
15© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_2

CHAPTER 2

What is a Ray?
Peter Shirley, Ingo Wald, Tomas Akenine-Möller, and Eric Haines
NVIDIA

ABSTRACT

We define a ray, show how to use ray intervals, and demonstrate how to specify a
ray using DirectX Raytracing (DXR).

2.1	 �MATHEMATICAL DESCRIPTION OF A RAY

For ray tracing, an important computational construct is a three-dimensional ray.
In both mathematics and ray tracing, a ray usually refers to a three-dimensional
half-line. A ray is usually specified as an interval on a line. There is no implicit
equation for a line in three dimensions analogous to the two-dimensional line
y = mx + b, so usually the parametric form is used. In this chapter, all lines, points,
and vectors are assumed to be three-dimensional.

A parametric line can be represented as a weighted average of points A and B:

			 () ()P t t A tB1 .= - +
	 (1)

In programming, we might think of this representation as a function P(t) that takes
a real number t as input and returns a point P. For the full line, the parameter
can take any real value, i.e., t ∈ [−∞, +∞], and the point P moves continuously
along the line as t changes, as shown in Figure 2-1. To implement this function,
we need a way to represent points A and B. These can use any coordinate system,
but Cartesian coordinates are almost always used. In APIs and programming
languages, this representation is often called a vec3 or float3 and contains three
real numbers x, y, and z. The same line can be represented with any two distinct
points along the line. However, choosing different points changes the location
defined by a given t-value.

https://doi.org/10.1007/978-1-4842-4427-2_2

16

Figure 2-1.  How varying values of t give different points on the ray.

Figure 2-2.  A ray P(t) = O + td, described by an origin O and a ray direction d, which in this case is
d = B − A. We often are interested in only positive intersections, i.e., where the points found are in front
of the origin (t > 0). We depict this limitation by drawing the line as dashed behind the origin.

It is common to use a point and a direction vector rather than two points.
As visualized in Figure 2-2, we can choose our ray direction d as B − A and our
ray origin O as point A, giving

			 () .P t O t= + d
	 (2)

For various reasons, e.g., computing cosines between vectors via dot products,
some programs find it useful to restrict d to be a unit vector d̂, i.e., normalized. One
useful consequence of normalizing direction vectors is that t directly represents
the signed distance from the origin. More generally, the difference in any two
t-values is then the actual distance between the points,

			 () ()P t P t t t1 2 2 1 .- = -
	 (3)

For general vectors d, this formula should be scaled by the length of d,

			 () ()- = -P t P t t t1 2 2 1 .d
	 (4)

RAY TRACING GEMS

17

2.2	 �RAY INTERVALS

With the ray formulation from Equation 2, our mental picture is of a ray as a semi-
infinite line. However, in ray tracing a ray frequently comes with an additional
interval: the range of t-values for which an intersection is useful. Generally,
we specify this interval as two values, tmin and tmax, which bound the t-value to
t ∈ [tmin, tmax]. In other words, if an intersection is found at t, that intersection will not
be reported if t < tmin or t > tmax. See Figure 2-3.

Figure 2-3.  In this example there is a light source at L and we want to search for intersections
between only O and L. A ray interval [tmin, tmax] is used to limit the search for intersections for t-values
to [tmin, tmax]. To avoid precision problems, this restriction is implemented by setting the ray interval to
[ε, 1 − ε], giving the interval shown in light blue in this illustration.

A maximum value is given when hits beyond a certain distance do not matter, such
as for shadow rays. Assume that we are shading point P and want to query visibility
of a light at L. We create a shadow ray with origin at O = P, unnormalized direction
vector d = L − P, tmin = 0, and tmax = 1. If an intersection occurs with t in [0, 1], the
ray intersects geometry occluding the light. In practice, we often set tmin = ε and
tmax = 1 − ε, for a small number ε. This adjustment helps avoid self-intersections due
to numerical imprecision; using floating-point mathematics, the surface on which
P lies may intersect our ray at a small, nonzero value of t. For non-point lights the
light’s primitive should not occlude the shadow ray, so we shorten the interval
using tmax = 1 − ε. With perfect mathematics, this problem disappears using an open
interval, ignoring intersections at precisely t = 0 and 1. Since floating-point precision
is limited, use of ε fudge factors are a common solution. See Chapter 6 for more
information about how to avoid self-intersections.

 What is a Ray?

https://doi.org/10.1007/978-1-4842-4427-2_6

18

In implementations using normalized ray directions, we could instead use O = P,

L P
L P
-

=
-

d , tmin = ε, and tmax = l − ε, where l = ‖L − P‖ is the distance to the light source

L. Note that this epsilon must be different than the previous epsilon, as t now
has a different range.

Some renderers use unit-length vectors for all or some ray directions. Doing so
allows efficient cosine computations via dot products with other unit vectors, and it
can make it easier to reason about the code, in addition to making it more readable.
As noted earlier, a unit length means that the ray parameter t can be interpreted
as a distance without scaling by the direction vector’s length. However, instanced
geometry may be represented using a transformation for each instance. Ray/object
intersection then requires transforming the ray into the object’s space, which
changes the length of the direction vector. To properly compute t in this new space,
this transformed direction should be left unnormalized. In addition, normalization
costs a little performance and can be unnecessary, as for shadow rays. Because of
these competing benefits, there is no universal recommendation of whether to use
unit direction vectors.

2.3	 �RAYS IN DXR

This section presents the definition of a ray in DirectX Raytracing [3]. In DXR, a ray
is defined by the following structure:

1 struct RayDesc

2 {

3 float3 Origin;

4 float TMin;

5 float3 Direction;

6 float TMax;

7 };

The ray type is handled differently in DXR, where a certain shader program is
associated with each different type of ray. To trace a ray with the TraceRay()
function in DXR, a RayDesc is needed. The RayDesc::Origin is set to the origin
O of our ray, the RayDesc::Direction is set to the direction d, and the t-interval
(RayDesc::TMin and RayDesc::TMax) must be initialized as well. For example, for
an eye ray (RayDesc eyeRay) we set eyeRay.TMin = 0.0 and eyeRay.TMax =
FLT_MAX, which indicates that we are interested in all intersections that are in front
of the origin.

RAY TRACING GEMS

19

2.4	 �CONCLUSION

This chapter shows how a ray is typically defined and used in a ray tracer, and
gave the DXR API’s ray definition as an example. Other ray tracing systems, such
as OptiX [1] and the Vulkan ray tracing extension [2], have minor variations. For
example, OptiX explicitly defines a ray type, such as a shadow ray. These systems
have other commonalities, such as the idea of a ray payload. This is a data structure
that can be defined by the user to carry additional information along with the ray
that can be accessed and edited by separate shaders or modules. Such data is
application specific. At the core, in every rendering system that defines a ray, you
will find the ray’s origin, direction, and interval.

REFERENCES

	 [1]	� NVIDIA. OptiX 5.1 Programming Guide. http://raytracing-docs.nvidia.com/optix/
guide/index.html, Mar. 2018.

	 [2]	� Subtil, N. Introduction to Real-Time Ray Tracing with Vulkan. NVIDIA Developer Blog, https://
devblogs.nvidia.com/vulkan-raytracing/, Oct. 2018.

	 [3]	� Wyman, C., Hargreaves, S., Shirley, P., and Barré-Brisebois, C. Introduction to DirectX
RayTracing. SIGGRAPH Courses, Aug. 2018.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 What is a Ray?

http://raytracing-docs.nvidia.com/optix/guide/index.html
http://raytracing-docs.nvidia.com/optix/guide/index.html
https://devblogs.nvidia.com/vulkan-raytracing/
https://devblogs.nvidia.com/vulkan-raytracing/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 2: What is a Ray?
	2.1	 Mathematical Description of a Ray
	2.2	 Ray Intervals
	2.3	 Rays in DXR
	2.4	 Conclusion

