, .1f, 1.0f);

19     return s_d * s_l;

20 }

24.3.1.2  �ADJUSTING THE KERNEL’S SHAPE

We can further improve the reconstructed result by adjusting the kernel’s shape. 
We consider two factors. First, we decrease the radius of the kernel in the direction 
of the normal of the surface that the photon intersected. Second, we scale the 
kernel in the direction of the light in order to model the projected area that it covers 
on the surface. This results in the kernel being a tri-axial ellipsoid, which has one 
axis, n, that has the direction ωg of the normal. The other two axes are placed on a 
tangent plane defined by the photon normal, called the kernel plane. The first of the 
two, u, has the direction of ωi projected onto the kernel plane, while the second, t, is 
orthogonal to it and in the same plane. This vector basis is illustrated in Figure 24-4.

The magnitude of n is snslsd, where sn is a constant that compresses the kernel 
along the normal so that it is closer to the surface. This is a common approach: 
it was done by Jensen [7] for gathering with a varying gathering radius and by 

Figure 24-4.  Left: the base vectors for the kernel space: ωg is aligned to the photon normal n̂ , which 
also defines the kernel plane π. Two other basis vectors lie in π such that û  is the projection of light 
direction ωi on to the kernel plane and t̂  is orthogonal to û . Right: the kernel’s shape is modified by 
scaling along those vectors.
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McGuire and Luebke [10] for their splatting kernel. Compared to a spherical 
kernel, this provides a better approximation of the surface. However, if the kernel 
is compressed too much, the distribution on objects with complex shapes or 
significant surface curvatures becomes inaccurate, as the kernel disregards 
samples farther away from its plane. This can be compensated for by making the 
magnitude be a function of the surface curvature, but in our implementation this 
factor is constant.

The magnitude of u is suslsd, where su is defined as a function of the cosine of the 
angle between the hit normal and the light direction:

			 
u
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where smax is a constant defining the maximum scaling factor. Otherwise, the 
magnitude would approach infinity as the angle between ωg and ωi decreases 
to zero. Intuition for this equation originates in ray differentials and the cone 
representation of the photon: as the incoming direction of the photon becomes 
orthogonal to the normal direction of the surface, the area of the base of the cone 
that is projected onto the kernel plane increases.

Finally, the magnitude of t is slsd.

The following code shows an implementation of the shape modification:

 1 �kernel_output kernel_modification_for_vertex_position(float3 vertex,

 2     float3 n, float3 light, float3 pp_in_view, float ray_length)

 3 {

 4     kernel_output o;

 5     �float scaling_uniform = uniform_scaling(pp_in_view, ray_length);

 6

 7     float3 l = normalize(light);

 8     float3 cos_alpha = dot(n, vertex);

 9     float3 projected_v_to_n = cos_alpha * n;

10     float cos_theta = saturate(dot(n, l));

11     float3 projected_l_to_n = cos_theta * n;

12

13     float3 u = normalize(l - projected_l_to_n);

14

15     // Equation 7

16     �o.light_shaping_scale = min(1.0f/cos_theta, MAX_SCALING_CONSTANT);

17

18     float3 projected_v_to_u = dot(u, vertex) * u;

19     float3 projected_v_to_t = vertex - projected_v_to_u;

20     projected_v_to_t -= dot(projected_v_to_t, n) * n;

21
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22     // Equation 8

23     float3 scaled_u = projected_v_to_u * light_shaping_scale *

24         scaling_Uniform;

25     float3 scaled_t = projected_v_to_t * scaling_uniform;

26     o.vertex_position = scaled_u + scaled_t +

27          (KernelCompress * projected_v_to_n);

28

29     o.ellipse_area = PI * o.scaling_uniform * o.scaling_uniform *

30          o.light_shaping_scale;

31

32     return o;

33 }

24.3.2	 �PHOTON SPLATTING

We splat photons using an instanced indirect draw of an icosahedron as an 
approximation to a sphere. (The indirect arguments for the draw call are set using 
an atomic counter in the validate_and_add_photon() function.) To apply the 
kernel shape introduced in the previous section, we transform the vertices in the 
vertex shader accordingly. Since the original kernel is a sphere, we can assume 
the coordinate frame of the kernel’s object space to be the coordinate frame of the 
world space, which results in vertex positions
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We keep the pixel shader for our splatting kernel as simple as possible, as it can 
easily become a performance bottleneck. Its main task is a depth check to ensure 
that the G-buffer surface for which we are calculating radiance is within the kernel. 
The depth check is done as a clipping operation for the world-space distance 
between the surface and the kernel plane against a constant value scaled by the 
kernel compression constant. After the depth check, we apply the kernel to the 
splatting result:

				  
iE

a
,F
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where a is the area of the ellipse, a = π‖u‖‖t‖ = π(slsd)(slsdsu). It is worth noting 
that irradiance here is scaled by the cosine term and thus implicitly includes 
information from the geometric normals.

For accumulation of irradiance, we use a half-precision floating-point format (per 
channel) in order to avoid numerical issues with lower-bit formats. Furthermore, 
we accumulate the average light direction as a weighted sum with half-precision 
floats. The motivation for also storing the direction is discussed in Section 24.4.3.
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The following code implements splatting. It uses the two functions defined 
previously to adjust the kernel’s shape.

 1 void VS(

 2     float3 Position : SV_Position,

 3     uint instanceID : SV_InstanceID,

 4     out vs_to_ps Output)

 5 {

 6     unpacked_photon up = unpack_photon(PhotonBuffer[instanceID]);

 7     float3 photon_position = up.position;

 8     float3 photon_position_in_view = mul(WorldToViewMatrix,

 9     float4(photon_position, 1)).xyz;

10     �kernel_output o = kernel_modification_for_vertex_position(Position,

11     �up. normal, -up.direction, photon_position_in_view, up.ray_length);

12

13     float3 p = pp + o.vertex_position;

14

15     Output.Position = mul(WorldToViewClipMatrix, float4(p, 1));

16     Output.Power = up.power / o.ellipse_area;

17     Output.Direction = -up.direction;

18 }

19

20 [earlydepthstencil]

21 void PS(

22 vs_to_ps Input,

23 out float4 OutputColorXYZAndDirectionX : SV_Target,

24 out float2 OutputDirectionYZ : SV_Target1)

25 {

26     float depth = DepthTexture[Input.Position.xy];

27     float gbuffer_linear_depth = LinearDepth(ViewConstants, depth);

28     float kernel_linear_depth = LinearDepth(ViewConstants,

29         Input.Position.z);

30     float d = abs(gbuffer_linear_depth - kernel_linear_depth);

31

32     clip(d > (KernelCompress * MAX_DEPTH) ? -1 : 1);

33

34     float3 power = Input.Power;

35     float total_power = dot(power.xyz, float3(1.0f, 1.0f, 1.0f));

36     float3 weighted_direction = total_power * Input.Direction;

37

38     OutputColorXYZAndDirectionX = float4(power, weighted_direction.x);

39     OutputDirectionYZ = weighted_direction.yz;

40 }

As mentioned before, we use additive blending to accumulate the contributions of 
photons. Modern graphics APIs guarantee that pixel blending occurs in submission 
order, though we do not need this property here. As an alternative, we tried using 
raster order views but found that these were slower than blending. However, 
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using floating-point atomic intrinsics, which are available on NVIDIA GPUs as an 
extension, did result in improved performance in situations when many photons 
overlap in screen space (a common scenario for caustics).

24.3.2.1  �OPTIMIZING SPLATTING USING REDUCED RESOLUTION

Splatting can be an expensive process, which is especially the case when rendering 
high-resolution images. We found that reducing image resolution to half of the 
native rendering resolution did not cause a noticeable decrease in visual quality for 
the final result and gave a significant performance benefit. Using lower resolution 
does require a change to the depth clipping in the pixel shader to eliminate 
irradiance bleeding between surfaces: the half-resolution depth stencil used for 
stencil drawing should be downscaled using the closest pixel to the camera, but 
the depth used in pixel shader clipping should be downscaled using the farthest 
pixel from the camera. Hence, we draw the splatting kernel for only those pixels 
that are entirely within the full-resolution kernel. This causes jagged edges in the 
splatting result, but they are removed by the filtering.

24.4	 �FILTERING

As typical for real-time Monte Carlo rendering methods, it is necessary to apply 
image filtering algorithms to compensate for the low sample count. Although there 
have been significant advances in denoising in recent years, the noise caused by 
photon distribution kernels is quite different from the high-frequency noise that 
path tracing exhibits and that has been the main focus of denoising efforts. Thus, a 
different solution is required.

We use both temporal and spatial accumulation of samples with geometry-based 
edge-stopping functions. Our approach is based on previous work by Dammertz 
et al. [4] and Schied et al. [13], with our implementation using an edge-avoiding 
À-Trous wavelet transform for spatial filtering. Because indirect lighting is 
generally low frequency, we considered filtering at a lower resolution to decrease 
the computation cost, but we encountered artifacts due to G-buffer discrepancies 
and so reverted to filtering at the final resolution.

Both our temporal and spatial filtering algorithms use edge-stopping functions 
based on the difference in depth between two pixels and the difference in their 
surface normals. These functions, based on those of Schied et al. [13], attempt to 
prevent filtering across geometric boundaries by generating weights based on the 
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surface attributes of two different pixels p and q. The depth difference weight wz is 
defined by

		  ( ) ( ) ( )
( )( )z
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w P,Q
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where z(P) is the screen-space depth at a pixel location P and ∇z(P) is the depth 
gradient vector. After experimentation σz = 1 was found to work well.

Next, the normal difference weight wn accounts for the difference of the surface 
normals:

			   ( ) ( ) ( )( ) n

nw P,Q , P Qmax 0 ,ˆ ˆ
s

= ×n n 	 (11)

where we found σn = 32 to work well.

24.4.1	 �TEMPORAL FILTERING

Temporal filtering improves image quality by accumulating values from previous 
frames. It is implemented by reprojecting the previous frame’s filtered irradiance 
values using velocity vectors and then at every pixel p computing an exponentially 
moving average between the previous frame’s reprojected filtered irradiance value 

( )i PE 1-
�  and the irradiance value Ei(P) computed using splatting, giving a temporally 

filtered irradiance ( )i PE� :

			   ( ) ( ) ( ) ( )11 .i i iP E P E PE a a -= - +� � 	 (12)

This is Karis’s temporal antialiasing (TAA) approach [8] applied to irradiance.

Using a constant value for α would cause severe ghosting artifacts, as the temporal 
filtering would not account for disocclusions, moving geometry, or moving lights. 
However, because the irradiance values Ei at a pixel can vary significantly between 
frames, color-space clipping methods used in TAA are not well suited for them. 
Therefore, we rely on geometry-based methods and define α using the edge-
stopping functions as

			   ( ) ( )z nw P,Q w P,Q0.95 ,a = 	 (13)

where P is a current pixel sample and Q is the projected sample from the previous 
frame. To evaluate the weight functions, it is necessary to maintain the normal and 
depth data from the G-buffer of the previous frame. If the resolution of the splatting 
target is lower than the filtering target, we upscale the splatting result at the 
beginning of the temporal filtering pass with bilinear sampling.
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24.4.2	 �SPATIAL FILTERING

The edge-avoiding Á-Trous wavelet transform is a multi-pass filtering algorithm 
with an increasing kernel footprint Ωi at each step i. This is illustrated in one 
dimension in Figure 24-5. Note that the spacing of filter taps doubles at each 
stage and that intermediate samples between filter taps are just ignored. Thus, 
the filter can have a large spatial extent without an excessive growth in the 
amount of computation required. The algorithm is particularly well suited to GPU 
implementation, where group shared memory can be used to efficiently share 
surface attributes across different pixels evaluating the kernel.

Our implementation follows Dammertz et al. [4] and Schied et al. [13] in which we 
realize each iteration as a 5 × 5 cross bilateral filter. Contributing samples are 
weighted by a function w(P, Q), where P is the current pixel and Q is the contributing 
sample pixel within the filter. The first iteration uses the temporally filtered 
irradiance values
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and then each following level filters the previous one:
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where ( )h Q , , , ,1 1 1 1 1
8 4 2 4 8

æ ö
= ç ÷
è ø

 is the filter kernel and w(P, Q) = wz(P, Q)wn(P, Q).

Figure 24-5.  Three iterations of the one-dimensional stationary wavelet transform that forms the 
basis of the Á-Trous approach. Arrows show the nonzero elements of the previous result contributing 
to the current element, while gray dots indicate zero elements. (Illustration after Dammertz et al. [4].)
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24.4.2.1  �VARIANCE CLIPPING OF DETAIL COEFFICIENTS

To avoid blurring excessively, it is important to adapt the image filtering based on 
the accuracy of the image contents. For example, Schied et al. [13] use an estimate 
of variance as a part of their weight function. That works well for high-frequency 
noise but is unsuitable for the low-frequency noise from photon mapping. 
Therefore, we have developed a new filtering algorithm based on variance clipping 
of the differences between each stage of the Á-Trous transform.

The stationary wavelet transform (SWT) was originally introduced to combat one of 
the shortcomings of the discrete wavelet transform, that the transformation is not 
shift-invariant. This problem was solved by saving detail coefficients per pixel for 
each iteration. The detail coefficients can be defined by

				    i i id s s1 .+= - 	 (16)

This makes the SWT inherently redundant. If we consider how to reconstruct the 
original signal, we have

				  
n

n i
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s s d
1

0
0

,
-

=

= -å 	 (17)

where n is the number of iterations. As we can see, to reconstruct the original 
signal we need only the sum of the detail coefficients. Doing so allows us to reduce 
the amount of required memory to two textures, each with the resolution of the 
original image. Nevertheless, this just leaves us at the same point where we 
started—the original unfiltered image.

However, we can apply variance clipping [12] to each of the detail coefficients before 
we add them in to the sum. This approach works well here, unlike with the unfiltered 
frame irradiance values Ei, because we are starting with temporally filtered values. 
We compute color-space boundaries (denoted by bi) based on the variance of 
irradiance within the spatial kernel. In turn, these boundaries are used for clipping 
the detail coefficients, and we compute a final filtered irradiance value as

			   ( )
n

n i i i
i

E s d , b , b
1

final
0

clamp .
-

=

= - -å 	 (18)

Finally, we apply the filtered irradiance to the surfaces. As described earlier, we 
ignore the directional distribution of indirect lighting. Instead, we use the mean 
direction as the incoming light parameter to evaluate the BRDF. The irradiance is 
multiplied by the BRDF value retrieved:

			     L E ffinal final BRDF.= 	 (19)
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Figure 24-6 illustrates the various passes of our approach.

24.4.3	 �INCORPORATING THE EFFECT OF SHADING NORMALS

Photon mapping includes the directional information as an implicit part of 
the irradiance calculation, because surfaces with their geometry normals 
pointing toward the incoming light direction have a higher probability of being 
hit by photons. However, this process does not capture the detail provided by 
material attributes, such as normal maps. This is a commonly known issue 

Figure 24-6.  Results for different passes of the algorithm using the Sponza scene with three bounces 
of indirect light, four light sources, three million initial photons, and four spatial filtering iterations. (a) 
The colors red, green, and blue correspond to the number of the bounce. Notice the accumulation of 
different sample subsets from (c) stratified sampling in temporal filtering result compared to (b) the 
splatting result. Also, (e) the effect of the variance clipping of detail coefficients is clearly visible as (f) 
the irradiance result retains much of detail that is lost when (d) only scaling coefficients are used.
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with precalculated global illumination methods, and there have been several 
approaches to solve it [11]. To achieve comparable illumination quality, we must 
also take this factor into consideration with photon mapping.

We developed a solution inspired by Heitz et al. [6]: we filter the light direction ωi 
as a separate term. Then, when computing the irradiance, we effectively remove 
the original cosine term from the dot product of this direction ωi with the geometric 
normal ωng and replace it with the dot product of ωi and the shading normal ωns. 
This changes Equation 19 to

	     ( ) ( )i ns
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L E f , sfinal final BRDF max

1min ,w w
w w e
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where ωi is the weighted average of the light directions and smax is the maximum 
scaling factor used in Section 24.3.1.2.

Accounting for the surface normal in this way comes with a performance cost, as it 
requires an additional blending target for the splatting, along with additional input 
and output for each filtering step. However, it allows us to apply the information 
from the normal maps without reading the G-buffer normal when computing 
irradiance.

Filtering the BRDF instead of just the light direction would achieve more accurate 
results for specular surfaces. However, doing so would require evaluating the 
BRDF during irradiance estimation and thus reading the material attributes. This 
would come with a significant performance cost when implemented with splatting, 
as the G-buffer would have to be read for each pixel shader invocation. A compute 
shader–based gathering approach could avoid this problem by loading the material 
attributes only once, though it would still pay the computational cost of evaluating 
the BRDF.

24.5	 �RESULTS

We evaluated our implementation with three scenes: Conference Room (shown 
in Figure 24-7), Sponza (Figure 24-8), and 3DMark Port Royal (Figure 24-9). 
Conference Room has a single light source, Sponza has four, and Port Royal has 
one spotlight from a drone and another pointing toward the camera. The rendering 
of the Port Royal scene includes an artistic multiplier to the photon power in order 
to intensify the indirect lighting effect.

RAY TRACING GEMS



431

Figure 24-7.  Conference Room test scene.
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Figure 24-8.  Modified Sponza test scene.
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Table 24-3 reports the computation times in milliseconds for these scenes with 
high-quality settings: 1080p resolution, three million initial photons, three bounces 
of indirect light, and four iterations of the spatial filter. The results were measured 
using an NVIDIA RTX 2080 Ti. Note that, for all scenes, the most costly phase is 
splatting. Time spent on filtering is roughly the same for all scenes, since it is 
independent of the scene’s geometric complexity but is an image-space operation.

Figure 24-9.  A section of the 3DMark Port Royal ray tracing test.
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In Table 24-4 we examine the effect of varying some of the parameters. As 
would be expected, the time spent on RSMs, tracing rays, and photon splatting 
increases with the number of photons traced. Due to path termination from 
Russian roulette, increasing the number of bounces reduces performance less 
than adding a corresponding number of initial photons. Increasing image resolution 
correspondingly increases both splatting and filtering time.

24.6	 �FUTURE WORK

There are a number of areas where performance or quality of the approach 
described here could be improved.

24.6.1	 �OPTIMIZING IRRADIANCE DISTRIBUTION BY SKIPPING SPLATTING

With high-density functions, the screen-space size of the splatting kernel can 
approach the size of a pixel, which makes drawing the splatting kernel wasteful. 
This could possibly be solved by writing the irradiance value directly to the 
framebuffer instead of splatting.

Table 24-3.  Performance of our photon mapping implementation for each scene on an NVIDIA RTX 
2080 Ti, with times measured in milliseconds.

Table 24-4.  Performance of the photon mapping algorithm in the Sponza scene with different 
settings, measured in milliseconds. Filtering is done with four spatial iterations. The baseline is set to 
what we would consider “low” settings for photon mapping: one million photons and a single bounce.
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24.6.2	 �ADAPTIVE CONSTANTS FOR VARIANCE CLIPPING OF THE DETAIL 
COEFFICIENTS

Unfortunately, we cannot determine if the variance in the irradiance is caused by 
the low sample count or an actual difference in lighting conditions. This is partly 
mitigated by the larger sample set provided by stratified sampling. As these 
samples are accumulated using temporal filtering, the noise becomes visible 
in cases where temporal samples are being rejected. Therefore, it would be 
preferable to use less constricting variance clipping boundaries for these areas. 
Such a system could be implemented by scaling the variance clipping constant 
based on the weights that we use to define the accumulation of the temporal 
samples.
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