
581
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_20

CHAPTER 20

TBB on NUMA
Architectures
Advanced programmers who care about performance know that exploiting locality

is paramount. When it comes to locality, cache locality is the one that immediately

springs to mind, but in many cases, for heavy-duty applications running on large

shared-memory architectures, Non-Uniform Memory Access (NUMA) locality should

also be considered. As you certainly know, NUMA conveys the message that memory

is organized in different banks and some cores have faster access to some of the “close”

banks than to “far” banks. More formally, a NUMA node is a grouping of the cores,

caches, and local memory in which all cores share the same access time to the local

shared caches and memory. Access time from one NUMA node to a different one can be

significantly larger. Some questions arise, such as how the program data structures are

allocated on the different NUMA nodes and where the threads that process these data

structures are running (are they close or far from the data?). In this chapter, we address

these questions, but more importantly, what can be done to exploit NUMA locality

within a TBB parallel application.

Tuning for performance on NUMA systems comes down to four activities: (1)

discovering what your platform topology is, (2) knowing the costs associated with

accessing memory from the different nodes of your system, (3) controlling where your

data is stored (data placement), and (4) controlling where your work executes (processor

affinity).

In order to prevent you from being disappointed further down the line (i.e., to

disappoint you right now!), we shall say the following upfront: currently, TBB does not

offer high-level features for exploiting NUMA locality. Or in other words, out of the four

activities listed before, TBB offers some help only in the fourth one, where we can rely on

https://doi.org/10.1007/978-1-4842-4398-5_20

582

the TBB task_arena (see Chapter 12) and local task_sheduler_observer (see Chapter 13)

classes to identify the threads that should be confined in a NUMA node. For all the

other activities, and even for the actual pinning of threads to NUMA nodes (which is

the essential part of the fourth activity), we need to use either low-level OS-dependent

system calls or higher-level third-party libraries and tools. This means, that even if this

is a TBB book, this last chapter is not entirely about TBB. Our goal here is to thoroughly

elaborate on how we can implement TBB code that exploits NUMA locality, even if most

of the required activities are not directly related to TBB.

Now that we have warned the reader, let us break down the sections into which

we have organized this chapter. We basically follow, in order, the four activities listed

before. The first section shows some tools that can be used to discover the topology of

our platform and to check how many NUMA nodes are available. If there is more than

one NUMA node, we can move on to the next section. There, we use a benchmark to

get an idea of the potential speedup that is at stake when exploiting NUMA locality on

our particular platform. If the expected gain is convincing, we should start thinking in

exploiting NUMA locality in our own code (not just in a simple benchmark). If we realize

that our own problem can benefit from NUMA locality, we can jump into the heart of

the matter which consists in mastering data placement and processor affinity. With this

knowledge and with the help of TBB task_arena and task_scheduler_observer classes,

we implement our first simple TBB application that exploits NUMA locality and assess

the speedup obtained with respect to a baseline implementation. The whole process is

summarized in Figure 20-1. We close the chapter sketching more advanced and general

alternatives that could be considered for more complex applications.

Figure 20-1.  Activities required to exploit NUMA locality

Chapter 20 TBB on NUMA Architectures

https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_13

583

Note I f you are wondering why there is no high-level support in the current
version of TBB, here are some reasons. First, it is a tough problem, highly dependent
on the particular application that has to be parallelized and the architecture on
which it will run. Since there is no one-size-fits-all solution, it is left to developers to
determine the particular data placement and processor affinity alternatives that best
suit the application at hand. Second, TBB architects and developers have always
tried to avoid hardware specific solutions inside the TBB library because they can
potentially hurt the portability of the code and the composability features of TBB. The
library was not developed only to execute HPC applications, where we usually have
exclusive access to the whole high-performance platform (or a partition of it). TBB
should also do its best in shared environments in which other applications and
processes are also running. Pinning threads to cores and memory to NUMA nodes
can in many cases leads to suboptimal exploitation of the underlying architecture.
Manually pinning has been shown repeatedly to be a bad idea in any application or
system that has any dynamic nature in it at all. We strongly advise against taking
such an approach, unless you are positive you will improve performance for your
particular application on your particular parallel platform and you do not care about
portability (or extra effort is made to implement a portable NUMA-aware application).

Considering the task-based nature of TBB parallel algorithms and the work-stealing

scheduler that fuels the parallel execution, keeping the tasks running in cores close to

the local memory can seem challenging. But that’s not going to deter brave and fearless

programmer like us. Let’s go for it!

�Discovering Your Platform Topology
“Know your enemy and yourself, and you shall win a hundred battles without loss.” – Sun Tzu

in The Art of War. This millenarian quote advises us to first strive to meticulously understand

what we are facing before tackling it. There are some tools that come in handy to understand

the underlying NUMA architecture. In this chapter, we will use hwloc and likwid1 to gather

information about the architecture and code execution. hwloc is a software package that

1�www.open-mpi.org/projects/hwloc and https://github.com/RRZE-HPC/likwid.

Chapter 20 TBB on NUMA Architectures

https://www.open-mpi.org/projects/hwloc/
https://github.com/RRZE-HPC/likwid

584

provides a portable way to query information about the topology of a system, as well as to

apply some NUMA controls, like data placement and processor affinity. likwid is another

software package that informs about the hardware topology, can be used to collect hardware

performance counters, and also provides a set of useful micro-benchmarks that can be used

to characterize systems. We can also use VTune to analyze the performance of our code.

Although likwid is only available for Linux, hwloc and VTune can be easily installed on

Windows and MacOS as well. However, since the shared memory platforms that will serve to

illustrate our codes run Linux, this will be the OS that we assume unless stated otherwise.

Because tuning for NUMA requires a deep understanding of the platforms being

used, we will start by characterizing two machines that we will work on throughout this

chapter. The two machines that we introduce next are known as yuca (from the yucca

plant) and aloe (from the aloe vera plant). First, we can gather basic information about

these machines. On Linux this information can be obtained using the command “lscpu”,

as we can see in Figure 20-2.

At first glance, we see that yuca has 64 logical cores numbered from 0 to 63,

two logical cores per physical core (hyperthreading aka SMT or simultaneous

multithreading, available), eight physical cores per socket, and four sockets that are

also the four NUMA nodes or NUMA domains. For its part, aloe has 32 physical cores

with hyperthreading disabled (only one thread per core), 16 physical cores per socket,

and two sockets (NUMA nodes). At the end of the lscpu output, we can see the NUMA

Figure 20-2.  Output of lscpu on yuca and aloe

Chapter 20 TBB on NUMA Architectures

585

nodes and the ids of the logical cores included in each node, but the picture will become

clearer if we use the lstopo utility from the hwloc library. In Figure 20-3, we include the

PDF file generated on yuca when executing the command lstopo --no-io yuca.pdf

(the --no-io argument disregards the I/O device topology).

Figure 20-3.  Result of executing lstopo on yuca

Chapter 20 TBB on NUMA Architectures

586

Figure 20-4.  Result of executing lstopo on aloe

From this figure, we can get a clear representation of the NUMA organization in

yuca. The four NUMA nodes include eight physical cores that are seen by the OS as 16

logical cores (also known as hardware threads). Note that logical core ids depend on the

architecture, the firmware (BIOS configuration on PCs), and OS version, so we cannot

assume anything from the numbering. For the particular configuration of yuca, logical

cores 0 and 32 share the same physical core. Now we better understand the meaning of

the last four lines of lscpu on yuca:

NUMA node0 CPU(s): 0-7,32-39

NUMA node1 CPU(s): 8-15,40-47

NUMA node2 CPU(s): 16-23,48-55

NUMA node3 CPU(s): 24-31,56-63

On yuca, each NUMA node has 63 GB of local memory, or 252 GB in total. Similarly,

aloe also features 252 GB but organized in only two NUMA nodes. In Figure 20-4, we see

a slightly edited version of the output of lstopo on aloe.

We see that on aloe each physical core includes a single logical core, numbered from

0-15 in the first domain and from 16-31 in the second one.

Chapter 20 TBB on NUMA Architectures

587

�Understanding the Costs of Accessing Memory
Now that we know the topology of our platform, let’s quantify the overhead due to

nonlocal accesses assuming we already control processor affinity and data placement.

Actually, we do control these two aspects on already available benchmarks, like likwid-

bench available in the likwid tool. Using this benchmark, we can run the STREAM triad

code (see the previous two chapters) using a single command line:

likwid-bench -t stream -i 1 -w S0:12GB:16-0:S0,1:S0,2:S0

which runs a single iteration (-i 1) of the stream benchmark configured with -w

argument so that

•	 S0: The threads are pinned to the NUMA node 0.

•	 12 GB: The three triad arrays occupy 12 GB (4 GB per array).

•	 16: 16 threads will share the computation, each one processing

chunks of 31,250,000 doubles (this is, 4000 million bytes/8 bytes per

double/16 threads).

•	 0:S0,1:S0,2:S0: The three arrays are allocated on the NUMA node 0.

On yuca, the result of this command reports a bandwidth of 8219 MB/s. But it is a

no-brainer to change the data placement for the three arrays, for example to the NUMA

node 1 (using 0:S1,1:S1,2:S1) keeping the computation by 16 threads confined in the

NUMA node 0. Not surprisingly, the bandwidth we get now is only 5110 MB/s, which

means we are losing a 38% of the bandwidth we measured when exploiting NUMA

locality. We get similar results for other configurations that compute local data (data

placement on the cores where the threads are pinned) and configurations that do not

exploit locality (data placement on cores that do not have the thread affinity). On yuca,

all nonlocal configurations result in the same bandwidth hit, but there are other NUMA

topologies on which we pay different penalties depending on where the data is placed

and where the threads are running.

On aloe we only have two NUMA nodes 0 and 1. Having the data and the

computation on the same domain gives us 38671 MB/s, whereas going down the wrong

path results in only 20489 MB/s (almost half, exactly 47% less bandwidth). We are certain

that a reader like you, eager to read and learn about performance programming topics, is

now motivated to exploit NUMA locality in your own projects!

Chapter 20 TBB on NUMA Architectures

588

�Our Baseline Example
Figure 20-5 shows a parallel version of the triad example that we have been using

recently, with just a parallel_for algorithm.

Figure 20-5.  The baseline algorithm to evaluate and improve

The last two lines of this code, which is not yet optimized for NUMA, reports the

execution time and the obtained bandwidth. For the latter, the total number of bytes

accessed is computed as vsize × 8 bytes/double × 3 access per array element (two loads

and one store), and this is divided by the execution time and by one million (to convert

to Mbytes per second). On yuca, this results in the following output when running with

32 threads and arrays of one giga-element:

./fig_20_05 32 1000000000

Time: 2.23835 seconds; Bandwidth: 10722.2MB/s

Chapter 20 TBB on NUMA Architectures

589

and on aloe:

./fig_20_05 32 1000000000

Time: 0.621695 seconds; Bandwidth: 38604.2MB/s

Note that the bandwidth obtained with our triad implementation should not be

compared with the one reported previously by likwid-bench. Now we are using 32

threads (instead of 16) that, depending on the OS scheduler, can freely run on every core

(instead of confined to a single NUMA node). Similarly, arrays are now placed by the OS

following its own data placement policy. In Linux, the default policy2 is “local allocation”

in which the thread that does the allocation determines the data placement: in local

memory if there is enough space, or remote otherwise. This policy is sometimes called

“first touch,” because data placement is not done at allocation time, but at first touch

time. This means that a thread can allocate a region but the thread that first accesses this

region is the one raising the page fault and actually allocating the page on memory local

to that thread. In our example of Figure 20-5, the same thread allocates and initializes the

arrays, which means that the parallel_for worker threads running on the same NUMA

node will have faster access. A final difference is that likwid-bench implements the triad

computation in assembly language which prevents further compiler optimizations.

�Mastering Data Placement and Processor Affinity
Binding data and computation is not trivial at all. Mainly because it depends on

the Operating System and each one has its own system calls. In Linux, the low-

level interface is provided by libnuma3 which includes functions to control the data

placement and processor affinity policies implemented in the Linux kernel. A higher-

level alternative is the numactl4 command that tackles the same problem, offering less

flexibility though.

However, it is not the best idea in the world to ruin the portability of our TBB

application marrying to an OS dependent NUMA library. A portable and widely used

alternative is the already mentioned hwloc library. Currently, TBB does not offer its

own API to deal with NUMA locality, but as we will see later, there are measures we can

take to get our TBB tasks to access local data when possible. At the time of writing this,

2�We can query the enforced NUMA policy using numactl --show.
3�http://man7.org/linux/man-pages/man3/numa.3.html.
4�http://man7.org/linux/man-pages/man8/numactl.8.html.

Chapter 20 TBB on NUMA Architectures

http://man7.org/linux/man-pages/man3/numa.3.html
http://man7.org/linux/man-pages/man8/numactl.8.html

590

manual control of data placement and processor affinity has to be done via a third-party

library, and without loss of generality, we will resort to hwloc in this chapter. This library

can be used in Windows, MacOS, and Linux (actually, in Linux hwloc uses numactl/

libnuma underneath).

In Figure 20-6, we present an example that queries the number of NUMA nodes and

then allocates some data on each node to later create a thread per node and bind it to

the corresponding domain. We are using hwloc 2.0.1 in the following.

Figure 20-6.  Using hwloc to allocate memory and bind threads to each NUMA
node

Chapter 20 TBB on NUMA Architectures

591

A recurrent argument of all hwloc functions is the object topology, topo in our

example. This object is first initialized and then loaded with the available information

of the platform. After that, we are ready to get information from the topo data structure,

as we do with hwloc_get_nbobjs_by_type that returns the number of NUMA nodes

when the second argument is HWLOC_OBJ_NUMANODE (several other types are available,

as HWLOC_OBJ_CORE or HWLOC_OBJ_PU – logical core or processing unit). This number of

NUMA nodes is stored in the variable num_nodes.

The example continues by creating an array of num_nodes pointers to doubles that

will be initialized inside the function alloc_mem_per_node. The function call to alloc_

thr_per_node creates num_nodes threads, each one pinned to the corresponding NUMA

node. These two functions are described in Figures 20-7 and 20-8, respectively. The

example finishes by freeing the allocated memory and the topo data structure.

Figure 20-7.  Function that allocates an array of doubles per NUMA node

Figure 20-7 shows the implementation of the function alloc_mem_per_node. The key

operations are hwloc_get_obj_by_type that returns a handle to the ith NUMA node

object, numa_node, when the second and third arguments are HWLOC_OBJ_NUMANODE

Chapter 20 TBB on NUMA Architectures

592

and i, respectively. This numa_node has several attributes like numa_node->cpuset

(a bitmask identifying the logical cores included in the node) and numa_node->nodeset

(a similar bitmask that identifies the node). The function hwloc_bitmap_asprintf

comes in handy to translate these sets into strings as we will see latter in the output

of the program. Using the nodeset bitmask, we can allocate memory in a node with

hwloc_alloc_membind.

The output we get on yuca when running the code until alloc_mem_per_node returns

to the main function is

There are 4 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x000000ff,0x000000ff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0x0000ff00,0x0000ff00

Allocate data on node 1 with node bitmask 0x00000002

NUMA node 2 has cpu bitmask: 0x00ff0000,0x00ff0000

Allocate data on node 2 with node bitmask 0x00000004

NUMA node 3 has cpu bitmask: 0xff000000,0xff000000

Allocate data on node 3 with node bitmask 0x00000008

where we see the cpuset and nodeset of each NUMA node. If we refresh our memory

looking again at Figure 20-3, we see that in node 0 we have eight cores with 16 logical

cores, numbered from 0 to 7 and from 32 to 39, which are represented in hwloc with the

bitmask 0x000000ff,0x000000ff. Note that the “ , ” separates the two sets of logical cores

sharing the eight physical ones. To compare with a Hyperthreading disabled platform,

this is the corresponding output on aloe:

There are 2 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x0000ffff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0xffff0000

Allocate data on node 1 with node bitmask 0x00000002

In Figure 20-8, we list the function alloc_thr_per_node that spawns a thread per

NUMA node and then bind it using the cpuset attribute.

Chapter 20 TBB on NUMA Architectures

593

This function also queries the number of NUMA nodes, num_nodes, to later iterates this

number of times inside a loop that creates the threads. In the lambda expression that each

thread executes, we use hwloc_set_cpubind to bind the thread to each particular NUMA

node, now relying on the numa_node->cpuset. To validate the pinning, we print the thread

id (using std::this_thread::get_id) and the id of the logical core on which the thread is

running (using sched_getcpu). The result on yuca is next, also illustrated in Figure 20-9.

Before: Thread 0 with tid 873342720 on core 33

After: Thread 0 with tid 873342720 on core 33

Before: Thread 1 with tid 864950016 on core 2

After: Thread 1 with tid 864950016 on core 8

Before: Thread 2 with tid 856557312 on core 33

After: Thread 2 with tid 856557312 on core 16

Before: Thread 3 with tid 848164608 on core 5

After: Thread 3 with tid 848164608 on core 24

Figure 20-8.  Function that creates and pins a thread per NUMA node

Chapter 20 TBB on NUMA Architectures

594

Figure 20-9.  Depicting the movement of threads due to pinning to NUMA nodes
on yuca

Two things are worth mentioning here. First, the threads are initially allocated by

the OS on logical cores in the same NUMA node, since it assumes they will collaborate.

Threads 0 and 2 are even allocated on the same logical core. Second, the threads are not

pinned to a single core, but to the whole set of cores belonging to the same NUMA node.

This allows for some leeway if the OS considers it better to move a thread to a different

core of the same node. For completeness, here is the equivalent output on aloe:

Before: Thread: 0 with tid 140117643171584 on core 3

After: Thread: 0 with tid 140117643171584 on core 3

Before: Thread: 1 with tid 140117634778880 on core 3

After: Thread: 1 with tid 140117634778880 on core 16

There are many more features of hwloc and likwid that the interested reader can

learn from the respective documentation and online tutorials. However, what we have

covered in this section suffices to move on, roll up our sleeves, and implement a NUMA-

conscious version of the triad algorithm using TBB.

Chapter 20 TBB on NUMA Architectures

595

�Putting hwloc and TBB to Work Together
Clearly, the overarching goal is to minimize the number of nonlocal accesses, which

implies conducting the computation on the cores nearest to the memory in which the

data is stored. A quite simple approach is to manually partition the data on the NUMA

nodes and confine the threads that process this data to the same nodes. For educational

purposes, we will first describe this solution and in the next section briefly elaborate on

more advanced alternatives.

We can rely on the hwloc API to accomplish the data placement and processor

affinity tasks, but we want a NUMA-aware TBB implementation of the triad benchmark.

In this case, the TBB scheduler is the one managing the threads. From Chapter 11,

we know that a number of threads are created inside the tbb::task_scheduler_

init function. Additionally, this TBB function creates a default arena with enough

worker slots to allow the threads to participate in executing tasks. In our baseline

implementation of triad (see Figure 20-5), a parallel_for takes care of partitioning the

iteration space into different tasks. All the threads will collaborate on processing these

tasks, irrespectively of the chunk of iterations that each task processes and of the core on

which the thread is running. But we don’t want that on a NUMA platform, right?

Our simplest alternative to the baseline triad implementation will enhance the

implementation by performing the following three steps:

•	 It will partition and allocate the three vectors, A, B, and C, of the triad

algorithm on the different NUMA nodes. As the simplest solution,

a static block partitioning will do for now. On yuca, this means that

four big chunks of A, B, and C will be allocated on each one of the

four nodes.

•	 It will create a master thread on each NUMA node. Each

master thread will create its own task arena and its own local

task_scheduler_observer. Then, each master thread executes its

own tbb::parallel_for algorithm to process the fraction of A, B,

and C that correspond to this NUMA node.

•	 It will automatically pin the threads that join each arena to the

corresponding NUMA node. The local task_scheduler_observer

that we create for each arena will take care of this.

Chapter 20 TBB on NUMA Architectures

https://doi.org/10.1007/978-1-4842-4398-5_11

596

Let’s see the implementation of each one of the described bullet points. For the main

function we slightly modify the one we presented for the hwloc example of Figure 20-6.

In Figure 20-10, we list the new lines required for this new example, using ellipsis (…) on

the lines that do not change.

Figure 20-10.  Main function of the NUMA-conscious implementation of triad

The program argument, thds_per_node, allows us to play with different number

of threads per NUMA node. As in the example of Figure 20-6, num_nodes is the number

of NUMA nodes that we obtain using the hwloc API. Consequently, we pass to the TBB

scheduler constructor (thds_per_node-1)*(num_nodes) instead of thds_per_node*num_

nodes because we will explicitly create the additional num_nodes master threads inside

alloc_thr_per_node.

The function alloc_mem_per_node is essentially the same as the one listed in

Figure 20-7, but now it is called with a different size argument: doubles_per_node =

vsize*3/num_nodes, where vsize is the size of the three vectors, so the total amount of

doubles is multiplied by 3, but divided by the number of nodes to implement the block

partitioning. For the sake of cleanness, we assume that vsize is a multiple of num_nodes.

At the completion of alloc_mem_per_node, data[i] points to the data allocated on the

ith NUMA node.

Chapter 20 TBB on NUMA Architectures

597

Figure 20-11.  Function that creates a thread per node to compute the triad
computation on each NUMA node

There are other differences in the adapted version of the alloc_thr_per_node

function as we see in Figure 20-11. It now receives a handle to the data, the size of the

local vectors that will be traversed per node, lsize, and the number of threads per node

set by the user, thds_per_node.

Chapter 20 TBB on NUMA Architectures

598

Note that in the code snippet presented in Figure 20-11, inside the i-loop that

traverses the num_nodes, there are three nested lambda expressions: (1) for the thread

object; (2) for task_arena::execute member function; and (3) for the parallel_for

algorithm. In the outer one, we first pin the thread to the corresponding NUMA node, i.

The second step is to initialize the pointers to arrays A, B, and C that were allocated

in the data[i] array. In Figure 20-10, we call alloc_thr_per_node using as the third

argument vsize/num_nodes because on each node we traverse just one chunk of the

block distribution of the three arrays. Hence, the function’s argument lsize = vsize/

num_nodes, which is used in the loop that initializes arrays A and B and as the argument

to the parallel_for that computes C.

Next, we initialize a per NUMA node arena, numa_arena, that is later passed as

argument to a task_scheduler_observer object, p, and used to invoke a parallel_for

confined to this arena (using numa_arena.execute). Here lies the key of our NUMA-

aware implementation of triad.

The parallel_for will create tasks that traverse chunks of the local partition of

the three vectors. These tasks will be executed by threads running on the cores of the

same NUMA node. But up to now, we just have thds_per_node*num_nodes threads,

out of which num_nodes have been explicitly spawned as master threads and pinned

to a different NUMA node, but the rest are still free to run everywhere. The threads

that are available in the global thread pool will each join one of the num_nodes arenas.

Conveniently, each numa_arena has been initialized with thds_per_node slots, one

already occupied by a master thread and the rest available for worker threads. Our

goal now is to pin the first thds_per_node-1 threads that enter each numa_arena to the

corresponding NUMA node. To that end, we create a PinningObserver class (deriving

from task_scheduler_observer) and construct an object, p, passing four arguments

to the constructor: PinningObserver p{numa_arena, topo, i, thds_per_node}.

Remember that here, i is the id of the NUMA node for the master thread i.

In Figure 20-12, we see the implementation of the PinningObserver class.

Chapter 20 TBB on NUMA Architectures

599

The task_scheduler_observer class was introduced in Chapter 13. It has a preview

feature that allows us to have an observer per task arena – also called a local task_

scheduler_observer. This kind of observer is initialized with a reference to the arena, as

we do in the initializer list of the PinningObserver constructor using task_scheduler_

observer{arena}. This results in the execution of the member function on_scheduler_

entry for each thread that enters this particular arena. The constructor of the class also

sets the number of NUMA nodes, num_nodes, and the numa_node object that will give

us access to the numa_node->cpuset bitmask. The constructor finally calls the member

function observe(true) to start tracking whether or not a task enters the arena.

Figure 20-12.  Implementation of the local task_scheduler_observer for triad

Chapter 20 TBB on NUMA Architectures

https://doi.org/10.1007/978-1-4842-4398-5_13

600

The function on_scheduler_entry keeps track of the number of threads that have

been already pinned to the numa_node in the atomic variable thds_per_node. This

variable is set in the initializer list of the constructor to the number of threads per node

that the user pass as the first argument of the program. This variable is decremented

for each thread entering the arena, which will get pinned to the node only if the value

is greater than 0. Since each numa_arena was initialized with thds_per_node slots, and

the already pinned master thread that creates the arena occupies one of the slots, the

thds_per_node - 1 threads that join the arena first will get pinned to the node and work

on tasks generated by the parallel_for that this arena is executing.

Note T he implementation of our PinningObserver class is not totally correct. One
thread may leave the arena and reenter the same arena, getting pinned twice, but
decrementing the number thds_per_node. A more correct implementation would
check that the thread entering the arena is a new one that has not been pinned to
this arena already. To avoid complicating the example, we leave this correction as
an exercise to the reader.

We can now assess on yuca and aloe the bandwidth (in Mbytes per second) of

this NUMA optimized version of the triad algorithm. To compare with the baseline

implementation in Figure 20-5, we set the vector sizes to 109 doubles and set the number

of threads per NUMA node so that we end up with 32 threads total. For example, in yuca

we call the executables as follows:

baseline: ./fig_20_05 32 1000000000

NUMA conscious: ./fig_20_10 8 1000000000

The results presented in the table of Figure 20-13 are the average of ten runs in which

yuca and aloe had a single user that was using the platform exclusively to conduct the

experiments.

Figure 20-13.  Speedup due to the NUMA-conscious implementation

Chapter 20 TBB on NUMA Architectures

601

This is 74% faster execution on yuca, and 54% on aloe! Would you ignore this extra

amount of performance that we can squeeze out of a NUMA architecture with some

extra implementation work?

To further investigate this improvement, we can take advantage of the likwid-

perfctr application that is able to read out hardware performance counters. Invoking

likwid-perctr -a, we get a list of groups of events that can be specified using only the

group name. In aloe, likwid offers a NUMA group, which collects information about local

and remote memory accesses. To measure the events in this group on our baseline and

NUMA-conscious implementations, we can invoke these two commands:

likwid-perfctr -g NUMA ./fig_20_05 32 1000000000

likwid-perfctr -g NUMA ./fig_20_10 16 1000000000

This will report plenty of information about the value of some performance counters

on all the cores. Among the counted events are

OFFCORE_RESPONSE_0_LOCAL_DRAM

OFFCORE_RESPONSE_1_REMOTE_DRAM

which give us approximate information (because is based on event-based sampling)

of the amount of data accessed in local memory and remote memory. For the baseline

triad implementation, the ratio of local data over remote data is only 3.25, but it raises up

to 25.5 in the NUMA optimized triad-numa version. This confirms that, for this memory

bound application, the effort we made to exploit NUMA locality pays off in terms of both

the amount of local accesses and consequently the execution bandwidth.

�More Advanced Alternatives
For the regular triad code, the simple solution we have implemented is okay, but

TBB’s work-stealing scheduler is confined to balancing the load on each NUMA node

independently. On yuca, there will be four parallel_for algorithms running, each on

a NUMA node with eight threads served by eight physical cores. The downside of our

simple approach is that the four arenas have been configured with eight slots, which is

okay for the steady-state part of the execution, but limits TBB’s flexibility if the load is not

perfectly balanced between the NUMA nodes.

Chapter 20 TBB on NUMA Architectures

602

For example, if one of the parallel_for algorithms ends first, eight threads become

idle. They come back to the global thread pool but cannot join any of the other three

busy arenas because all the slots are already filled. A simple solution for this involves

increasing the number of slots of the arenas, while keeping the number of pinned

threads to thds_per_node. In such a case, if a parallel_for finishes first, the eight

threads returning to the global pool can be redistributed in the free slots of the other

three arenas. Note that these threads are still pinned to the original node, although they

will work now in a different arena of a different node and therefore memory accesses will

be remote.

We could pin the threads entering the extended arena to the corresponding NUMA

node when they occupy its free slots (even if they were pinned to a different NUMA

node before). Now these helping threads will also access local memory. However,

the node can become oversubscribed, which usually hurts performance (if not, you

should oversubscribe every NUMA node from the very beginning). For each particular

application and architecture, thorough experimentation should be carried out to decide

whether it is advantageous to migrate the thread to the NUMA node or to remotely

access the data from the original node. For the simple and regular triad algorithm,

none of these discussed approaches significantly improves the performance, but in

more complex and irregular applications they might. Not only do remote access have

overhead, but also thread migration from one arena to another, as well as pinning

the thread once again, represent an overhead that has to be amortized by better load

balancing of the work.

Another battle that we can choose to fight concerns the data partitioning. We used

a basic block distribution of the three arrays in our simple triad implementation, but we

certainly know of better data distributions for more irregular applications. For example,

instead of partitioning upfront the iteration space among the NUMA nodes, we can

follow a guided scheduling approach. Each master thread leading the computation on

each NUMA node can get larger chunks of the iteration space at the beginning of the

computation and smaller as we approach the end of the space. The caveat here is to

guarantee that chunks have enough granularity to be repartitioned again among the

cores of each NUMA node.

A more elaborate alternative consists in generalizing the work-stealing framework in

a hierarchical way. In order to allow work stealing both between arenas and within each

arena, a hierarchy of arenas can be implemented. A similar idea was implemented for

Cilk by Chen and Guo (see the “For More Information” section) who proposed a triple-

level work-stealing scheduler that yielded up to 54% of performance improvement over

Chapter 20 TBB on NUMA Architectures

603

more traditional work-stealing alternatives for memory-bound applications. Note that

memory-bound applications will benefit more from NUMA locality exploitation than

CPU-bound ones. For the latter, memory access overhead is usually hidden by CPU

intensive computations. Actually, for CPU-bound applications, adding extra complexity

to the scheduler in order to exploit NUMA locality can result in an extra overhead that

ends up not paying off.

�Summary
In this chapter, we explored some alternatives to exploit NUMA locality combining

TBB and third-party libraries that help in controlling the data placement and processor

affinity. We began by studying the enemy that we want to defeat: the NUMA architecture.

To that end, we introduced some ally libraries, hwloc and likwid. With them we can not

only query the low-level details of the NUMA topology but also control data placement

and processor affinity. We illustrated the use of some of the hwloc functions to allocate

per-node memory, create one thread per NUMA node and pin threads to the cores of the

node. With this template, we re-implemented a baseline version of the triad algorithm,

now paying attention to NUMA locality. The simplest solution consisted of distributing

the three triad arrays in blocks that are allocated and traversed in the different NUMA

nodes. The library hwloc was key to allocate and pin the threads, and the TBB task_

arena and task_scheduler_observer classes were instrumental in identifying the

threads entering a particular NUMA node. This initial solution is good enough for

a code as regular as the triad benchmark, which reports 74% and 54% performance

improvement (with respect to the baseline triad implementation) on two different

NUMA platforms, respectively. For more irregular and complex applications, more

advanced alternatives are sketched in the last section of the chapter.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Christoph Lameter, NUMA (Non-Uniform Memory Access): An

Overview, ACMqueue, Volume 11, issue 7, 2013.

•	 Ulrich Drepper, What Every Programmer Should Know About

Memory, www.akkadia.org/drepper/cpumemory.pdf, 2017.

Chapter 20 TBB on NUMA Architectures

http://www.akkadia.org/drepper/cpumemory.pdf

604

•	 Quan Chen, Minyi Guo and Haibing Guan, LAWS: Locality-

Aware Work-Stealing for Multi-socket Multi-core Architectures,

International Conference on Supercomputing, ICS, 2014.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 20 TBB on NUMA Architectures

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 20: TBB on NUMA Architectures
	Discovering Your Platform Topology
	Understanding the Costs of Accessing Memory
	Our Baseline Example
	Mastering Data Placement and Processor Affinity

	Putting hwloc and TBB to Work Together
	More Advanced Alternatives
	Summary
	For More Information

