
353© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_22

CHAPTER 22

Improving Temporal Antialiasing
with Adaptive Ray Tracing
Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire
NVIDIA

ABSTRACT

In this chapter, we discuss a pragmatic approach to real-time supersampling that
extends commonly used temporal antialiasing techniques with adaptive ray tracing.
The algorithm conforms to the constraints of a commercial game engine, removes
blurring and ghosting artifacts associated with standard temporal antialiasing,
and achieves quality approaching 16× supersampling of geometry, shading, and
materials within the 16 ms frame budget required of most games.

22.1 INTRODUCTION

Aliasing of primary visible surfaces is one of the most fundamental and challenging
limitations of computer graphics. Almost all rendering methods sample surfaces
at points within pixels and thus produce errors when the points sampled are
not representative of the pixel as a whole, that is, when primary surfaces are
undersampled. This is true regardless of whether the points are tested by casting
a ray or by the amortized ray casts of rasterization, and regardless of what shading
algorithm is employed. Even “point-based” renderers [15] actually ray trace or splat
points to the screen via rasterization. Analytic renderers such as perfect beam
tracing in space and time could avoid the ray (under)sampling problem, but despite
some analytic solutions for limited cases [1], point samples from ray or raster
intersections remain the only fully developed approach for efficient rendering of
complex geometry, materials, and shading.

Aliasing due to undersampling manifests as jagged edges, spatial noise, and
flickering (temporal noise). Attempts to conceal these errors by wider and more
sophisticated reconstruction filters in space (e.g., morphological antialiasing
(MLAA) [22], fast approximate antialiasing (FXAA) [17]) and time (e.g., subpixel
morphological antialiasing (SMAA) [12], temporal antialiasing (TAA) [13, 27])
convert those artifacts into blurring (in space) or ghosting (blurring in time).
Under a fixed sample count per pixel across an image, the only true solution
to aliasing is to increase the sample density and band-limit the signal being

https://doi.org/10.1007/978-1-4842-4427-2_22

354

sampled. Increasing density helps but does not solve the problem at rates
affordable for real time: supersampling antialiasing (SSAA) incurs a cost linearly
proportional to the number of samples while only increasing quality with the
square root; multisampling (MSAA)—including coverage sampling (CSAA), surface
based (SBAA) [24], and subpixel reconstruction (SRAA) [4]—samples geometry,
materials, and shading at varying rates to heuristically reduce the cost but also
lowers quality; and aggregation (decoupled coverage (DCAA) [25], aggregate
G-buffer (AGAA) [7]) reduces cost even more aggressively but still limits quality at
practical rates. For band-limiting the scene, material prefiltering by mipmapping
and its variants [19], level of detail for geometry, and shader level of detail reduce
the undersampling artifacts but introduce other nontrivial problems such as
overblurring or popping (temporal and spatial discontinuities) while complicating
rendering systems and failing to completely address the problem.

The standard in real-time rendering is to employ many of these strategies
simultaneously, with a focus on leveraging temporal antialiasing. Despite
succeeding in many cases, these game-specific solutions require significant
engineering complexity and careful hand-tuning of scenes by artists [20, 21]. Since
all these solutions depend on a fixed sampling count per pixel, an adversary can
always place material, geometric, or shading features between samples to create
unbounded error. More recently, Holländer et al. [10] aggressively identified pixels
in need of antialiasing from coarse shading and high-resolution geometry passes
and achieved nearly identical results to SSAA. Unfortunately, this rasterization-
based approach requires processing all geometry at high resolutions even if only
a few pixels are identified for antialiasing. Despite cutting the number of shading
samples in half, the reduction in frame time is limited to 10%. Thus, we consider
the aliasing challenge open for real-time rendering.

In this chapter, we describe a new pragmatic algorithm, Adaptive Temporal
Antialiasing (ATAA), that attacks the aliasing problem by extending temporal
antialiasing of rasterized images with adaptive ray traced supersampling. Offline
ray tracing renderers have long employed highly adaptive sample counts to solve
aliasing (e.g., Whitted’s original paper [26]), but until now hybrid ray and raster
algorithms [2] have been impractical for real-time rendering due to the duplication
of data structures between ray and raster APIs and architectures. The recent
introduction of the DirectX Raytracing API (DXR) and the NVIDIA RTX platform
enable full interoperability between data structures and shaders for both types
of rendering on the GPU across the full game engine. Crucially, RTX substantially
improves ray tracing performance by delivering hardware acceleration of the
bounding volume hierarchy (BVH) traversal and triangle intersection tasks on
the NVIDIA Turing GPU architecture. Thus, we build on the common idea of

RAY TRACING GEMS

355

adaptive sampling by showing how to efficiently combine state-of-the- art temporal
antialiasing solutions with a hybrid rendering approach unlocked by the recent
evolution in the GPU ray tracing ecosystem. Shown in Figure 22-1, our method
conforms to the constraints of a commercial game engine, eliminates the blurring
and ghosting artifacts associated with standard temporal antialiasing, and
achieves image quality approaching 16× supersampling of geometry, shading,
and materials within a 16 ms frame budget on modern graphics hardware. We
provide details from our hands-on experience integrating ATAA into a prototype
version Unreal Engine 4 (UE4) extended with DirectX Raytracing support, tuning
the adaptive distribution of ray traced samples, experimenting with ray workload
compaction optimizations, and understanding ray tracing performance on NVIDIA
Turing GPUs.

22.2 PREVIOUS TEMPORAL ANTIALIASING

Temporal antialiasing [13, 27] is fast and quite good in the cases that it can
handle, which is why it is the de facto standard for games today. TAA applies a
subpixel shift to the image plane at each frame and accumulates an exponentially
weighted moving average over previous frames, each of which was rendered with
only one sample per pixel. On static scenes, TAA approaches the quality of full-
screen supersampling. For dynamic scenes, TAA reprojects samples from the
accumulated history buffer by offsetting texture fetches along per-pixel motion
vectors generated by the rasterizer.

TAA fails in several cases. When new screen areas are disoccluded (revealed)
by object motion, they are not represented in the history buffer or are
misrepresented by the motion vectors. Camera rotation and backward
translation also create thick disocclusions at the edges of the screen. Subpixel

Figure 22-1. The Modern House scene in Unreal Engine 4 with deferred shading, ray traced shadows,
our Adaptive Temporal Antialiasing technique, and a moving camera all rendered in 9.8 ms on an
NVIDIA GeForce 2080 Ti. The zoomed-in inlays compare boat rope details rendered with one-sample-
per-pixel (1 SPP) rasterization, FXAA, UE4’s stock TAA, a visualization of our segmentation mask, ATAA
2×, 4×, and 8×, and an SSAA 16× reference.

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

356

features, such as wires and fine material details, can slip between consecutive
offset raster samples and thus can be unrepresented by motion vectors in the
next frame. Transparent surfaces create pixels at which the motion vectors
from opaque objects do not match the total movement of represented objects.
Finally, shadows and reflections do not move in the direction of the motion
vectors of the surfaces that are shaded by them.

When TAA fails, it either produces ghosting (blurring due to integrating incorrect
values) or reveals the original aliasing as jaggies, flicker, and noise. Standard
TAA attempts to detect these cases by comparing the history sample to the local
neighborhood of the corresponding pixel in the new frame. When they appear too
different, TAA employs a variety of heuristics to clip, clamp, or interpolate in color
space. As summarized by Salvi [23], the best practices for these heuristics change
frequently, and no general-purpose solution has previously been found.

22.3 A NEW ALGORITHM

We designed Adaptive Temporal Antialiasing to be compatible with conventional
game engines and to harness the strengths of TAA while addressing its failures
unequivocally and simply. The core idea is to run the base case of TAA on most
pixels and then, rather than attempting to combat its failures with heuristics,
output a conservative segmentation mask identifying where TAA fails and why.
We then replace the complex heuristics of TAA at failure pixels with robust
alternatives, such as sparse ray tracing, that adapt to the image content.
Figure 22-2 shows our algorithm in the context of the Unreal Engine 4 rendering
pipeline. In the diagram, rectangular icons represent visualizations of data
(buffers) and rounded rectangles represent operations (shader passes). Not all
intermediate buffers are shown. For example, where the previous frame’s output
feeds back as input to TAA, we do not show the associated ping-pong buffers. The
new sparse ray tracing step executes in DXR Ray Generation shaders, accepts the
new Segmentation buffer, and outputs a new Sparse Color buffer that is composited
with the dense color output from TAA before tone mapping and other screen-space
post-processing.

Since the base case of TAA is acceptable for most screen pixels, the cost of ray
tracing is highly amortized and requires a ray budget far less than one sample per
pixel. For example, we can adaptively employ 8× ray traced supersampling for 6%
of the total image resolution at a cost of fewer than 0.5 rays per pixel. Image quality
is then comparable to at least 8× supersampling everywhere; were it not, the
boundaries between segmented regions would flicker in the final result due to the
different algorithms being employed.

RAY TRACING GEMS

357

22.3.1 SEGMENTATION STRATEGy

The key to efficiently implementing any form of adaptive sampling is to first
identify the areas of an image that will benefit most from improved sampling
(i.e., detect undersampling) and to then perform additional sampling only in
those regions. In ATAA, we guide the adaptivity of ray traced supersampling by
computing a screen-space segmentation mask that detects undersampling and
TAA failures. The buffer labeled “Segmentation” in Figure 22-2 is a visualization
of our segmentation mask generated for the Modern House scene. Figure 22-3
presents a larger, annotated version of this mask. Our mask visualizations
map the antialiasing strategy to pixel colors, where red pixels use FXAA, blue
pixels use TAA, and yellow pixels use ray traced supersampling. Achieving the
ideal segmentation of arbitrary images for ray traced supersampling, while
also balancing performance and image quality, is a challenging problem. The
budget of rays available for antialiasing may vary based on scene content,
viewpoint, field of view, per-pixel lighting and visual effects, GPU hardware, and
the target frame rate. As a result, we don’t advocate a single “one size fits all”
segmentation strategy, but instead we categorize and discuss several options
so that the optimal combination of criteria can be implemented in a variety of
scenarios.

Figure 22-2. The data flow of ATAA integrated into the UE4 rendering pipeline. Gray boxes represent
operations that are either unchanged or slightly modified. Green boxes represent operations that are
modified or new. The Segmentation and Sparse Color buffers are new.

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

358

22.3.1.1 AUTOMATIC SEGMENTATION

Images can be effectively and efficiently segmented by inspecting the scene data
available in screen space after rasterization. Since segmentation is generated
algorithmically, without manual intervention from artists or developers, we refer to
this process as automatic segmentation.

Modern rendering engines maintain per-pixel motion vectors, which we use during
segmentation to determine if the current pixel was previously outside of the view
(i.e., offscreen) or occluded by another surface. In the case of offscreen disocclusion,
temporal raster data does not exist for use in antialiasing. Shown in Figure 22-3, we
process these areas with FXAA (red), since it has a low cost, requires no historical
data, and runs on the low dynamic range output, i.e., after tone mapping, to
conserve memory bandwidth. By running FXAA only at offscreen disocclusion pixels,
we further reduce its cost compared to full-screen applications, typically to less than
15% even for rapid camera movement. In the case of disocclusions from animated
objects and skinned characters, temporal raster data exists but the shaded
color is not representative of the currently visible surface. We eliminate common
TAA ghosting artifacts and avoid aliasing caused by TAA clamping, as shown in
Figure 22-4, by ignoring the temporal raster data and marking these pixels for ray
traced supersampling (yellow). The result of inspecting motion vectors overrides all
other criteria and may trigger an early exit in the segmentation process if either type
of disocclusion is present. Now that TAA failures from disocclusions are handled, the
segmentation process can turn to identifying areas of undersampling.

Figure 22-3. An annotated visualization of an ATAA segmentation mask. Blue pixels use standard TAA,
red pixels use FXAA, and yellow pixels use ray traced supersampling.

RAY TRACING GEMS

359

Undersampling artifacts occur primarily at geometric edges and within high-
frequency materials. Similar to common edge detection algorithms, we perform
a set of 3 × 3 pixel convolutions to determine the screen-space derivatives of
surface normals, depth, mesh identifiers, and luminance. Figure 22-5 visualizes
segmentation results for each of these data types.

Not shown in Figure 22-5, we also compare the luminance of the current pixel with
that of the reprojected pixel location in the TAA history buffer to determine the
luminance change in time as well as space. Since our antialiasing method produces
new samples accurately by ray tracing, no error is introduced by the reprojection or
potential disocclusions.

As you may have noticed, each of the screen-space data types alone does not
provide the complete segmentation we desire. Surface normal derivatives
identify interior and exterior object edges effectively, but miss layered objects
with similar normals and undersampled materials. Depth derivatives detect
layered objects and depth discontinuities well, but create large areas of false
positives where sharp changes in depth are common (e.g., planes that are near
edge-on to the view, such as walls). Mesh identifier derivatives are excellent at
detecting exterior object edges, but miss undersampled edges and materials
on the interior of objects. Finally, luminance derivatives detect undersampled
materials (in space and time), but miss edges where luminance values are
similar. As a result, a combination of these derivatives must be used to arrive
at an acceptable segmentation result.

Figure 22-4. A skinned character in the middle of a run animation (left). Motion vectors are used to
determine disocclusions that cause TAA to fail. TAA ghosting artifacts are eliminated and disocclusions
are antialiased by marking these areas for ray traced supersampling (right).

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

360

Figure 22-5. Segmentation results of 3 × 3 pixel convolutions for various types of screen-space data
from two viewpoints in the Modern House scene: from top to bottom, final shaded scene, surface
normals, depth, mesh identifiers, and luminance.

RAY TRACING GEMS

361

22.3.1.2 UE4 AUTOMATIC SEGMENTATION IMPLEMENTATION

In our UE4 implementation, the segmentation mask is generated by extending
the existing full-screen TAA post-process pass. After inspecting motion vectors
for TAA failures, we use a weighted combination of mesh identifiers, depth,
and temporal luminance to arrive at the final segmentation result. The mask is
stored as two half- precision unsigned integer values packed into a single 32-bit
memory resource. The first integer identifies a pixel’s antialiasing method
(0 = FXAA, 1 = TAA, 2 = ray tracing), and the second integer serves as
a segmentation history that stores whether a pixel received ray traced
supersampling in previous frames. The segmentation classification history is
important to temporally stabilize the segmentation mask results, as a subpixel
jitter is applied to the view every frame for TAA. If a pixel is marked for ray
traced supersampling, it will continue to be classified for ray tracing over the
next few frames until significant changes in the pixel’s motion vectors reset the
segmentation history. An alternative to storing segmentation history is to filter
the segmentation mask before ray traced supersampling.

22.3.1.3 MANUAL SEGMENTATION

Rendering images in real time presents unique challenges due to the large
variation in art, content, and performance goals across projects. Consequently, an
automatic segmentation approach may not always produce results that fit within
the performance budget of every project. Artists and game developers know
their content and constraints best; therefore, a manual approach to segmentation
may also be useful. For example, artists and developers may tag specific types
of meshes, objects, or materials to write to the segmentation mask during
rasterization. Practical examples include hair, telephone wires, ropes, fences,
high-frequency materials, and consistently distant geometry. Similar to adaptive
tessellation strategies, manual segmentation could also use geometry metadata
to guide the adaptivity of ray traced supersampling based on distance to viewpoint,
material, or even the type of antialiasing desired (e.g., interior edge, exterior edge,
or material).

22.3.2 SPARSE RAy TRACED SUPERSAMPLING

Once the segmentation mask is prepared, antialiasing is performed in a
new sparse ray tracing pass implemented with DXR Ray Generation shaders
dispatched at the resolution of the segmentation mask. Each ray generation
thread reads a pixel of the mask, determines if the pixel is marked for ray
tracing, and—if so—casts rays in either the 8×, 4×, or 2× MSAA n-rooks subpixel

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

362

sampling pattern. At ray hits, we execute the full UE4 node-based material
graph and shading pipeline, using identical HLSL code to the raster pipeline.
Since forward-difference derivatives are not available in DXR Ray Generation
and Hit shaders, we treat them as infinite to force the highest resolution of
textures. Thus, we rely on supersampling alone to address material aliasing,
which is how most film renderers operate, for the highest quality. An alternative
would be to use distance and orientation to analytically select a mipmap level or
to employ ray differentials [6, 11]. Figure 22-6 shows a cross section of an image
rendered using our method and displays the results of the sparse ray tracing
step (top) and the final composited ATAA result (bottom).

Figure 22-6. A cross section of an image rendered using our method, illustrating the result of the
sparse ray tracing step (top) and the final composited ATAA result (bottom).

22.3.2.1 SUBPIXEL SAMPLE DISTRIBUTION AND REUSE

Raster-based sampling, including that for antialiasing, is restricted to sample
patterns available to graphics APIs and implemented efficiently in hardware.
While it is possible to add fully programmable sample offset functionality to
rasterizer pipelines, such functionality is not readily available today. In contrast,
DXR and other ray tracing APIs enable rays to be cast with arbitrary origins and
directions, allowing much more flexibility when sampling. If, for example, all
useful samples existed on the right half of a pixel, it is possible to adjust the rays
to densely sample the right half and leave the left half sparsely sampled (or not
sampled at all!). Although completely arbitrary sample patterns are possible, and
a variety of potential sample patterns may be worthwhile for particular uses, we
suggest a more pragmatic approach.

RAY TRACING GEMS

363

To maintain parity of sample distribution with surrounding pixels in our hybrid
algorithm, it is a natural choice to use the same jittered sample pattern that
the rasterizer uses for TAA. With ATAA, we can produce samples from the set of
sample positions at each time step, resulting in higher-quality new samples and
reducing the reliance on reprojected history values. For instance, if TAA has an
8-frame jittered sampling pattern, and we are performing 8× adaptive ray traced
supersampling, all eight of the jittered sample locations can be evaluated with
rays at each frame. Ray traced supersampling then produces the same result to
which TAA converges prior to incorporating texture filtering of the history values.
Similarly, a 4× adaptive ray tracing sample pattern converges to the 8× TAA
result in just two frames.

Even though matching sample patterns between ray tracing and rasterization
appears to be the best approach at first, different sample patterns may enable
adaptive ray tracing with 8× sampling to converge to 32× quality over just 4 frames.
We look to production renderers [3, 5, 8, 9, 16] for inspiration in determining higher-
count sample patterns. Correlated multi-jittered sampling [14] is commonly used
today. While improved sample patterns should generate higher-quality results,
when placed next to the TAA results in screen-space, discontinuities between the
different sampling approaches may be noticeable and require further evaluation.

22.4 EARLy RESULTS

To demonstrate the utility of ATAA, we implemented the algorithm in a prototype
branch of Unreal Engine 4 extended with DirectX Raytracing functionality. We
gathered results using Windows 10 v1803 (RS4), Microsoft DXR, NVIDIA RTX, the
NVIDIA 416.25 driver, and the GeForce RTX 2080 and 2070 GPUs.

22.4.1 IMAGE QUALITy

Figures 22-1 and 22-7 show output comparisons of the Modern House scene,
shown in full in Figure 22-6, zoomed to challenging areas of the scene that feature
thin rope geometry. In Figure 22-7, the “No AA” image demonstrates the baseline
aliasing that is expected from a single raster sample per pixel. The FXAA and
TAA images represent the standard implementations available in UE4. The SSAA
16× image results from 16× supersampling. We show the ATAA segmentation
mask used and three variations of ATAA with 2, 4, and 8 rays per pixel. Since the
drawbacks of standard TAA are difficult to capture in still images, and all TAA
images come from a stable converged frame, typical TAA motion artifacts are
not visible. Figure 22-8 shows output comparisons from the same scene, zoomed
to a challenging area featuring a plant with complex branches. In both result

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

364

Figure 22-8. Zoomed images from the Modern House scene highlighting a challenging area featuring
complex detail from a plant, comparing plant details rendered with 1 SPP rasterization, FXAA, UE4’s
stock TAA, a visualization of our segmentation mask, ATAA 2×, 4×, and 8×, and an SSAA 16× reference.

comparisons, notice how standard TAA misses or blurs out thin geometry that falls
into the subpixel area between samples, while ATAA’s segmentation step identifies
much of the region surrounding these tough areas and avoids ghosting, blurring,
and undersampling by using ray traced supersampling.

Figure 22-7. Zoomed images from the Modern House scene highlighting a challenging area featuring
thin rope geometry, comparing boat rope details rendered with 1 SPP rasterization, FXAA, UE4’s stock
TAA, a visualization of our segmentation mask, ATAA 2×, 4×, and 8×, and an SSAA 16× reference.

22.4.2 PERFORMANCE

Table 22-1 shows GPU times, reported in milliseconds (ms), of ATAA compared
to equivalent configurations of SSAA. ATAA renders images at 1080p resolution,
and the number of rays cast for antialiasing varies per frame according to the
segmentation mask. The Modern House view shown in Figure 22-6 is used for
performance testing, and the segmentation mask identifies 103,838 pixels for ray

RAY TRACING GEMS

365

traced supersampling. These pixels represent just 5% of the total image resolution,
but combined with non-failure TAA results (blue pixels in the segmentation mask),
ATAA adaptively produces results similar to SSAA at a much lower cost. Primary
rays cast by ATAA also shoot a shadow ray to the scene’s directional light source
(the sun) to determine occlusion. In addition, the FXAA pass adds as much as 0.75
ms when the whole frame is new, but in practice scales linearly down to 0 ms as
fewer pixels are identified for FXAA in the mask. Under typical camera motion,
fewer than 5% of pixels are chosen for FXAA.

Table 22-1. A comparison of GPU times, in milliseconds, for several SSAA and ATAA configurations on
GeForce RTX 2080 and 2070 GPUs. ATAA runs at 1080p resolution and selects 103,838 pixels for ray
traced supersampling. ATAA produces similar results compared to SSAA for challenging areas in need
of antialiasing while running approximately 2× to 4× faster.

In the Modern House scene, the adaptive nature of ATAA produces a significant
2× to 4× speedup compared to SSAA, even with our relatively unoptimized
implementation. These early results are captured on new hardware, new drivers,
and the experimental DXR API in a prototype branch of UE4 that was not natively
designed for ray tracing. Consequently, significant opportunities still remain to
optimize the performance of both the ATAA algorithm implementation and the
game engine’s implementation of DXR ray tracing functionality.

One such algorithmic optimization of ATAA is to create a compact one-dimensional
buffer that contains the location of pixels identified for ray traced supersampling,
instead of a screen-space buffer that aligns with the segmentation mask, and only
dispatch DXR Ray Generation shader threads for elements of the compacted buffer.
We refer to this process as ray workload compaction. Table 22-2 compares the GPU
times of ATAA with and without the compaction optimization. Compaction yields a
13% to 29% performance improvement over the original ATAA implementation and
performs approximately 2.5× to 5× faster than the equivalent SSAA configuration.
This is an exciting finding, but keep in mind that the segmentation mask (and
resulting ray workload) changes dynamically every frame; therefore, compaction
may not always be beneficial. Experimentation with various rendering workloads
across a project are key to discovering which optimization approaches will achieve
the best possible performance.

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

366

Table 22-2. A comparison of GPU times, in milliseconds, for ATAA and ATAA with ray workload
compaction (ATAA-C) on GeForce RTX 2080 and 2070 (top). Compaction improves performance of the
Modern House workload by 13% to 29% and performs approximately 2.5× to 5× faster than the
equivalent SSAA configuration (bottom). Since performance varies with geometry and materials,
compaction may not always improve performance.

22.5 LIMITATIONS

ATAA as presented here does not comprehensively address every issue that you
may encounter when implementing hybrid ray-raster antialiasing. For example,
the segmentation mask is limited to discovering geometry with a single temporally
jittered sample per pixel. As a result, subpixel geometry may be missed. This
creates a spatial alternation between geometry appearing and not appearing in
the segmentation mask, which therefore causes shifts between high-quality ray
traced supersampling and entirely missed geometry. While rendering approaches
to solve this problem almost exclusively include increasing the base sample rate,
artists may be able to mitigate these issues by modifying geometry appropriately,
or by producing alternate level of detail representations when the geometry is
placed beyond a certain distance from the camera. Furthermore, filtering the
segmentation mask prior to ray tracing may also increase temporal stability of the
mask, although at the cost of tracing more rays.

There are minor differences in ATAA’s antialiased result compared to SSAA, caused
by the material evaluation in DXR not correctly computing and evaluating the
texture mipmap level. Texture sampling is particularly challenging when shading
ray traced samples in existing production game engines. While it is possible to
compute ray differentials, the implementation of existing material models heavily
depends on the forward-difference derivatives provided by the raster pipelines.
As a result, a single set of ray differentials cannot be used to adjust texture

RAY TRACING GEMS

367

mipmap level when sampling, making the ray differential computation especially
costly. In our implementation, all ray samples select the highest-frequency texture.
This limitation results in texture aliasing in many cases, but at higher sample
counts we are able to reconstruct the appropriate filtered result. Additionally,
TAA history and new raster samples have filtered texture sampling, which can be
blended with our ray traced samples to mitigate texture aliasing.

Another practical difficulty for ray traced antialiasing of primary visibility is
supporting screen-space effects. Since rays are distributed sparsely across screen
space, there is no guarantee the necessary data that post-process effects such as
depth of field, motion blur, and lens flare use will exist in nearby pixels. A simple
solution is to move the antialiasing step before these passes, at the cost of these
effects not benefiting from additional antialiasing. In the long term, as the budget of
ray samples increases, it may be sensible to move the raster-based screen-space
effects to ray traced equivalents.

22.6 THE FUTURE OF REAL-TIME RAy TRACED ANTIALIASING

The recent arrival of graphics processors with dedicated acceleration for ray
tracing creates an opportunity to reassess the state of the art, and in turn
reinvent real-time antialiasing. This chapter presents implementation details
beyond the initial publication of ATAA [18] and may serve as a foundation
upon which production renderers of the future build. A primary remaining
concern for production deployment is ensuring that the runtime of the sparse
ray tracing pass fits within the available frame time budget. Once the pixels
for ray traced supersampling are selected, we suggest pursuing additional
heuristics to adjust performance, including naively dropping rays after the
target number is hit, deprioritizing rays in screen-space regions where aliasing
is less common or perceptually less important, and selecting ray counts based
on a priority metric embedded in the segmentation mask. We expect adjusting
ray counts per pixel will improve ray tracing performance in a given region
of interest. Due to the SIMD architecture of current GPUs, these adjustments
are optimally made on warp boundaries, thus pixels requiring similar sample
counts may benefit from being placed together when spawning work, a task that
can also be completed during a workload compaction pass.

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

368

22.7 CONCLUSION

Primary surface aliasing is a cornerstone problem in computer graphics. The
best- known solution for offline rendering is adaptive supersampling. This was
previously impractical for rasterization renderers in the context of complex
materials and scenes because there was no way to efficiently rasterize sparse
pixels. Even the most efficient GPU ray tracers required duplicated shaders and
scene data. While DXR solves the technical challenge of combining rasterization
and ray tracing, applying ray tracing to solve aliasing by supersampling is
nontrivial: knowing which pixels to supersample when given only 1 SPP input and
reducing the cost to something that scales are not solved by naively ray tracing.

We have demonstrated a practical solution to this problem—so practical that
it runs within a commercial game engine, operates in real time even on first-
generation real-time ray tracing commodity hardware and software, and connects
to the full shader pipeline. Where film renderers choose pixels to adaptively
supersample by first casting many rays per pixel, we instead amortize that cost
over many frames by leveraging TAA’s history buffer to detect aliasing. We further
identify large, transient regions of aliasing due to disocclusions and employ post-
process FXAA there rather than expending rays. This hybrid strategy leverages
advantages of the most sophisticated real-time antialiasing strategies while
eliminating many of their limitations. By feeding our supersampled results back
into the TAA buffer, we also increase the probability that those pixels will not
trigger supersampling on subsequent frames, further reducing cost.

REFERENCES

 [1] Auzinger, T., Musialski, P., Preiner, R., and Wimmer, M. Non-Sampled Anti-Aliasing. In Vision,
Modeling and Visualization (2013), pp. 169–176.

 [2] Barringer, R., and Akenine-Möller, T. A4: Asynchronous Adaptive Anti-Aliasing Using Shared
Memory. ACM Transactions on Graphics 32, 4 (July 2013), 100:1–100:10.

 [3] Burley, B., Adler, D., Chiang, M. J.-y., Driskill, H., Habel, R., Kelly, P., Kutz, P., Li, y. K., and Teece,
D. The Design and Evolution of Disneys Hyperion Renderer. ACM Transactions on Graphics 37, 3
(2018), 33:1–33:22.

 [4] Chajdas, M. G., McGuire, M., and Luebke, D. Subpixel Reconstruction Antialiasing for Deferred
Shading. In Symposium on Interactive 3D Graphics and Games (2011), pp. 15–22.

 [5] Christensen, P., Fong, J., Shade, J., Wooten, W., Schubert, B., Kensler, A., Friedman, S.,
Kilpatrick, C., Ramshaw, C., Bannister, M., Rayner, B., Brouillat, J., and Liani, M. RenderMan:
An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 3
(2018), 30:1–30:21.

RAY TRACING GEMS

369

 [6] Christensen, P. H., Laur, D. M., Fong, J., Wooten, W. L., and Batali, D. Ray Differentials and
Multiresolution Geometry Caching for Distribution Ray Tracing in Complex Scenes. Computer
Graphics Forum 22, 3 (2003), 543–552.

 [7] Crassin, C., McGuire, M., Fatahalian, K., and Lefohn, A. Aggregate G-Buffer Anti- Aliasing. IEEE
Transactions on Visualization and Computer Graphics 22, 10 (2016), 2215–2228.

 [8] Fascione, L., Hanika, J., Leone, M., Droske, M., Schwarzhaupt, J., Davidovic� , T., Weidlich, A., and
Meng, J. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production.
ACM Transactions on Graphics 37, 3 (2018), 31:1–31:18.

 [9] Georgiev, I., Ize, T., Farnsworth, M., Montoya-Vozmediano, R., King, A., Lommel, B. V., Jimenez,
A., Anson, O., Ogaki, S., Johnston, E., Herubel, A., Russell, D., Servant, F., and Fajardo, M. Arnold:
A Brute-Force Production Path Tracer. ACM Transactions on Graphics 37, 3 (2018), 32:1–32:12.

 [10] Holländer, M., Boubekeur, T., and Eisemann, E. Adaptive Supersampling for Deferred Anti-
Aliasing. Journal of Computer Graphics Techniques 2, 1 (March 2013), 1–14.

 [11] Igehy, H. Tracing Ray Differentials. In Proceedings of SIGGRAPH (1999), pp. 179–186.

 [12] Jimenez, J., Echevarria, J. I., Sousa, T., and Gutierrez, D. SMAA: Enhanced Morphological
Antialiasing. Computer Graphics Forum 31, 2 (2012), 355–364.

 [13] Karis, B. High Quality Temporal Anti-Aliasing. Advances in Real-Time Rendering for Games,
SIGGRAPH Courses, 2014.

 [14] Kensler, A. Correlated Multi-Jittered Sampling. Pixar Technical Memo 13-01, 2013.

 [15] Kobbelt, L., and Botsch, M. A Survey of Point-Based Techniques in Computer Graphics.
Computers and Graphics 28, 6 (Dec. 2004), 801–814.

 [16] Kulla, C., Conty, A., Stein, C., and Gritz, L. Sony Pictures Imageworks Arnold. ACM Transactions on
Graphics 37, 3 (2018), 29:1–29:18.

 [17] Lottes, T. FXAA. NVIDIA White Paper, 2009.

 [18] Marrs, A., Spjut, J., Gruen, H., Sathe, R., and McGuire, M. Adaptive Temporal Antialiasing. In
Proceedings of High-Performance Graphics (2018), pp. 1:1–1:4.

 [19] Olano, M., and Baker, D. LEAN Mapping. In Symposium on Interactive 3D Graphics and Games
(2010), pp. 181–188.

 [20] Pedersen, L. J. F. Temporal Reprojection Anti-Aliasing in INSIDE. Game Developers Conference,
2016.

 [21] Pettineo, M. Rendering the Alternate History of The Order: 1886. Advances in Real- Time
Rendering in Games, SIGGRAPH Courses, 2015.

 [22] Reshetov, A. Morphological Antialiasing. In Proceedings of High-Performance Graphics (2009),
pp. 109–116.

 [23] Salvi, M. Anti-Aliasing: Are We There yet? Open Problems in Real-Time Rendering, SIGGRAPH
Courses, 2015.

 [24] Salvi, M., and Vidimc�e, K. Surface Based Anti-Aliasing. In Symposium on Interactive 3D Graphics
and Games (2012), pp. 159–164.

 IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAy TRACING

370

 [25] Wang, y., Wyman, C., He, y., and Sen, P. Decoupled Coverage Anti-Aliasing. In Proceedings of
High-Performance Graphics (2015), pp. 33–42.

 [26] Whitted, T. An Improved Illumination Model for Shaded Display. Communications of the ACM 23, 6
(June 1980), 343–349.

 [27] yang, L., Nehab, D., Sander, P. V., Sitthi-amorn, P., Lawrence, J., and Hoppe, H. Amortized
Supersampling. ACM Transactions on Graphics 28, 5 (Dec. 2009), 135:1–135:12.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. you do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

RAY TRACING GEMS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 22: Improving Temporal Antialiasing with Adaptive Ray Tracing
	22.1	 Introduction
	22.2	 Previous Temporal Antialiasing
	22.3	 A New Algorithm
	22.3.1	 Segmentation Strategy
	22.3.1.1	 Automatic Segmentation
	22.3.1.2	 UE4 Automatic Segmentation Implementation
	22.3.1.3	 Manual Segmentation

	22.3.2	 Sparse Ray Traced Supersampling
	22.3.2.1	 Subpixel Sample Distribution and Reuse

	22.4	 Early Results
	22.4.1	 Image Quality
	22.4.2	 Performance

	22.5	 Limitations
	22.6	 The Future of Real-Time Ray Traced Antialiasing
	22.7	 Conclusion

