
409© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_24

CHAPTER 24

Real-Time Global Illumination
with Photon Mapping
Niklas Smal and Maksim Aizenshtein
UL Benchmarks

ABSTRACT

Indirect lighting, also known as global illumination, is a crucial effect in
photorealistic images. While there are a number of effective global illumination
techniques based on precomputation that work well with static scenes, including
global illumination for scenes with dynamic lighting and dynamic geometry
remains a challenging problem. In this chapter, we describe a real-time global
illumination algorithm based on photon mapping that evaluates several bounces of
indirect lighting without any precomputed data in scenes with both dynamic lighting
and fully dynamic geometry. We explain both the pre- and post-processing steps
required to achieve dynamic high-quality illumination within the limits of a real-
time frame budget.

24.1	 �INTRODUCTION

As the scope of what is possible with real-time graphics has grown with the
advancing capabilities of graphics hardware, scenes have become increasingly
complex and dynamic. However, most of the current real-time global illumination
algorithms (e.g., light maps and light probes) do not work well with moving lights
and geometry due to these methods’ dependence on precomputed data.

In this chapter, we describe an approach based on an implementation of photon
mapping [7], a Monte Carlo method that approximates lighting by first tracing paths
of light-carrying photons in the scene to create a data structure that represents
the indirect illumination and then using that structure to estimate indirect light
at points being shaded. See Figure 24-1. Photon mapping has a number of useful
properties, including that it is compatible with precomputed global illumination,
provides a result with similar quality to current static techniques, can easily trade
off quality and computation time, and requires no significant artist work. Our
implementation of photon mapping is based on DirectX Raytracing (DXR) and gives
high-quality global illumination with dynamic scenes. The overall structure of our
approach is shown in Figure 24-2.

https://doi.org/10.1007/978-1-4842-4427-2_24

410

Figure 24-1.  Final result using our system.

Figure 24-2.  The structure of the algorithm at the pass level. The first set of photons leaving the lights
are taken care of using rasterization, producing a reflective shadow map. Points in these maps are sampled
according to the power that their respective photons carry, and then ray tracing is used for subsequent photon
bounces. To add indirect illumination to the final image, we splat photon contributions into the framebuffer
using additive blending. Finally, temporal and spatial filtering are applied to improve image quality.

RAY TRACING GEMS

411

Adapting photon mapping to real-time rendering on the GPU requires addressing
a number of challenges. One is how to find nearby photons at points shaded in the
scene so the photons can contribute indirect illumination to these locations. We
found that an approach based on splatting, where each photon is rasterized into
the image based on its contribution’s extent, works well and is straightforward to
implement.

Another challenge is that traditional photon mapping algorithms may not be able
to reach the desired illumination quality within the computational constraints of
real-time rendering. Therefore, we optimized the generation of photons using
reflective shadow maps (RSMs) [2] to avoid tracing the first bounce of a ray from a
light, replacing that step with rasterization. We are then able to apply importance
sampling to the RSMs, choosing locations with high contributions more often to
generate subsequent photon paths.

Finally, as is always the case when applying Monte Carlo techniques to real-time
rendering, effective filtering is crucial to remove image artifacts due to low sample
counts. To mitigate noise, we use temporal accumulation with an exponentially
moving average and apply an edge-aware spatial filter.

24.2	 �PHOTON TRACING

While general ray tracing is necessary for following the paths of photons that
have reflected from surfaces, it is possible to take advantage of the fact that
all the photons leaving a single point light source have a common origin. In our
implementation, the first segment of each photon path is handled via rasterization.
For each emitter, we generate a reflective shadow map [2, 3], which is effectively a
G-buffer of uniform samples of visible surfaces as seen from a light, where each
pixel also stores the incident illumination. This basic approach was first introduced
by McGuire and Luebke [10] nearly a decade ago, though they traced rays on the
CPU at much lower performance and thus also had to transfer a significant amount
of data between the CPU and the GPU—all of this fortunately no longer necessary
with DXR.

After the initial intersection points are found with rasterization, photon paths
continue by sampling the surface’s BRDF and tracing rays. Photons are stored at
all subsequent intersection points, to be used for reconstructing the illumination,
as will be described in Section 24.3.

 Real-Time Global Illumination with Photon Mapping

412

24.2.1	 �RSM-BASED FIRST BOUNCE

We start by selecting a total number of photons to emit from all light sources
and then allocate these to lights proportional to each light’s intensity. Hence, all
photons initially carry roughly the same power. The RSM must contain all surface
properties needed to generate rays for the initial bounce of the photons.

We choose to implement RSM generation as a separate pass that is executed after
generating a traditional shadow map. Doing so allows us to make the resolution
of the RSM map independent from the shadow map and keep its size constant,
avoiding the need to allocate RSMs during runtime. As an optimization, it is possible
to use the regular shadow map for depth culling. Without matching resolutions,
this will give incorrect results for some pixels, but in our testing, we have not found
it to cause visible artifacts.

After the RSMs are generated, we generate an importance map for sampling
starting points for the first bounce where each RSM pixel is first given a weight
based on the luminance of the product of the emitted power carried by the photon,
including artist-controlled parameters such as directional falloff and the surface
albedo. This weight value is directly related to the amount of power carried by
photons that leave the surface.

This importance map is not normalized, which would be required for most
sampling techniques. Rather than normalizing the map and generating sampling
distributions, we instead apply a hierarchical sampling algorithm based on wavelet
importance sampling, introduced by Clarberg et al. [1].

Wavelet importance sampling is a two-step algorithm. First, we apply the discrete
Haar wavelet transform to the probability map, effectively generating a pyramid
representation of the image. Second, we reconstruct the signal for each sample
location in a low-discrepancy sequence and warp the sampling positions based
on the scaling coefficient of each iteration in a wavelet transformation. This
warping scheme is illustrated in Figure 24-3. See also Chapter 16, “Sampling
Transformations Zoo,” for more information about it.

RAY TRACING GEMS

https://doi.org/10.1007/978-1-4842-4427-2_16

413

The wavelet transformation must be applied across the entire image pyramid,
at halved resolutions at each step, ending at 2 × 2 resolution. Because launching
individual compute shader passes for such small dimensions is inefficient, we
implement a separate compute shader pass for the final levels that uses memory
similarly to a standard reduction implementation.

Importance sampling transforms the low-discrepancy samples into sample
positions in the RSM with associated probabilities. In turn, a direction for an
outgoing ray is found using importance sampling. Sampled rays are represented
using the format presented in Table 24-1. Because each sample is independent
from the other samples, there is no need for synchronization between sample
points, except for an atomic counter to allocate a location in the output buffer.
However, we must generate the seeds for the random number generator at this
stage using the sampling index instead of later in photon tracing using the sample
buffer location; doing so keeps photon paths deterministic between frames.

Figure 24-3.  Warping a set of sampling positions by an iteration of the wavelet transformation. (a) The
initial sampling positions are (c–d) first warped horizontally and (e–f) then vertically using (b) the ratios
of the scaling coefficients in the active quad. (Illustration after Clarberg et al. [1].)

 Real-Time Global Illumination with Photon Mapping

414

By using importance sampling to select the pixels in the RSM from which photons
are traced, we are able to select the pixels whose photons carry more power more
frequently. This in turn leads to less variation in photon power. Another advantage
of RSMs is that they make it easy to trace multiple photon paths from an RSM point,
selecting a different direction for each one. Doing so is useful when the desired
photon count becomes high compared to the resolution of the RSM.

24.2.2	 �FOLLOWING PHOTON PATHS

Starting with the sampled RSM points and then at each subsequent photon/surface
intersection, we generate an outgoing direction ω using importance sampling with
a sampling distribution p(ω) that is similar to the surface’s BRDF. For example, we
use a cosine-weighted distribution for diffuse surfaces, and we sample the visible
microfacet distribution for microfacet BRDFs [5].

Before tracing the reflected photon, however, we apply Russian roulette, randomly
terminating the photon based on the ratio between the BRDF times (ω⋅ωg) and the
sampled direction probability. Photons that survive this test have their contribution
adjusted accordingly so that the end result is correct. In this way, when a ray
encounters a surface that reflects little light, fewer photons continue than if the
surface reflects most of the incident light. Just like allocating photons to lights
based on their emitted power, this also improves results by ensuring that all live
photons have roughly the same contribution.

Since the power of a photon has multiple channels (in the RGB color model), the
Russian roulette test can be modified so that it is done once, instead of per channel.
We choose to handle this with the solution described by Jensen [7], setting the
termination probability as

		
()()
()()

r i r g i g b i b

i r i g i b

, ,
q

, ,

, , ,

, , ,

max max
,

max max

r r rF F F
=

F F F
	 (1)

Table 24-1.  Format for sampled points.

RAY TRACING GEMS

415

where q is the scalar termination probability, Φi is the incoming power of the
photon, and ρ is the ratio between the BRDF times (ω⋅ωg) and the scattering
direction probability density function (PDF). The outgoing photon power is then

i q
r

F with component-wise multiplication.

Instead of using the same random samples for every frame, we are careful to use
a new random seed each time. This causes the paths for the photons traced to vary
for each frame, thus providing a different sample set and leading to accumulation
of the larger sample set over multiple frames.

Photons are stored in an array where entries are allocated by atomically
incrementing a global counter. Since our purpose is to calculate only indirect
lighting, we do not store a photon for the initial photon/surface intersection in
the RSM, as it represents direct illumination, which is better handled using other
techniques (e.g., shadow maps or tracing shadow rays). We also do not store
photons at surfaces with normals facing away from the camera or photons that are
located outside of the camera frustum—both types do not contribute to the final
image and are best culled before splatting. Note that our frustum culling considers
photons only as points and ignores their splat radius. Thus, some photons at the
edge of the frustum that actually would contribute to the radiance estimate are
incorrectly culled. This issue could possibly be addressed by expanding the camera
frustum used for the culling. However, this error does not seem to cause any
significant visual artifacts when the kernel size in screen space is sufficiently small.

The representation of each photon is 32 bytes and is presented in Table 24-2.

Table 24-2.  Representation of a photon.

 Real-Time Global Illumination with Photon Mapping

416

24.2.3	 �DXR IMPLEMENTATION

Implementing photon tracing using DXR is fairly simple: a ray generation shader
is invoked for all the RSM points that have been sampled, using each as a starting
point for subsequent photon rays. It is then responsible for tracing subsequent
rays until either a maximum number of bounces is reached or the path is
terminated by Russian roulette.

Two optimizations are important for performance. The first is minimizing the size
of the ray payload. We used a 32-byte ray payload, encoding the ray direction using
16-bit float16 values and the RGB photon power as a 32-bit rgb9e5 value. Other
fields in the payload store the state of the pseudo-random number generator, the
length of the ray, and the number of bounces.

The second key optimization is to move the logic for sampling new ray directions
and applying Russian roulette to the closest-hit shader. Doing so significantly
improves performance by reducing register pressure. Together, we have the
following for the ray generation shader:

 1 struct Payload

 2 {

 3 // Next ray direction, last element is padding

 4 half4 direction;

 5 // RNG state

 6 uint2 random;

 7 // Packed photon power

 8 uint power;

 9 // Ray length

10 float t;

11 // Bounce count

12 uint bounce;

13 };

14

15 [shader("raygeneration")]

16 void rayGen()

17 {

18 Payload p;

19 RayDesc ray;

20

21 // First, we read the initial sample from the RSM.

22 ReadRSMSamplePosition(p);

23

24 // We check if bounces continue by the bounce count

25 // and ray length (zero for terminated trace or miss).

26 while (p.bounce < MAX_BOUNCE_COUNT && p.t != 0)

27 {

28 // We get the ray origin and direction for the state.

29 ray.Origin = get_hit_position_in_world(p, ray);

30 ray.Direction = p.direction.xyz;

31

RAY TRACING GEMS

417

32 �TraceRay(gRtScene, RAY_FLAG_FORCE_OPAQUE, 0xFF, 0,1,0, ray, p);

33 p.bounce++;

34 }

35 }

The closest-hit shader unpacks the required values from the ray payload and
then determines which ray to trace next. The validate_and_add_photon()
function, to be defined shortly, stores the photon in the array of saved photons, if it
is potentially visible to the camera.

 1 [shader("closesthit")]

 2 void closestHitShader(inout Payload p : SV_RayPayload,

 3 in IntersectionAttributes attribs : SV_IntersectionAttributes)

 4 {

 5 // Load surface attributes for the hit.

 6 surface_attributes surface = LoadSurface(attribs);

 7

 8 float3 ray_direction = WorldRayDirection();

 9 float3 hit_pos = WorldRayOrigin() + ray_direction * t;

10 float3 incoming_power = from_rbge5999(p.power);

11 float3 outgoing_power = .0f;

12

13 RandomStruct r;

14 r.seed = p.random.x;

15 r.key = p.random.y;

16

17 // Russian roulette check

18 float3 outgoing_direction = .0f;

19 float3 store_power = .0f;

20 �bool keep_going = russian_roulette(incoming_power, ray_direction,

21 �surface, r, outgoing_power, out_going_direction, store_power);

22

23 repack_the_state_to_payload(r.key, outgoing_power,

24 outgoing_direction, keep_going);

25

26 validate_and_add_photon(surface, hit_pos, store_power,

27 ray_direction, t);

28 }

Finally, as described earlier in Section 24.2, the photons that are stored are added
to a linear buffer, using atomic operations to allocate entries.

 1 void validate_and_add_photon(Surface_attributes surface,

 2 float3 position_in_world, float3 power,

 3 float3 incoming_direction, float t)

 4 {

 5 if (is_in_camera_frustum(position) &&

 6 is_normal_direction_to_camera(surface.normal))

 Real-Time Global Illumination with Photon Mapping

418

 7 {

 8 uint tile_index =

 9 get_tile_index_in_flattened_buffer(position_in_world);

10 uint photon_index;

11 // Offset in the photon buffer and the indirect argument

12 DrawArgumentBuffer.InterlockedAdd(4, 1, photon_index);

13 // Photon is packed and stored with correct offset.

14 �add_photon_to_buffer(position_in_world, power, surface.normal,

15 power, incoming_direction, photon_index, t);

16 // Tile-based photon density estimation

17 DensityEstimationBuffer.InterlockedAdd(tile_i * 4, 1);

18 }

19 }

24.3	 �SCREEN-SPACE IRRADIANCE ESTIMATION

Given the array of photons, the next task is to use them to reconstruct indirect
illumination in the image. Each photon has a kernel associated with it that
represents the extent of the scene (and thus, the image) to which it possibly
contributes. The task is to accumulate each photon’s contribution at each pixel.

Two general approaches have been applied to this problem: gathering and
scattering. Gathering is essentially a loop over pixels, where at each pixel nearby
photons are found using a spatial data structure. Scattering is essentially a loop
over photons, where each photon contributes to the pixels that it overlaps. See
Mara et al. [9] for a comprehensive overview of both real-time gathering and
scattering techniques. Given highly efficient ray tracing on modern GPUs to
generate photon maps, it is also important that reconstruction be efficient. Our
implementation is based on scattering and we take advantage of rasterization
hardware to efficiently draw the splatting kernels. Results are accumulated using
blending.

We use photons to reconstruct irradiance, which is the cosine-weighted distribution
of light arriving at a point. We then approximate the light reflected from a surface
by the product of the photon’s irradiance and the surface’s BRDF using a mean
incoming direction. In doing so, we discard the directional distribution of indirect
illumination and avoid a costly evaluation of the reflection model for every photon
that influences a point’s shading. This gives the correct result for diffuse surfaces,
but it introduces error as surfaces become more glossy and as the distribution
of indirect lighting becomes more irregular. In practice, we have not seen
objectionable errors from this approximation.

RAY TRACING GEMS

419

24.3.1	 �DEFINING THE SPLATTING KERNEL

Selecting a good kernel size for each photon is important: if the kernels are too
wide, the lighting will be excessively blurry, and if they are too narrow, it will be
blotchy. It is particularly important to avoid too-wide kernels because a wider
kernel makes a photon cover more pixels and thus leads to more rasterization,
shading, and blending work for the photon. Incorrect kernel selection for photon
mapping can cause several types of biases and errors [14]; minimization of these
has been the focus of a substantial amount of research.

In our approach, we start with a spherical kernel and then apply a number of
modifications to it in order to minimize various types of error. These modifications
can be categorized into two main types: uniform scaling and modification of the
kernel’s shape.

24.3.1.1  �UNIFORM SCALING OF THE KERNEL

Uniform scaling of the kernel is a product of two terms, the first one based on the
ray length and the second on an estimation of the photon density distribution.

Ray Length  We scale the kernel according to the ray length using linear
interpolation to a constant maximum length. This method is an approximation of
the ray differential and can be interpreted as treating the photon as traveling along
a cone instead of a ray and factoring in the growth of the cone base as its height
increases. Also, we can assume lower photon densities as the ray length increases,
since it is probable that photons scatter to a larger world-space volume. Thus, we
want a relatively wide kernel in that case. The scaling factor is

			
l

ls
lmax

min ,1 ,
æ ö

= ç ÷
è ø

	 (2)

where l is the ray length and lmax is a constant defining the maximum ray length.
However, lmax is not required to be the maximum length of the rays cast during
photon tracing but instead the length that we consider to be the maximum height of
the cone. This constant should be related to the overall scale of the scene and can
be derived from its bounding box.

Photon Density  We would like to further scale each photon’s kernel based on
the local photon density around it: the more photons that are nearby, the smaller
the kernel can (and should) be. The challenge is efficiently determining how many
photons are near each one. We apply the simple approximation of maintaining a
counter for each screen-space tile. When a photon is deposited in a tile, the counter

 Real-Time Global Illumination with Photon Mapping

420

is atomically incremented. This is obviously a crude approximation of the density
function, but it seems to produce fairly good results.

We then implement density-based scaling as a function of the area of the tile in
view space:

		 () ()x y x y

x y

t t
a z

r r
2

view view

tan / 2 tan / 2
,

a a
= 	 (3)

where αx and αy are the apertures of the camera frustum, zview is the distance from
the camera, tx and ty are the tile dimensions in pixels, and rx and ry represent the
image’s resolution. In most cases a tile does not have a uniform depth, so we use
the depth of the photon position. Most of this arithmetic can be precalculated and
replaced with a camera constant:

			 a z c2
view view tile.= 	 (4)

Thus, scaling the circular kernel to have the same area in the view space as the tile
can be calculated as

			 p
p

z c
a r n r

n

2
2 view tile

view , ,= p =
p

	 (5)

where np is the number of photons in the tile. This value is clamped to remove
any extreme cases and then multiplied by the constant ntile, which is equal to the
number of photons that we expect to contribute to each pixel:

			 ()min max tileclamp .ds r , r , r n= 	 (6)

The HLSL implementation of these equations is straightforward:

 1 float uniform_scaling(float3 pp_in_view, float ray_length)

 2 {

 3 // Tile-based culling as photon density estimation

 4 int n_p = load_number_of_photons_in_tile(pp_in_view);

 5 float r = .1f;

 6

 7 if (layers > .0f)

 8 {

 9 // Equation 5

10 �float a_view = pp_in_view.z * pp_in_view.z * TileAreaConstant;

11 r = sqrt(a_view / (PI * n_p));

12 }

RAY TRACING GEMS

421

13 // Equation 6

14 float s_d = clamp(r, DYNAMIC_KERNEL_SCALE_MIN,

15 DYNAMIC_KERNEL_SCALE_MAX) * n_tile;

16

17 // Equation 2

18 float s_l = clamp(ray_length / MAX_RAY_LENGTH, .1f, 1.0f);

19 return s_d * s_l;

20 }

24.3.1.2  �ADJUSTING THE KERNEL’S SHAPE

We can further improve the reconstructed result by adjusting the kernel’s shape.
We consider two factors. First, we decrease the radius of the kernel in the direction
of the normal of the surface that the photon intersected. Second, we scale the
kernel in the direction of the light in order to model the projected area that it covers
on the surface. This results in the kernel being a tri-axial ellipsoid, which has one
axis, n, that has the direction ωg of the normal. The other two axes are placed on a
tangent plane defined by the photon normal, called the kernel plane. The first of the
two, u, has the direction of ωi projected onto the kernel plane, while the second, t, is
orthogonal to it and in the same plane. This vector basis is illustrated in Figure 24-4.

The magnitude of n is snslsd, where sn is a constant that compresses the kernel
along the normal so that it is closer to the surface. This is a common approach:
it was done by Jensen [7] for gathering with a varying gathering radius and by

Figure 24-4.  Left: the base vectors for the kernel space: ωg is aligned to the photon normal n̂ , which
also defines the kernel plane π. Two other basis vectors lie in π such that û is the projection of light
direction ωi on to the kernel plane and t̂ is orthogonal to û . Right: the kernel’s shape is modified by
scaling along those vectors.

 Real-Time Global Illumination with Photon Mapping

422

McGuire and Luebke [10] for their splatting kernel. Compared to a spherical
kernel, this provides a better approximation of the surface. However, if the kernel
is compressed too much, the distribution on objects with complex shapes or
significant surface curvatures becomes inaccurate, as the kernel disregards
samples farther away from its plane. This can be compensated for by making the
magnitude be a function of the surface curvature, but in our implementation this
factor is constant.

The magnitude of u is suslsd, where su is defined as a function of the cosine of the
angle between the hit normal and the light direction:

			
u

g i

s , smax

1min ,
w w

æ ö
= ç ÷ç ÷×è ø

	 (7)

where smax is a constant defining the maximum scaling factor. Otherwise, the
magnitude would approach infinity as the angle between ωg and ωi decreases
to zero. Intuition for this equation originates in ray differentials and the cone
representation of the photon: as the incoming direction of the photon becomes
orthogonal to the normal direction of the surface, the area of the base of the cone
that is projected onto the kernel plane increases.

Finally, the magnitude of t is slsd.

The following code shows an implementation of the shape modification:

 1 �kernel_output kernel_modification_for_vertex_position(float3 vertex,

 2 float3 n, float3 light, float3 pp_in_view, float ray_length)

 3 {

 4 kernel_output o;

 5 �float scaling_uniform = uniform_scaling(pp_in_view, ray_length);

 6

 7 float3 l = normalize(light);

 8 float3 cos_alpha = dot(n, vertex);

 9 float3 projected_v_to_n = cos_alpha * n;

10 float cos_theta = saturate(dot(n, l));

11 float3 projected_l_to_n = cos_theta * n;

12

13 float3 u = normalize(l - projected_l_to_n);

14

15 // Equation 7

16 �o.light_shaping_scale = min(1.0f/cos_theta, MAX_SCALING_CONSTANT);

17

18 float3 projected_v_to_u = dot(u, vertex) * u;

19 float3 projected_v_to_t = vertex - projected_v_to_u;

20 projected_v_to_t -= dot(projected_v_to_t, n) * n;

21

RAY TRACING GEMS

423

22 // Equation 8

23 float3 scaled_u = projected_v_to_u * light_shaping_scale *

24 scaling_Uniform;

25 float3 scaled_t = projected_v_to_t * scaling_uniform;

26 o.vertex_position = scaled_u + scaled_t +

27 (KernelCompress * projected_v_to_n);

28

29 o.ellipse_area = PI * o.scaling_uniform * o.scaling_uniform *

30 o.light_shaping_scale;

31

32 return o;

33 }

24.3.2	 �PHOTON SPLATTING

We splat photons using an instanced indirect draw of an icosahedron as an
approximation to a sphere. (The indirect arguments for the draw call are set using
an atomic counter in the validate_and_add_photon() function.) To apply the
kernel shape introduced in the previous section, we transform the vertices in the
vertex shader accordingly. Since the original kernel is a sphere, we can assume
the coordinate frame of the kernel’s object space to be the coordinate frame of the
world space, which results in vertex positions

			 ()kernel

ˆ
ˆ .
ˆ

æ ö
ç ÷

= ç ÷
ç ÷
è ø

T

T

T

n
v n u t u v

t

	 (8)

We keep the pixel shader for our splatting kernel as simple as possible, as it can
easily become a performance bottleneck. Its main task is a depth check to ensure
that the G-buffer surface for which we are calculating radiance is within the kernel.
The depth check is done as a clipping operation for the world-space distance
between the surface and the kernel plane against a constant value scaled by the
kernel compression constant. After the depth check, we apply the kernel to the
splatting result:

				
iE

a
,F

= 	 (9)

where a is the area of the ellipse, a = π‖u‖‖t‖ = π(slsd)(slsdsu). It is worth noting
that irradiance here is scaled by the cosine term and thus implicitly includes
information from the geometric normals.

For accumulation of irradiance, we use a half-precision floating-point format (per
channel) in order to avoid numerical issues with lower-bit formats. Furthermore,
we accumulate the average light direction as a weighted sum with half-precision
floats. The motivation for also storing the direction is discussed in Section 24.4.3.

 Real-Time Global Illumination with Photon Mapping

424

The following code implements splatting. It uses the two functions defined
previously to adjust the kernel’s shape.

 1 void VS(

 2 float3 Position : SV_Position,

 3 uint instanceID : SV_InstanceID,

 4 out vs_to_ps Output)

 5 {

 6 unpacked_photon up = unpack_photon(PhotonBuffer[instanceID]);

 7 float3 photon_position = up.position;

 8 float3 photon_position_in_view = mul(WorldToViewMatrix,

 9 float4(photon_position, 1)).xyz;

10 �kernel_output o = kernel_modification_for_vertex_position(Position,

11 �up. normal, -up.direction, photon_position_in_view, up.ray_length);

12

13 float3 p = pp + o.vertex_position;

14

15 Output.Position = mul(WorldToViewClipMatrix, float4(p, 1));

16 Output.Power = up.power / o.ellipse_area;

17 Output.Direction = -up.direction;

18 }

19

20 [earlydepthstencil]

21 void PS(

22 vs_to_ps Input,

23 out float4 OutputColorXYZAndDirectionX : SV_Target,

24 out float2 OutputDirectionYZ : SV_Target1)

25 {

26 float depth = DepthTexture[Input.Position.xy];

27 float gbuffer_linear_depth = LinearDepth(ViewConstants, depth);

28 float kernel_linear_depth = LinearDepth(ViewConstants,

29 Input.Position.z);

30 float d = abs(gbuffer_linear_depth - kernel_linear_depth);

31

32 clip(d > (KernelCompress * MAX_DEPTH) ? -1 : 1);

33

34 float3 power = Input.Power;

35 float total_power = dot(power.xyz, float3(1.0f, 1.0f, 1.0f));

36 float3 weighted_direction = total_power * Input.Direction;

37

38 OutputColorXYZAndDirectionX = float4(power, weighted_direction.x);

39 OutputDirectionYZ = weighted_direction.yz;

40 }

As mentioned before, we use additive blending to accumulate the contributions of
photons. Modern graphics APIs guarantee that pixel blending occurs in submission
order, though we do not need this property here. As an alternative, we tried using
raster order views but found that these were slower than blending. However,

RAY TRACING GEMS

425

using floating-point atomic intrinsics, which are available on NVIDIA GPUs as an
extension, did result in improved performance in situations when many photons
overlap in screen space (a common scenario for caustics).

24.3.2.1  �OPTIMIZING SPLATTING USING REDUCED RESOLUTION

Splatting can be an expensive process, which is especially the case when rendering
high-resolution images. We found that reducing image resolution to half of the
native rendering resolution did not cause a noticeable decrease in visual quality for
the final result and gave a significant performance benefit. Using lower resolution
does require a change to the depth clipping in the pixel shader to eliminate
irradiance bleeding between surfaces: the half-resolution depth stencil used for
stencil drawing should be downscaled using the closest pixel to the camera, but
the depth used in pixel shader clipping should be downscaled using the farthest
pixel from the camera. Hence, we draw the splatting kernel for only those pixels
that are entirely within the full-resolution kernel. This causes jagged edges in the
splatting result, but they are removed by the filtering.

24.4	 �FILTERING

As typical for real-time Monte Carlo rendering methods, it is necessary to apply
image filtering algorithms to compensate for the low sample count. Although there
have been significant advances in denoising in recent years, the noise caused by
photon distribution kernels is quite different from the high-frequency noise that
path tracing exhibits and that has been the main focus of denoising efforts. Thus, a
different solution is required.

We use both temporal and spatial accumulation of samples with geometry-based
edge-stopping functions. Our approach is based on previous work by Dammertz
et al. [4] and Schied et al. [13], with our implementation using an edge-avoiding
À-Trous wavelet transform for spatial filtering. Because indirect lighting is
generally low frequency, we considered filtering at a lower resolution to decrease
the computation cost, but we encountered artifacts due to G-buffer discrepancies
and so reverted to filtering at the final resolution.

Both our temporal and spatial filtering algorithms use edge-stopping functions
based on the difference in depth between two pixels and the difference in their
surface normals. These functions, based on those of Schied et al. [13], attempt to
prevent filtering across geometric boundaries by generating weights based on the

 Real-Time Global Illumination with Photon Mapping

426

surface attributes of two different pixels p and q. The depth difference weight wz is
defined by

		 () () ()
()()z

z

z P z Q
w P,Q

P P Q
exp ,

s e

æ ö-
ç ÷= -
ç ÷Ñ - +è øz

	 (10)

where z(P) is the screen-space depth at a pixel location P and ∇z(P) is the depth
gradient vector. After experimentation σz = 1 was found to work well.

Next, the normal difference weight wn accounts for the difference of the surface
normals:

			 () () ()() n

nw P,Q , P Qmax 0 ,ˆ ˆ
s

= ×n n 	 (11)

where we found σn = 32 to work well.

24.4.1	 �TEMPORAL FILTERING

Temporal filtering improves image quality by accumulating values from previous
frames. It is implemented by reprojecting the previous frame’s filtered irradiance
values using velocity vectors and then at every pixel p computing an exponentially
moving average between the previous frame’s reprojected filtered irradiance value

()i PE 1-
� and the irradiance value Ei(P) computed using splatting, giving a temporally

filtered irradiance ()i PE� :

			 () () () ()11 .i i iP E P E PE a a -= - +� � 	 (12)

This is Karis’s temporal antialiasing (TAA) approach [8] applied to irradiance.

Using a constant value for α would cause severe ghosting artifacts, as the temporal
filtering would not account for disocclusions, moving geometry, or moving lights.
However, because the irradiance values Ei at a pixel can vary significantly between
frames, color-space clipping methods used in TAA are not well suited for them.
Therefore, we rely on geometry-based methods and define α using the edge-
stopping functions as

			 () ()z nw P,Q w P,Q0.95 ,a = 	 (13)

where P is a current pixel sample and Q is the projected sample from the previous
frame. To evaluate the weight functions, it is necessary to maintain the normal and
depth data from the G-buffer of the previous frame. If the resolution of the splatting
target is lower than the filtering target, we upscale the splatting result at the
beginning of the temporal filtering pass with bilinear sampling.

RAY TRACING GEMS

427

24.4.2	 �SPATIAL FILTERING

The edge-avoiding Á-Trous wavelet transform is a multi-pass filtering algorithm
with an increasing kernel footprint Ωi at each step i. This is illustrated in one
dimension in Figure 24-5. Note that the spacing of filter taps doubles at each
stage and that intermediate samples between filter taps are just ignored. Thus,
the filter can have a large spatial extent without an excessive growth in the
amount of computation required. The algorithm is particularly well suited to GPU
implementation, where group shared memory can be used to efficiently share
surface attributes across different pixels evaluating the kernel.

Our implementation follows Dammertz et al. [4] and Schied et al. [13] in which we
realize each iteration as a 5 × 5 cross bilateral filter. Contributing samples are
weighted by a function w(P, Q), where P is the current pixel and Q is the contributing
sample pixel within the filter. The first iteration uses the temporally filtered
irradiance values

		  ()
() () ()

() ()
iQ

Q

h Q w P,Q E Q
s P

h Q w P,Q
0

0

0 ,ÎW

ÎW

=
å
å

�
	 (14)

and then each following level filters the previous one:

		  ()
() () ()

() ()
i

i

iQ
i

Q

h Q w P,Q s Q
s P

h Q w P,Q1 ,ÎW

+

ÎW

=
å
å

	 (15)

where ()h Q , , , ,1 1 1 1 1
8 4 2 4 8

æ ö
= ç ÷
è ø

 is the filter kernel and w(P, Q) = wz(P, Q)wn(P, Q).

Figure 24-5.  Three iterations of the one-dimensional stationary wavelet transform that forms the
basis of the Á-Trous approach. Arrows show the nonzero elements of the previous result contributing
to the current element, while gray dots indicate zero elements. (Illustration after Dammertz et al. [4].)

 Real-Time Global Illumination with Photon Mapping

428

24.4.2.1  �VARIANCE CLIPPING OF DETAIL COEFFICIENTS

To avoid blurring excessively, it is important to adapt the image filtering based on
the accuracy of the image contents. For example, Schied et al. [13] use an estimate
of variance as a part of their weight function. That works well for high-frequency
noise but is unsuitable for the low-frequency noise from photon mapping.
Therefore, we have developed a new filtering algorithm based on variance clipping
of the differences between each stage of the Á-Trous transform.

The stationary wavelet transform (SWT) was originally introduced to combat one of
the shortcomings of the discrete wavelet transform, that the transformation is not
shift-invariant. This problem was solved by saving detail coefficients per pixel for
each iteration. The detail coefficients can be defined by

				 i i id s s1 .+= - 	 (16)

This makes the SWT inherently redundant. If we consider how to reconstruct the
original signal, we have

				
n

n i
i

s s d
1

0
0

,
-

=

= -å 	 (17)

where n is the number of iterations. As we can see, to reconstruct the original
signal we need only the sum of the detail coefficients. Doing so allows us to reduce
the amount of required memory to two textures, each with the resolution of the
original image. Nevertheless, this just leaves us at the same point where we
started—the original unfiltered image.

However, we can apply variance clipping [12] to each of the detail coefficients before
we add them in to the sum. This approach works well here, unlike with the unfiltered
frame irradiance values Ei, because we are starting with temporally filtered values.
We compute color-space boundaries (denoted by bi) based on the variance of
irradiance within the spatial kernel. In turn, these boundaries are used for clipping
the detail coefficients, and we compute a final filtered irradiance value as

			 ()
n

n i i i
i

E s d , b , b
1

final
0

clamp .
-

=

= - -å 	 (18)

Finally, we apply the filtered irradiance to the surfaces. As described earlier, we
ignore the directional distribution of indirect lighting. Instead, we use the mean
direction as the incoming light parameter to evaluate the BRDF. The irradiance is
multiplied by the BRDF value retrieved:

			  L E ffinal final BRDF.= 	 (19)

RAY TRACING GEMS

429

Figure 24-6 illustrates the various passes of our approach.

24.4.3	 �INCORPORATING THE EFFECT OF SHADING NORMALS

Photon mapping includes the directional information as an implicit part of
the irradiance calculation, because surfaces with their geometry normals
pointing toward the incoming light direction have a higher probability of being
hit by photons. However, this process does not capture the detail provided by
material attributes, such as normal maps. This is a commonly known issue

Figure 24-6.  Results for different passes of the algorithm using the Sponza scene with three bounces
of indirect light, four light sources, three million initial photons, and four spatial filtering iterations. (a)
The colors red, green, and blue correspond to the number of the bounce. Notice the accumulation of
different sample subsets from (c) stratified sampling in temporal filtering result compared to (b) the
splatting result. Also, (e) the effect of the variance clipping of detail coefficients is clearly visible as (f)
the irradiance result retains much of detail that is lost when (d) only scaling coefficients are used.

 Real-Time Global Illumination with Photon Mapping

430

with precalculated global illumination methods, and there have been several
approaches to solve it [11]. To achieve comparable illumination quality, we must
also take this factor into consideration with photon mapping.

We developed a solution inspired by Heitz et al. [6]: we filter the light direction ωi
as a separate term. Then, when computing the irradiance, we effectively remove
the original cosine term from the dot product of this direction ωi with the geometric
normal ωng and replace it with the dot product of ωi and the shading normal ωns.
This changes Equation 19 to

	   () ()i ns
i ng

L E f , sfinal final BRDF max

1min ,w w
w w e

æ ö
ç ÷= ×
ç ÷× +è ø

	 (20)

where ωi is the weighted average of the light directions and smax is the maximum
scaling factor used in Section 24.3.1.2.

Accounting for the surface normal in this way comes with a performance cost, as it
requires an additional blending target for the splatting, along with additional input
and output for each filtering step. However, it allows us to apply the information
from the normal maps without reading the G-buffer normal when computing
irradiance.

Filtering the BRDF instead of just the light direction would achieve more accurate
results for specular surfaces. However, doing so would require evaluating the
BRDF during irradiance estimation and thus reading the material attributes. This
would come with a significant performance cost when implemented with splatting,
as the G-buffer would have to be read for each pixel shader invocation. A compute
shader–based gathering approach could avoid this problem by loading the material
attributes only once, though it would still pay the computational cost of evaluating
the BRDF.

24.5	 �RESULTS

We evaluated our implementation with three scenes: Conference Room (shown
in Figure 24-7), Sponza (Figure 24-8), and 3DMark Port Royal (Figure 24-9).
Conference Room has a single light source, Sponza has four, and Port Royal has
one spotlight from a drone and another pointing toward the camera. The rendering
of the Port Royal scene includes an artistic multiplier to the photon power in order
to intensify the indirect lighting effect.

RAY TRACING GEMS

431

Figure 24-7.  Conference Room test scene.

 Real-Time Global Illumination with Photon Mapping

432

Figure 24-8.  Modified Sponza test scene.

RAY TRACING GEMS

433

Table 24-3 reports the computation times in milliseconds for these scenes with
high-quality settings: 1080p resolution, three million initial photons, three bounces
of indirect light, and four iterations of the spatial filter. The results were measured
using an NVIDIA RTX 2080 Ti. Note that, for all scenes, the most costly phase is
splatting. Time spent on filtering is roughly the same for all scenes, since it is
independent of the scene’s geometric complexity but is an image-space operation.

Figure 24-9.  A section of the 3DMark Port Royal ray tracing test.

 Real-Time Global Illumination with Photon Mapping

434

In Table 24-4 we examine the effect of varying some of the parameters. As
would be expected, the time spent on RSMs, tracing rays, and photon splatting
increases with the number of photons traced. Due to path termination from
Russian roulette, increasing the number of bounces reduces performance less
than adding a corresponding number of initial photons. Increasing image resolution
correspondingly increases both splatting and filtering time.

24.6	 �FUTURE WORK

There are a number of areas where performance or quality of the approach
described here could be improved.

24.6.1	 �OPTIMIZING IRRADIANCE DISTRIBUTION BY SKIPPING SPLATTING

With high-density functions, the screen-space size of the splatting kernel can
approach the size of a pixel, which makes drawing the splatting kernel wasteful.
This could possibly be solved by writing the irradiance value directly to the
framebuffer instead of splatting.

Table 24-3.  Performance of our photon mapping implementation for each scene on an NVIDIA RTX
2080 Ti, with times measured in milliseconds.

Table 24-4.  Performance of the photon mapping algorithm in the Sponza scene with different
settings, measured in milliseconds. Filtering is done with four spatial iterations. The baseline is set to
what we would consider “low” settings for photon mapping: one million photons and a single bounce.

RAY TRACING GEMS

435

24.6.2	 �ADAPTIVE CONSTANTS FOR VARIANCE CLIPPING OF THE DETAIL
COEFFICIENTS

Unfortunately, we cannot determine if the variance in the irradiance is caused by
the low sample count or an actual difference in lighting conditions. This is partly
mitigated by the larger sample set provided by stratified sampling. As these
samples are accumulated using temporal filtering, the noise becomes visible
in cases where temporal samples are being rejected. Therefore, it would be
preferable to use less constricting variance clipping boundaries for these areas.
Such a system could be implemented by scaling the variance clipping constant
based on the weights that we use to define the accumulation of the temporal
samples.

REFERENCES

	 [1]	� Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. Wavelet Importance Sampling:
Efficiently Evaluating Products of Complex Functions. ACM Transactions on Graphics 24, 3 (2005),
1166–1175.

	 [2]	� Dachsbacher, C., and Stamminger, M. Reflective Shadow Maps. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games (2005), pp. 203–231.

	 [3]	� Dachsbacher, C., and Stamminger, M. Splatting Indirect Illumination. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games (2006), ACM, pp. 93–100.

	 [4]	� Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. Edge-Avoiding À-Trous Wavelet Transform
for Fast Global Illumination Filtering. In Proceedings of High-Performance Graphics (2010),
pp. 67–75.

	 [5]	� Heitz, E., and d’Eon, E. Importance Sampling Microfacet-Based BSDFs using the Distribution of
Visible Normals. Computer Graphics Forum 33, 4 (2014), 103–112.

	 [6]	� Heitz, E., Hill, S., and McGuire, M. Combining Analytic Direct Illumination and Stochastic
Shadows. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2018), pp. 2:1–2:11.

	 [7]	 Jensen, H. W. Realistic Image Synthesis Using Photon Mapping. A K Peters, 2001.

	 [8]	� Karis, B. High-Quality Temporal Supersampling. Advances in Real-Time Rendering in Games,
SIGGRAPH Courses, 2014.

	 [9]	� Mara, M., Luebke, D., and McGuire, M. Toward Practical Real-Time Photon Mapping: Efficient
GPU Density Estimation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (2013), pp. 71–78.

	 [10]	� McGuire, M., and Luebke, D. Hardware-Accelerated Global Illumination by Image Space Photon
Mapping. In Proceedings of High-Performance Graphics (2009), pp. 77–89.

	 [11]	 O’Donnell, Y. Precomputed Global Illumination in Frostbite. Game Developers Conference, 2018.

 Real-Time Global Illumination with Photon Mapping

436

	 [12]	� Salvi, M. An Excursion in Temporal Supersampling. From the Lab Bench: Real-Time Rendering
Advances from NVIDIA Research, Game Developers Conference, 2016.

	 [13]	� Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C. R. A., Burgess, J., Liu, S.,
Dachsbacher, C., Lefohn, A., and Salvi, M. Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination. In Proceedings of High-Performance Graphics
(2017), pp. 2:1–2:12.

	 [14]	� Schregle, R. Bias Compensation for Photon Maps. Computer Graphics Forum 22, 4 (2003),
729–742.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 24: Real-Time Global Illumination with Photon Mapping
	24.1	 Introduction
	24.2	 Photon Tracing
	24.2.1	 RSM-Based First Bounce
	24.2.2	 Following Photon Paths
	24.2.3	 DXR Implementation

	24.3	 Screen-Space Irradiance Estimation
	24.3.1	 Defining the Splatting Kernel
	24.3.1.1 Uniform Scaling of the Kernel
	24.3.1.2 Adjusting the Kernel’s Shape

	24.3.2	 Photon Splatting
	24.3.2.1 Optimizing Splatting Using Reduced Resolution

	24.4	 Filtering
	24.4.1	 Temporal Filtering
	24.4.2	 Spatial Filtering
	24.4.2.1 Variance Clipping of Detail Coefficients

	24.4.3	 Incorporating the Effect of Shading Normals

	24.5	 Results
	24.6	 Future Work
	24.6.1	 Optimizing Irradiance Distribution by Skipping Splatting
	24.6.2	 Adaptive Constants for Variance Clipping of the Detail Coefficients

