CHAPTER 6

Data Structures
for Concurrency

In the previous chapter, we shared how much we dislike locks. We dislike them because
they tend to make our parallel programs less effective by limiting scaling. Of course, they
can be a “necessary evil” when needed for correctness; however, we are well advised
to structure our algorithms to minimize the need for locks. This chapter gives us some
tools to help. Chapters 1-4 focused on scalable algorithms. A common characteristic is
that they avoided or minimized locking. Chapter 5 introduced explicit synchronization
methods, including locks, for when we need them. In the next two chapters, we offer
ways to avoid using explicit synchronization by relying on features of TBB. In this
chapter, we will discuss data structures with a desire to avoid locks. This chapter
discusses concurrent containers to help address critical data structure considerations for
concurrency. A related topic, the use of thread local storage (TLS), was already covered
in Chapter 5.

This chapter and the next chapter cover the key pieces of TBB that help coordination
of data between threads while avoiding the explicit synchronization found in Chapter 5.
We do this to nudge ourselves toward coding in a manner that has proven ability to
scale. We favor solutions where the implementations have been carefully crafted by
the developers of TBB (to help motivate the importance of this for correctness, we
discuss the A-B-A problem starting on page 200). We should remain mindful that the
choice of algorithm can have a profound effect on parallel performance and the ease of
implementation.

179
© Intel Corporation 2019

M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_6

https://doi.org/10.1007/978-1-4842-4398-5_6
https://doi.org/10.1007/978-1-4842-4398-5_1
https://doi.org/10.1007/978-1-4842-4398-5_4
https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_5

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

CHOOSE ALGORITHMS WISELY: CONCURRENT CONTAINERS ARE NOT A CURE-ALL

Parallel data access is best when it stems from a clear parallelism strategy, a key part of
which is proper choice of algorithms. Controlled access, such as that offered by concurrent
containers, comes at a cost: making a container “highly concurrent” is not free and is not
even always possible. TBB offers concurrent containers when such support can work well in
practice (queues, hash tables, and vectors). TBB does not attempt to support concurrency for
containers such as “lists” and “trees,” where fine-grained sharing will not scale well — the
better opportunity for parallelism lies in revising algorithms and/or data structure choices.

Concurrent containers offer a thread-safe version for containers where concurrent
support can work well in parallel programs. They offer a higher performance alternative
to using a serial container with a coarse-grained lock around it, as discussed in the
previous chapter (Chapter 5). TBB containers generally provide fine-grained locking, or
lockless implementations, or sometimes both.

Key Data Structures Basics

Ifyou are familiar with hash tables, unordered maps, unordered sets, queues, and
vectors, then you may want to skip this section and resume reading with the “Concurrent
Containers”. To help review the key fundamentals, we provide a quick introduction to key
data structures before we jump into talking about how TBB supports these for parallel
programming.

Unordered Associative Containers

Unordered associative containers, in simple English, would be called a collection. We
could also call them “sets.” However, technical jargon has evolved to use the words map,
set, and hash tables for various types of collections.

Associative containers are data structures which, given a key, can find a value,
associated with that key. They can be thought of as a fancy array, we call them an
“associative array.” They take indices that are more complex than a simple series of
numbers. Instead of Cost[1], Cost[2], Cost[3], we can think of Cost[Glass of Juice],
Cost[Loaf of Bread], Cost[Puppy in the Window].

180

https://doi.org/10.1007/978-1-4842-4398-5_5

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

Our associative containers can be specialized in two ways:
1. Map vs. Set: Is there a value? Or just a key?

2. Multiple values: Can two items with the same keys be inserted in
the same collection?

Map vs. Set

What we call a “map” is really just a “set” with a value attached. Imagine a basket of
fruits (Apple, Orange, Banana, Pear, Lemon). A sef containing fruits could tell us if we
had a particular type of fruit in the basket. A simple yes or no. We could add a fruit type
into the basket or remove it. A map adds to this a value, often a data structure itself with
information. With a map of a fruit type into a collection (fruit basket), we could choose
to keep a count, a price, and other information. Instead of a simple yes or no, we can ask
about Cost[Apple] or Ripeness[Banana]. If the value is a structure with multiple fields,
then we could query multiple things such as cost, ripeness, and color.

Multiple Values

Inserting something into a map/set using the same key as an item already in the map

is not allowed (ensuring uniqueness) in the regular “map” or “set” containers but is
allowed in the “multimap” and “multiset” versions. In the “multiple” versions, duplicates
are allowed, but we lose the ability to look up something like Cost[Apple] because the
key Apple is no longer unique in a map/set.

Hashing

Everything we have mentioned (associative arrays, map/set, single/multiple)

is commonly implemented using hash functions. To understand what a hash

function is, it is best to understand its motivation. Consider an associative array
LibraryCardNumber[Name of Patron]. The array LibraryCardNumber returns the
library card number for a patron given the name (specified as a string of characters) that
is supplied as the index. One way to implement this associative array would be with a
linked list of elements. Unfortunately, looking up an element would require searching
the list one by one for a match. That might require traversing the entire list, which is
highly inefficient in a parallel program because of contention over access to the share list

181

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

structure. Even without parallelism, when inserting an item verification that there is no
other entry with the same key requires searching the entire list. If the list has thousands
or millions of patrons, this can easily require excessive amounts of time. More exotic data
structures, such as trees, can improve some but not all these issues.

Imagine instead, a vast array in which to place data. This array is accessed by a
traditional array[integer] method. This is very fast. All we need, is a magical hash
function that takes the index for the associative array (Name of Patron) and turns it into
the integer we need.

Unordered

We did start with the word unordered as a qualifier for the type of associative containers
that we have been discussing. We could certainly sort the keys and access these
containers in a given order. Nothing prevents that. For example, the key might be a
person’s name, and we want to create a phone directory in alphabetical order.

The word unordered here does not mean we cannot be programming with an
ordering in mind. It does mean that the data structure (container) itself does not maintain
an order for us. If there is a way to “walk” the container (iterate in C++ jargon), the only
guarantee is that we will visit each member of the container once and only once, but the
order is not guaranteed and can vary run-to-run, or machine-to-machine, and so on.

Concurrent Containers

TBB provides highly concurrent container classes that are useful for all C++ threaded
applications; the TBB concurrent container classes can be used with any method of
threading, including TBB of course!

The C++ Standard Template Library was not originally designed with concurrency in
mind. Typically, C++ STL containers do not support concurrent updates, and therefore
attempts to modify them concurrently may result in corrupted containers. Of course, STL
containers can be wrapped in a coarse-grained mutex to make them safe for concurrent
access by letting only one thread operate on the container at a time. However, that
approach eliminates concurrency and thereby restricts parallel speedup if done in
performance critical code. Examples of protecting with mutexes were shown in Chapter 5,
to protect increments of elements in a histogram. Similar protection of non-thread-
safe STL routines can be done to avoid correctness issues. If not done in performance

182

https://doi.org/10.1007/978-1-4842-4398-5_5

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

critical sections, then performance impact may be minimal. This is an important point:
conversion of containers to TBB concurrent containers should be motivated by need.
Data structures that are used in parallel should be designed for concurrency to enable
scaling for our applications.

The concurrent containers in TBB provide functionality similar to containers
provided by the Standard Template Library (STL), but do so in a thread-safe way. For
example, the tbb: :concurrent vector is similar to the std: : vector class but lets us
safely grow the vector in parallel. We don’t need a concurrent container if we only read
from it in parallel; it is only when we have parallel code that modifies a container that we
need special support.

TBB offers several container classes, meant to replace corresponding STL containers
in a compatible manner, that permit multiple threads to simultaneously invoke certain
methods on the same container. These TBB containers offer a much higher level of
concurrency, via one or both of the following methods:

o Fine-grained locking: Multiple threads operate on the container by
locking only those portions they really need to lock (as the histogram
examples in Chapter 5 showed us). As long as different threads access
different portions, they can proceed concurrently.

o Lock-free techniques: Different threads account and correct for the
effects of other interfering threads.

It is worth noting that TBB concurrent containers do come at a small cost. They
typically have higher overheads than regular STL containers, and therefore operations
on them may take slightly longer than on the STL containers. When the possibility of
concurrent access exists, concurrent containers should be used. However, if concurrent
access is not possible, the use of STL containers is advised. This is, we use concurrent
containers when the speedup from the additional concurrency that they enable
outweighs their slower sequential performance.

The interfaces for the containers remain the same as in STL, except where a change
is required in order to support concurrency. We might jump ahead for a moment
and make this a good time to consider a classic example of why some interfaces are
not thread-safe - and this is an important point to understand! The classic example
(see Figure 6-9) is the need for a new pop-if-not-empty capability (called try_pop) for
queues in place of relying on a code sequence using STL test-for-empty followed by a
pop if the test returned not-empty. The danger in such STL code is that another thread

183

https://doi.org/10.1007/978-1-4842-4398-5_5

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

might be running, empty the container (after original thread’s test, but before pop)

and therefore create a race condition where the pop may actually block. That means
the STL code is not thread-safe. We could throw a lock around the whole sequence

to prevent modification of the queue between our test and our pop, but such locks

are known to destroy performance when used in parallel parts of an application.
Understanding this simple example (Figure 6-9) will help illuminate what is required to
support parallelism well.

Like STL, TBB containers are templated with respect to an allocator argument. Each
container uses that allocator to allocate memory for user-visible items. The default
allocator for TBB is the scalable memory allocator supplied with TBB (discussed in
Chapter 7). Regardless of the allocator specified, the implementation of the container
may also use a different allocator for strictly internal structures.

TBB currently offers the following concurrent containers:

e Unordered associative containers
— Unordered map (including unordered multimap)
— Unordered set (including unordered multiset)
— Hash table
e Queue (including bounded queue and priority queue)

¢ Vector

WHY DO TBB CONTAINERS ALLOCATOR ARGUMENTS DEFAULT TO TBB?

Allocator arguments are supported with all TBB containers, and they default to the TBB
scalable memory allocators (see Chapter 7).

The containers default to using a mix of tbb: :cache_aligned allocator and tbb:tbb_
allocator. We document the defaults in this chapter, but Appendix B of this book and the
TBB header files are resources for learning the defaults. There is no requirement to link in the
TBB scalable allocator library (see Chapter 7), as the TBB containers will silently default to
using malloc when the library is not present. However, we should link with the TBB scalable
allocator because the performance will likely be better from just linking in — especially easy
using it as a proxy library as explained in Chapter 7.

184

https://doi.org/10.1007/978-1-4842-4398-5_7
https://doi.org/10.1007/978-1-4842-4398-5_7
https://doi.org/10.1007/978-1-4842-4398-5_7
https://doi.org/10.1007/978-1-4842-4398-5_7

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

Class name . 3 ”
and C++11 connection notes ‘?3 g = = % 3
w
5 | 25| 8 -1
Z =.g| & W | HE| g Q
s . = [=} SIRI) 3 Q
sgl =Bl g | 3§ | 82| EZ| ®
28| = 8 S | =& 88| o
g5l o9l 9 3 o =5 H
83| 28| 2 | 2 |28 =R2
Szl 25| Egl & | B 2E|
Q = w9 &3 & BM| & o <
£ 53| 23| Z | 23| 84|
O M3 pn ol M Z=| 2| o
concurrent hash map
N N VI IVI IV IV I%X|x|x
Predates C++11.
concurrent unordered map
- - VI iV ikx|x |V | x|V
Closely resembles the C++11 unordered map.
concurrent unordered multimap
- - Vi iV ix| x|V | IV]x
Closely resembles the C++11 unordered multimap.
concurrent_unordered_set
Vi ix|x | x|V |x]|x
Closely resembles the C++11 unordered set.
concurrent_unordered multiset
Vi ix|x | x|V | IVv]x
Closely resembles the C++11 unordered multiset.

Figure 6-1. Comparison of concurrent unordered associative containers

Concurrent Unordered Associative Containers

Unordered associative containers are a group of class templates that implement
hash table variants. Figure 6-1 lists these containers and their key differentiating
features. Concurrent unordered associative containers can be used to store arbitrary
elements, such as integers or custom classes, because they are templates. TBB

offers implementations of unordered associative containers that can perform well

concurrently.

A hash map (also commonly called a hash table) is a data structure that maps keys
to values using a hash function. A hash function computes an index from a key,
and the index is used to access the “bucket” in which value(s) associated with the
key are stored.

Choosing a good hash function is very important! A perfect hash function would
assign each key to a unique bucket so there will be no collisions for different keys.
In practice, however, hash functions are not perfect and will occasionally generate
the same index for more than one key. These collisions require some form of

185

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

accommaodation by the hash table implementation, and this will introduce some
overhead — hash functions should be designed to minimize collisions by hashing
inputs into a nearly even distribution across the buckets.

The advantage of a hash map comes from the ability to, in the average case, provide
0(1) time for searches, insertions, and keys. The advantage of a TBB hash map is
support for concurrent usage both for correctness and performance. This assumes
that a good hash function is being used — one that does not cause many collisions
for the keys that are used. The theoretical worst case of 0(n) remains whenever an
imperfect hash function exists, or if the hash table is not well-dimensioned.

Often hash maps are, in actual usage, more efficient than other table lookup data
structures including search trees. This makes hash maps the data structure of
choice for many purposes including associative arrays, database indexing, caches,
and sets.

concurrent_hash_map

TBB supplies concurrent_hash_map, which maps keys to values in a way that permits
multiple threads to concurrently access values via find, insert, and erase methods.
As we will discuss later, tbb:: concurrent_hash_map was designed for parallelism, and
therefore its interfaces are thread-safe unlike the STL map/set interfaces we will cover
later in this chapter.

The keys are unordered. There is at most one element in a concurrent_hash_map
for each key. The key may have other elements in flight but not in the map. Type
HashCompare specifies how keys are hashed and how they are compared for equality.
As is generally expected for hash tables, if two keys are equal, then they must hash
to the same hash code. This is why HashCompare ties the concept of comparison
and hashing into a single object instead of treating them separately. Another
consequence of this is that we need to not change the hash code of a key while the
hash table is nonempty.

186

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

A concurrent_hash_map acts as a container of elements of type std: :pair<const
Key, T>. Typically, when accessing a container element, we are interested in either
updating it or reading it. The template class concurrent_hash_map supports these
two purposes respectively with the classes accessor and const_accessor that act as
smart pointers. An accessor represents update (write) access. As long as it points to
an element, all other attempts to look up that key in the table block until the accessor
is done. A const_accessor is similar, except that it represents read-only access.
Multiple accessors can point to the same element at the same time. This feature can
greatly improve concurrency in situations where elements are frequently read and
infrequently updated.

We share a simple example of code using the concurrent_hash_map container in
Figures 6-2 and 6-3. We can improve the performance of this example by reducing
the lifetime of the element access. The methods find and insert take an accessor or
const_accessor as an argument. The choice tells concurrent _hash_map whether we are
asking for update or read-only access. Once the method returns, the access lasts until
the accessor or const_accessor is destroyed. Because having access to an element can
block other threads, try to shorten the lifetime of the accessor or const_accessor. To
do so, declare it in the innermost block possible. To release access even sooner than
the end of the block, use method release. Figure 6-5 shows a rework of the loop body
from Figure 6-2 that uses release instead of depending upon destruction to end thread
lifetime. The method remove (key) can also operate concurrently. It implicitly requests
write access. Therefore, before removing the key, it waits on any other extant accesses
on key.

187

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

#include <tbb/concurrent_hash_map.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel for.h>
#include <string>

// Structure that defines hashing and comparison operations for
user's type.
struct MyHashCompare {
static size t hash(const std::string& x) {
size_t h = 0;
for(const char* s = x.c_str(); *s; ++s)
h = (h*17)"*s;
return h;

//! True if strings are equal
static bool equal(const std::string& x, const std::string& y
) 1
return x==y;
}
s

// A concurrent hash table that maps strings to ints.
typedef tbb::concurrent_hash_map<std::string,int,MyHashCompare>
StringTable;

// Function object for counting occurrences of strings.
struct Tally {
StringTable& table;
Tally(StringTable& table_) : table(table) {}
void operator()(
const tbb::blocked_range<std::string*> range) const {
for(std::string* p=range.begin(); p!=range.end(); ++p) {
StringTable: :accessor aj;
table.insert(a, *p);
a->second += 1;
}
}
s

Figure 6-2. Hash Table example, part 1 of 2

188

CHAPTER 6 DATA STRUCTURES FOR CONCURRENCY
const size_ t N = 10;

std::string Data[N] = { "Hello", "World", "TBB", "Hello",
"So Long", "Thanks for all the fish", "So Long",
"Three", "Three", "Three" };

void main() {
// Construct empty table.
StringTable table;

// Put occurrences into the table

tbb::parallel for(
tbb::blocked_range<std::string*>(Data, Data+N, 1000),
Tally(table));

// Display the occurrences using a simple walk
// (note: concurrent_hash_map does not offer const_iterator)
// see a problem with this code???
// read "Iterating thorough these structures is
// asking for trouble" coming up in a few pages
for(StringTable::iterator i=table.begin();
il=table.end();
++1i)
printf("%s %d\n",i->first.c_str(),i->second);

}
Figure 6-3. Hash Table example, part 2 of 2

Three 3

So Long 2

Hello 2

TBB 1

World 1

Thanks for all the fish 1

Figure 6-4. Output of the example program in Figures 6-2 and 6-3

for(std::string* p=range.begin(); pl!=range.end(); ++p) {
StringTable::accessor a;
table.insert(a, *p);
a->second += 1;
a.release();

Figure 6-5. Revision to Figure 6-2 to reduce accessor lifetime hoping to improve
scaling

189

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

PERFORMANCE TIPS FOR HASH MAPS

Always specify an initial size for the hash table. The default of one will
scale horribly! Good sizes definitely start in the hundreds. If a smaller
size seems correct, then using a lock on a small table will have an
advantage in speed due to cache locality.

Check your hash function - and be sure that there is good pseudo-
randomness in the low-order bits of the hash value. In particular,
you should not use pointers as keys because generally a pointer will
have a set number of zero bits in the low-order bits due to object
alignment. If this is the case, it is strongly recommended that the
pointer be divided by the size of the type it points too, thereby shifting
out the always zero bits in favor of bits that vary. Multiplication by a
prime number, and shifting out some low order bits, is a strategy to
consider. As with any form of hash table, keys that are equal must
have the same hash code, and the ideal hash function distributes
keys uniformly across the hash code space. Tuning for an optimal
hash function is definitely application specific, but using the default
supplied by TBB tends to work well.

Do not use accessors if they can be avoided and limit their lifetime
as much as possible when accessors are needed (see example of this
in Figure 6-5). They are effectively fine-grained locks, inhibit other
threads while they exist, and therefore potentially limit scaling.

Use the TBB memory allocator (see Chapter 7). Use scalable
allocator as the template argument for the container if you want
to enforce its usage (not allow a fallback to malloc) - at least a good
sanity check during development when testing performance.

190

https://doi.org/10.1007/978-1-4842-4398-5_7

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

Concurrent Support for map/multimap and set/multiset
Interfaces

Standard C++ STL defines unordered set, unordered map, unordered multiset, and
unordered multimap. Each of these containers differs only by the constraints which are
placed on their elements. Figure 6-1 is a handy reference to compare the five choices we
have for concurrent map/set support including the tbb: :concurrent_hash_map which
we used in our code examples (Figures 6-2 through 6-5).

STL does not define anything called “hash” because C++ did not originally define a
hash table. Interest in adding hash table support to STL was widespread, so there were
widely used versions of STL that were extended to include hash table support, including
those by SGI, gcc, and Microsoft. Without a standard, there ended up being variation
in what “hash table” or “hash maps” came to mean to C++ programmers in terms of
capabilities and performance. Starting with C++11, a hash table implementation was
added to the STL, and the name unordered_map was chosen for the class to prevent
confusion and collisions with pre-standard implementations. It could be said that the
name unordered map is more descriptive as it hints at the interface to the class and the
unordered nature of its elements.

The original TBB hash table support predates C++11, called tbb: :concurrent
hash_map. This hash function remains quite valuable and did not need to change to
match the standard. TBB now includes support for unordered map and unordered set
support to mirror the C++11 additions, with the interfaces augmented or adjusted only
as needed to support concurrent access. Avoiding a few parallel-unfriendly interfaces
is part of the “nudging us” to effective parallel programming. Appendix B has an
exhaustive coverage of the details, but the three noteworthy adjustments for better
parallel scaling are as follows:

e Methods requiring C++11 language features (e.g., rvalue references)
are omitted.

e The erase methods for C++ standard functions are prefixed with
unsafe_toindicate that they are not concurrency safe (because
concurrent erasure is only supported for concurrent_hash_map).
This does not apply to concurrent _hash_map because it does support
concurrent erasure.

191

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

e The bucket methods (count of buckets, max count of buckets, size
of buckets, and support to iterate through the buckets) are prefixed
with unsafe_ as a reminder that they are not concurrency safe with
respect to insertion. They are supported for compatibility with STL
but should be avoided if possible. If used, they should be protected
from being used concurrently with insertions occurring. These
interfaces do not apply to concurrent_hash_map because the TBB
designers avoided such functions.

Built-In Locking vs. No Visible Locking

The containers concurrent_hash_map and concurrent_unordered * have some
differences concerning the locking of accessed elements. Therefore, they may behave
very differently under contention. The accessors of concurrent_hash_map are essentially
locks: accessor is an exclusive lock, and const_accessor is a shared lock. Lock-based
synchronization is built into the usage model for the container, protecting not only
container integrity but to some degree data integrity as well. Code in Figure 6-2 uses an
accessor when performing an insert into the table.

Iterating Through These Structures Is Asking for Trouble

We snuck in some concurrency unsafe code at the end of Figure 6-3 when we iterated
through the hash table to dump it out. If insertions or deletions were made while we
walked the table, this could be problematic. In our defense, we will just say “it is debug
code - we do not care!” But, experience has taught us that it is all too easy for code like
this to creep into non-debug code. Beware!

The TBB designers left the iterators available for concurrent_hash_map for debug
purposes, but they purposefully did not tempt us with iterators as return values from
other members.

Unfortunately, STL tempts us in ways we should learn to resist. The concurrent_
unordered * containers are different than concurrent_hash_map - the API follows the
C++ standard for associative containers (keep in mind, the original TBB concurrent
hash_map predates any standardization by C++ for concurrent containers). The
operations to add or find data return an iterator, so this tempts us to iterate with it.

In a parallel program, we risk this being simultaneously with other operations on the
map/set. If we give into temptation, protecting data integrity is completely left to us

192

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

as programmers, the API of the container does not help. One could say that the C++
standard containers offer additional flexibility but lack the built-in protection that
concurrent_hash_map offers. The STL interfaces are easy enough to use concurrently,

if we avoid the temptation to use the iterators returned from an add or find operation for
anything other than referencing the item we looked up. If we give into the temptation
(we should not!), then we have a lot of thinking to do about concurrent updates in our
application. Of course, if there are no updates happening - only lookups - then there are
no parallel programming issues with using the iterators.

Concurrent Queues: Regular, Bounded, and Priority

Queues are useful data structures where items are added or removed from the queue
with operations known as push (add) and pop (remove). The unbounded queue
interfaces provide a “try pop” which tells us if the queue was empty and no value was
popped from the queue. This steers us away from writing our own logic to avoid a
blocking pop by testing empty - an operation that is not thread-safe (see Figure 6-9).
Sharing a queue between multiple threads can be an effective way to pass work items
from thread to thread - a queue holding “work” to do could have work items added to
request future processing and removed by tasks that want to do the processing.

Normally, a queue operates in a first-in-first-out (FIFO) fashion. If I start with an
empty queue, do a push(10) and then a push(25), then the first pop operation will
return 10, and the second pop will return a 25. This is much different than the behavior
of a stack, which would usually be last-in-first-out. But, we are not talking about stacks
here!

We show a simple example in Figure 6-6 which clearly shows that the pop operations
return the values in the same order as the push operations added them to the queue.

193

CHAPTER 6 DATA STRUCTURES FOR CONCURRENCY
#include <tbb/concurrent_queue.h>
#include <tbb/concurrent_priority queue.h>
#include <iostream>

int myarray[10] = { 16, 64, 32, 512, 1, 2, 512, 8, 4, 128 };

void pval(int test, int val) {

if (test) {

std::cout << " " << val;
} else {

std::cout << " ¥¥¥",
}

}

void simpleQ() {
tbb::concurrent_queue<int> queue;
int val;

for(int i=0; i<10; ++i)
queue.push(myarray[i]);

std::cout << "Simple Q pops are";

for(int i=0; i<10; ++i)
pval(queue.try pop(val), val);

std::cout << std::endl;

}

int main() {
simpleQ();

// boundedQ();

/7 prioQ();

/7 prioQgt();
return 0;

}

Output is:
Simple Q pops are 16 64 32 512 1 2 512 8 4 128

Figure 6-6. Example of using the simple (FIFO) queue

194

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

There are two twists offered for queues: bounding and priorities. Bounding adds the
concept of enforcing a limit on the size of a queue. This means that a push might not be
possible if the queue is full. To handle this, the bounded queue interfaces offer us ways
to have a push wait until it can add to the queue, or have a “try to push” operation that
does the push if it can or lets us know the queue was full. A bounded queue is by default
unbounded! If we want a bounded queue, we need to use concurrent_bounded queue
and call method set_capacity to set the size for the queue. We show in Figure 6-7 a
simple usage of bounded queue in which only the first six items pushed made it into
the queue. We could add a test on try push and do something. In this case, we have the
program print **¥ when the pop operation finds that the queue was empty.

void boundedQ() {
tbb::concurrent_bounded_queue<int> queue;
int val;

queue.set_capacity(6);

for(int i=0; i<10; ++i)
queue.try push(myarray[i]);

std::cout << "Bounded Q pops are";

for(int i=0; i<10; ++i)
pval(queue.try pop(val), val);

std::cout << std::endl;

}

Output of the expanded program is:
Simple Q pops are 16 64 32 512 1 2 512 8 4 128
Bounded Q pops are 16 64 32 512 1 2 *¥* k¥ shkk kkx

Figure 6-7. This routine expands our program to show bounded queue usage

A priority adds a twist to first-in-first-out by effectively sorting items in the queue.
The default priority, if we do not specify one in our code, is std: :1ess<T>. This means
that a pop operation will return the highest valued item in the queue.

Figure 6-8 shows two examples of priority usage, one defaulting to std:: less<int>
while the other specifying std: :greater<int> explicitly.

195

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

void prioQ() {
tbb::concurrent_priority_queue<int> queue;
int val;

for(int i=0; i<10; ++i)
queue.push(myarray[i]);

std::cout << "Prio Q pops are";

for(int i=0; i<10; ++i)
pval(queue.try pop(val), val);

std::cout << std::endl;

}

void prioQgt() {
tbb::concurrent_priority_queue<int,std::greater<int>> queue;
int val;

for(int i=0; i<10; ++i)
queue.push(myarray[i]);

std::cout << "Prio Qgt pops are";

for(int i=0; i<10; ++i)
pval(queue.try pop(val), val);

std::cout << std::endl;

}

Output of the expanded program is:

Simple Q pops are 16 64 32 512 1 2 512 8 4 128
Bounded Q pops are 16 64 32 512 1 2 *¥* k¥ sokk kkx
Prio Q pops are 512 512 128 64 32 16 8 4 2 1
Prio Qgt pops are 1 2 4 8 16 32 64 128 512 512

Figure 6-8. These routines expand our program to show priority queueing

As our examples in the prior three figures show, to implement these three variations
on queues, TBB offers three container classes: concurrent_queue, concurrent_bounded
queue, and concurrent priority queue. All concurrent queues permit multiple threads
to concurrently push and pop items. The interfaces are similar to STL std: : queue or
std::priority queue except where it must differ to make concurrent modification of a
queue safe.

196

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

The fundamental methods on a queue are push and try pop. The push method
works as it would with a std: : queue. It is important to note that there is not support for
front or back methods because they would not be safe in a concurrent environment
since these methods return a reference to an item in the queue. In a parallel program,
the front or back of a queue could be changed by another thread in parallel making the
use of front or back meaningless.

Similarly, pop and testing for empty are not supported for unbounded queues -
instead the method try pop is defined to pop an item if it is available and return a
true status; otherwise, it returns no item and a status of false. The test-for-empty and
pop methods are combined into a single method to encourage thread-safe coding. For
bounded queues, there is a non-blocking try push method in addition to the potentially
blocking push method. These help us avoid the size methods to inquire about the size
of the queue. Generally, the size methods should be avoided, especially if they are
holdovers from a sequential program. Since the size of a queue can change concurrently
in a parallel program, the size method needs careful thought if it is used. For one thing,
TBB can return a negative value for size methods when the queue empty and there are
pending pop methods. The empty method is true when size is zero or less.

Bounding Size

For concurrent_queue and concurrent_priority queue, capacity is unbounded,
subject to memory limitations on the target machine. The concurrent_bounded queue
offers controls over bounds - a key feature being that a push method will block until the
queue has room. A bounded queue is useful in slowing a supplier to match the rate of
consumption instead of allowing a queue to grow unconstrained.

concurrent_bounded_queue is the only concurrent_queue_ * container that offers a
pop method. The pop method will block until an item becomes available. A push method
can be blocking only with a concurrent_bounded_queue so this container type also offers
a non-blocking method called try push.

This concept of bounding to rate match, to avoid overflowing memory or
overcommitting cores, also exists in Flow Graph (see Chapter 3) through the use of a
limiter node.

197

https://doi.org/10.1007/978-1-4842-4398-5_3

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

Priority Ordering

A priority queue maintains an ordering in the queue based on the priorities of individual
queued items. As we mentioned earlier, a normal queue has a first-in-first-out policy,
whereas a priority queue sorts its items. We can provide our own Compare to change the
ordering from the default of std: :1less<T>. For instance, using std: : greater<T> causes
the smallest element to be the next to retrieved for a pop method. We did exactly that in
our example code in Figure 6-8.

Staying Thread-Safe: Try to Forget About Top, Size,
Empty, Front, Back

Itis important to note that there is no top method, and we probably should avoid using
size and empty methods. Concurrent usage means that the values from all three can
change due to push/pop methods in other threads. Also, the clear and swap methods,
while supported, are not thread-safe. TBB forces us to rewrite code using top when
converting a std: :priority queue usage to tbb::concurrent priority queue
because the element that would be returned could be invalidated by a concurrent
pop. Because the return values are not endangered by concurrency, TBB does support
std::priority queue methods of size, empty, and swap. However, we recommend
carefully reviewing the wisdom of using either function in a concurrent application,
since a reliance on either is likely to be a hint that the code that needs rewriting for
concurrency.

198

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

std: : code, not thread safe tbb: : code, thread safe

#tinclude <iostream> #include <iostream>
#include <queue>

#tinclude <tbb/concurrent_priority queue.h>
#include <tbb/parallel for.h>

void main() { void main() {

int sum (0); int sum (0);

int item; int item;

std::priority_queue<int> myPQ; tbb::concurrent_priority_queue<int> myPQ;

for(int i=0; i<10001; i+=1) { tbb::parallel for(0,10001,1,
myPQ.push(i); [&](size_t i){myPQ.push(i);});

while(!myPQ.empty()) { while(myPQ.try_pop(item))
sum += myPQ.top(); sum += item;

myPQ.pop();

// prints "total: 50005000" // prints "total: 50005000"
std::cout << "total: " std::cout << "total: "
<< sum << '\n'; << sum << '\n';
} }

Figure 6-9. Motivation for try pop instead of top and pop shown in a side-by-
side comparison of STL and TBB priority queue code. Both will total 50005000 in
this example without parallelism, but the TBB scales and is thread-safe.

Ilterators

For debugging purposes alone, all three concurrent queues provide limited iterator
support (iterator and const_iterator types). This support is intended solely to
allow us to inspect a queue during debugging. Both iterator and const_iterator
types follow the usual STL conventions for forward iterators. The iteration order is
from least recently pushed to most recently pushed. Modifying a queue invalidates any
iterators that reference it. The iterators are relatively slow. They should be used only for
debugging. An example of usage is shown in Figure 6-10.

199

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

#include <tbb/concurrent_queue.h>
#include <iostream>

int main() {
tbb::concurrent_queue<int> queue;
for(int i=0; i<10; ++i)
queue.push(i);
for(tbb::concurrent_queue<int>::const_iterator
i(queue.unsafe begin());
il=queue.unsafe_end();

++1)
std::cout << *i << " "
std::cout << std::endl;
return 0;

}
Output of this program is:

0123456789

Figure 6-10. Sample debugging code for iterating through a concurrent
queue - note the unsafe_ prefix on begin and end to emphasize the debug-only
non-thread-safe nature of these methods.

Why to Use This Concurrent Queue: The A-B-A Problem

We mentioned at the outset of this chapter that there is significant value in having
containers that have been written by parallelism experts for us to “just use.” None of
us should want to reinvent good scalable implementations for each application.

As motivation, we diverge to mention the A-B-A problem - a classic computer science
example of parallelism gone wrong! At first glance, a concurrent queue might seem
easy enough to simply write our own. It is not. Using the concurrent_queue from

TBB, or any other well-researched and well-implemented concurrent queue, is a

good idea. Humbling as the experience can be, we would not be the first to learn it is
not as easy as we could naively believe. The update idiom (compare_and_swap) from
Chapter 5 is inappropriate if the A-B-A problem (see sidebar) thwarts our intent. This
is a frequent problem when trying to design a non-blocking algorithm for linked data
structures, including a concurrent queue. The TBB designers have a solution to the
A-B-A problem already packaged in the solutions for concurrent queues. We can just
rely upon it. Of course, it is open source code so you can hunt around in the code to see
the solution if you are feeling curious. If you do look in the source code, you'll see that
arena management (subject of Chapter 12) has to deal with the ABA problem as well.
Of course, you can just use TBB without needing to know any of this. We just wanted to

200

https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_12

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

emphasize that working out concurrent data structures is not as easy as it might appear -
hence the love we have for using the concurrent data structures supported by TBB.

THE A-B-A PROBLEM

Understanding the A-B-A problem is a key way to train ourselves to think through the
implications of concurrency when designing our own algorithms. While TBB avoids the A-B-A
problems while implementing concurrent queues and other TBB structures, it is a reminder
that we need to “Think Parallel.”

The A-B-A problem occurs when a thread checks a location to be sure the value is A and
proceeds with an update only if the value was A. The question arises whether it is a problem if
other tasks change the same location in a way that the first task does not detect:

1. Atask reads a value A from globalx.
2. Other tasks change globalx from A to B and then back to A.

3. The task in step 1 does its compare_and_swap, reading A and thus not
detecting the intervening change to B.

If the task erroneously proceeds under an assumption that the location has not changed since the
task first read it, the task may proceed to corrupt the object or otherwise get the wrong result.

Consider an example with linked lists. Assume a linked list W(1)—~X(9)—>Y(7)~>Z(4),
where the letters are the node locations and the numbers are the values in the nodes. Assume
that some task transverses the list to find a node X to dequeue. The task fetches the next
pointer, X. next (which is Y) with the intent to put it in W. next. However, before the swap is
done, the task is suspended for some time.

During the suspension, other tasks are busy. They dequeue X and then happen to reuse that
same memory and queue a new version of node X as well as dequeueing Y and adding Q at
some point in time. Now, the list is W(1)—~X(2)—0(3)~Z(4).

Once the original task finally wakes up, it finds that W. next still points to X, so it swaps out
W. next to become Y, thereby making a complete mess out of the linked list.

Atomic operations are the way to go if they embody enough protection for our algorithm.
If the A-B-A problem can ruin our day, we need to find a more complex solution.
tbb: :concurrent queue has the necessary additional complexity to get this right!

201

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

When to NOT Use Queues: Think Algorithms!

Queues are widely used in parallel programs to buffer consumers from producers. Before
using an explicit queue, we need to consider using parallel do or pipeline instead (see
Chapter 2). These options are often more efficient than queues for the following reasons:

¢ Queues are inherently bottlenecks because they must maintain an
order.

o Athread that is popping a value will stall if the queue is empty until a
value is pushed.

e A queue is a passive data structure. If a thread pushes a value, it could
take time until it pops the value, and in the meantime the value (and
whatever it references) becomes cold in cache. Or worse yet, another
thread pops the value, and the value (and whatever it references)
must be moved to the other processor core.

In contrast, parallel doand pipeline avoid these bottlenecks. Because their
threading is implicit, they optimize use of worker threads so that they do other work until
avalue shows up. They also try to keep items hot in cache. For example, when another
work item is added to a parallel do, itis keptlocal to the thread that added it unless
another idle thread can steal it before the hot thread processes it. This way, items are
more often processed by the hot thread thereby reducing delays in fetching data.

Concurrent Vector

TBB offers a class called concurrent_vector. A concurrent_vector<T> is a dynamically
growable array of T. It is safe to grow a concurrent_vector even while other threads
are also operating on elements of it, or even growing it themselves. For safe concurrent
growing, concurrent_vector has three methods that support common uses of dynamic
arrays: push_back, grow by, and grow_to at least.

Figure 6-11 shows a simple usage of concurrent_vector, and Figure 6-12 shows, in the
dump of the vector contents, the effects of parallel threads having added concurrently. The
outputs from the same program would prove identical if sorted into numerical order.

When to Use tbb::concurrent_vector Instead of std::vector

The key value of concurrent_vector<T> is its ability to grow a vector concurrently and
its ability to guarantee that elements do not move around in memory.
202

https://doi.org/10.1007/978-1-4842-4398-5_2

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

concurrent_vector does have more overhead than std: :vector. So, we should

use concurrent vector when we need the ability to dynamically resize it while other

accesses are (or might be) in flight or require that an element never move.

#tinclude <iostream>

#include <tbb/concurrent_vector.h>
#include <tbb/parallel for.h>

void oneway() {
// Create a vector containing integers

}

tbb::concurrent_vector<int> v = {3, 14, 15, 92};

// Add more integers to vector IN PARALLEL
for(int i = 100; i < 1000; ++i) {
.push_back(i*100+11);
.push_back(i*100+22);
.push_back(i*100+33);
.push_back(i*100+44);

<

< < <

}

// Iterate and print values of vector (debug use only)
for(int n : v) {
std::cout << n << std::endl;

}

void allways() {
// Create a vector containing integers

}

tbb::concurrent_vector<int> v = {3, 14, 15, 92};

// Add more integers to vector IN PARALLEL

tbb::parallel for(100, 999, [&](int i){
v.push_back(i*100+11);
v.push_back(i*100+22);
v.push_back(i*100+33);
v.push_back(i*100+44);

})s
// Iterate and print values of vector (debug use only)
for(int n : v) {

std::cout << n << std::endl;

}

Figure 6-11. Concurrent vector small example

203

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

3 3

14 14

15 15

92 92
le011 le011
84911 72611
84922 91211
84933 87111
84944 72622
85011 91222
85022 87122
85033 72633
85044 91233
99933 99833
99944 99844

Figure 6-12. The left side is output generated while using for (not parallel), and
the right side shows output when using parallel for (concurrent pushing into the
vector).

Elements Never Move

A concurrent vector never moves an element until the array is cleared, which can
be an advantage over the STL std: : vector even for single-threaded code. Unlike a
std::vector, a concurrent_vector never moves existing elements when it grows.
The container allocates a series of contiguous arrays. The first reservation, growth,
or assignment operation determines the size of the first array. Using a small number
of elements as initial size incurs fragmentation across cache lines that may increase
element access time. shrink to fit() merges several smaller arrays into a single
contiguous array, which may improve access time.

Concurrent Growth of concurrent_vectors

While concurrent growing is fundamentally incompatible with ideal exception safety,
concurrent_vector does offer a practical level of exception safety. The element type
must have a destructor that never throws an exception, and if the constructor can
throw an exception, then the destructor must be nonvirtual and work correctly on
zero-filled memory.

204

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

The push_back(x) method safely appends x to the vector. The grow_by(n) method
safely appends n consecutive elements initialized with T() . Both methods return an
iterator pointing to the first appended element. Each element is initialized with T(). The
following routine safely appends a C string to a shared vector:

void Append(concurrent_vector<char>& vector,
const char* string) {
size t n = strlen(string)+1;
std::copy(string, string+n, vector.grow by(n));

grow_to_at least(n) grows a vector to size n if it is shorter. Concurrent calls to the
growth methods do not necessarily return in the order that elements are appended to
the vector.

size() returns the number of elements in the vector, which may include elements
that are still undergoing concurrent construction by methods push_back, grow_by, or
grow_to_at_least. The previous example uses std: : copy and iterators, not strcpy
and pointers, because elements in a concurrent_vector might not be at consecutive
addresses. It is safe to use the iterators while the concurrent _vector is being grown, as
long as the iterators never go past the current value of end(). However, the iterator may
reference an element undergoing concurrent construction. Therefore, we are required to
synchronize construction and access.

Operations on concurrent_vector are concurrency safe with respect to growing, not
for clearing or destroying a vector. Never invoke clear() ifthere are other operations in
flight on the concurrent vector.

Summary

In this chapter, we discussed three key data structures (hash/map/set, queues, and
vectors) that have support in TBB. This support from TBB offers thread-safety (okay to
run concurrently) as well as an implementation that scales well. We offered advice on
things to avoid, because they tend to cause trouble in parallel programs - including
using the iterators returned by map/set for anything other than the one item that was
looked up. We reviewed the A-B-A problem both as a motivation for using TBB instead of
writing our own and as an excellent example of the thinking we need to do when parallel
programs share data.

205

CHAPTER6 DATA STRUCTURES FOR CONCURRENCY

As with other chapters, the complete APIs are detailed in Appendix B, and the code
shown in figures is all downloadable.

Despite all the wonderful support for parallel use of containers, we cannot
emphasize enough the concept that thinking through algorithms to minimize
synchronization of any kind is critical to high performance parallel programming. If
you can avoid sharing data structures, by using parallel do, pipeline, parallel
reduce, and so on, as we mentioned in the section “When to NOT Use Queues: Think
Algorithms!” - you may find your programs scale better. We mention this in multiple
ways throughout this book, because thinking this through is important for the most
effective parallel programming.

@@@@ Open Access This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any
noncommercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed material.
You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

206

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 6: Data Structures for Concurrency
	Key Data Structures Basics
	Unordered Associative Containers
	Map vs. Set
	Multiple Values
	Hashing
	Unordered

	Concurrent Containers
	Concurrent Unordered Associative Containers
	concurrent_hash_map
	Concurrent Support for map/multimap and set/multiset Interfaces
	Built-In Locking vs. No Visible Locking
	Iterating Through These Structures Is Asking for Trouble

	Concurrent Queues: Regular, Bounded, and Priority
	Bounding Size
	Priority Ordering
	Staying Thread-Safe: Try to Forget About Top, Size, Empty, Front, Back
	Iterators
	Why to Use This Concurrent Queue: The A-B-A Problem
	When to NOT Use Queues: Think Algorithms!

	Concurrent Vector
	When to Use tbb::concurrent_vector Instead of std::vector
	Elements Never Move
	Concurrent Growth of concurrent_vectors

	Summary

