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CHAPTER 20

TBB on NUMA 
Architectures
Advanced programmers who care about performance know that exploiting locality 

is paramount. When it comes to locality, cache locality is the one that immediately 

springs to mind, but in many cases, for heavy-duty applications running on large 

shared-memory architectures, Non-Uniform Memory Access (NUMA) locality should 

also be considered. As you certainly know, NUMA conveys the message that memory 

is organized in different banks and some cores have faster access to some of the “close” 

banks than to “far” banks. More formally, a NUMA node is a grouping of the cores, 

caches, and local memory in which all cores share the same access time to the local 

shared caches and memory. Access time from one NUMA node to a different one can be 

significantly larger. Some questions arise, such as how the program data structures are 

allocated on the different NUMA nodes and where the threads that process these data 

structures are running (are they close or far from the data?). In this chapter, we address 

these questions, but more importantly, what can be done to exploit NUMA locality 

within a TBB parallel application.

Tuning for performance on NUMA systems comes down to four activities: (1) 

discovering what your platform topology is, (2) knowing the costs associated with 

accessing memory from the different nodes of your system, (3) controlling where your 

data is stored (data placement), and (4) controlling where your work executes (processor 

affinity).

In order to prevent you from being disappointed further down the line (i.e., to 

disappoint you right now!), we shall say the following upfront: currently, TBB does not 

offer high-level features for exploiting NUMA locality. Or in other words, out of the four 

activities listed before, TBB offers some help only in the fourth one, where we can rely on 
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the TBB task_arena (see Chapter 12) and local task_sheduler_observer (see Chapter 13)  

classes to identify the threads that should be confined in a NUMA node. For all the 

other activities, and even for the actual pinning of threads to NUMA nodes (which is 

the essential part of the fourth activity), we need to use either low-level OS-dependent 

system calls or higher-level third-party libraries and tools. This means, that even if this 

is a TBB book, this last chapter is not entirely about TBB. Our goal here is to thoroughly 

elaborate on how we can implement TBB code that exploits NUMA locality, even if most 

of the required activities are not directly related to TBB.

Now that we have warned the reader, let us break down the sections into which 

we have organized this chapter. We basically follow, in order, the four activities listed 

before. The first section shows some tools that can be used to discover the topology of 

our platform and to check how many NUMA nodes are available. If there is more than 

one NUMA node, we can move on to the next section. There, we use a benchmark to 

get an idea of the potential speedup that is at stake when exploiting NUMA locality on 

our particular platform. If the expected gain is convincing, we should start thinking in 

exploiting NUMA locality in our own code (not just in a simple benchmark). If we realize 

that our own problem can benefit from NUMA locality, we can jump into the heart of 

the matter which consists in mastering data placement and processor affinity. With this 

knowledge and with the help of TBB task_arena and task_scheduler_observer classes, 

we implement our first simple TBB application that exploits NUMA locality and assess 

the speedup obtained with respect to a baseline implementation. The whole process is 

summarized in Figure 20-1. We close the chapter sketching more advanced and general 

alternatives that could be considered for more complex applications.

Figure 20-1.  Activities required to exploit NUMA locality
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Note I f you are wondering why there is no high-level support in the current 
version of TBB, here are some reasons. First, it is a tough problem, highly dependent 
on the particular application that has to be parallelized and the architecture on 
which it will run. Since there is no one-size-fits-all solution, it is left to developers to 
determine the particular data placement and processor affinity alternatives that best 
suit the application at hand. Second, TBB architects and developers have always 
tried to avoid hardware specific solutions inside the TBB library because they can 
potentially hurt the portability of the code and the composability features of TBB. The 
library was not developed only to execute HPC applications, where we usually have 
exclusive access to the whole high-performance platform (or a partition of it). TBB 
should also do its best in shared environments in which other applications and 
processes are also running. Pinning threads to cores and memory to NUMA nodes 
can in many cases leads to suboptimal exploitation of the underlying architecture. 
Manually pinning has been shown repeatedly to be a bad idea in any application or 
system that has any dynamic nature in it at all. We strongly advise against taking 
such an approach, unless you are positive you will improve performance for your 
particular application on your particular parallel platform and you do not care about 
portability (or extra effort is made to implement a portable NUMA-aware application).

Considering the task-based nature of TBB parallel algorithms and the work-stealing 

scheduler that fuels the parallel execution, keeping the tasks running in cores close to 

the local memory can seem challenging. But that’s not going to deter brave and fearless 

programmer like us. Let’s go for it!

�Discovering Your Platform Topology
“Know your enemy and yourself, and you shall win a hundred battles without loss.” – Sun Tzu 

in The Art of War. This millenarian quote advises us to first strive to meticulously understand 

what we are facing before tackling it. There are some tools that come in handy to understand 

the underlying NUMA architecture. In this chapter, we will use hwloc and likwid1 to gather 

information about the architecture and code execution. hwloc is a software package that 

1�www.open-mpi.org/projects/hwloc and https://github.com/RRZE-HPC/likwid.
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provides a portable way to query information about the topology of a system, as well as to 

apply some NUMA controls, like data placement and processor affinity. likwid is another 

software package that informs about the hardware topology, can be used to collect hardware 

performance counters, and also provides a set of useful micro-benchmarks that can be used 

to characterize systems. We can also use VTune to analyze the performance of our code. 

Although likwid is only available for Linux, hwloc and VTune can be easily installed on 

Windows and MacOS as well. However, since the shared memory platforms that will serve to 

illustrate our codes run Linux, this will be the OS that we assume unless stated otherwise.

Because tuning for NUMA requires a deep understanding of the platforms being 

used, we will start by characterizing two machines that we will work on throughout this 

chapter. The two machines that we introduce next are known as yuca (from the yucca 

plant) and aloe (from the aloe vera plant). First, we can gather basic information about 

these machines. On Linux this information can be obtained using the command “lscpu”, 

as we can see in Figure 20-2.

At first glance, we see that yuca has 64 logical cores numbered from 0 to 63, 

two logical cores per physical core (hyperthreading aka SMT or simultaneous 

multithreading, available), eight physical cores per socket, and four sockets that are 

also the four NUMA nodes or NUMA domains. For its part, aloe has 32 physical cores 

with hyperthreading disabled (only one thread per core), 16 physical cores per socket, 

and two sockets (NUMA nodes). At the end of the lscpu output, we can see the NUMA 

Figure 20-2.  Output of lscpu on yuca and aloe
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nodes and the ids of the logical cores included in each node, but the picture will become 

clearer if we use the lstopo utility from the hwloc library. In Figure 20-3, we include the 

PDF file generated on yuca when executing the command lstopo --no-io yuca.pdf 

(the --no-io argument disregards the I/O device topology).

Figure 20-3.  Result of executing lstopo on yuca
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Figure 20-4.  Result of executing lstopo on aloe

From this figure, we can get a clear representation of the NUMA organization in 

yuca. The four NUMA nodes include eight physical cores that are seen by the OS as 16 

logical cores (also known as hardware threads). Note that logical core ids depend on the 

architecture, the firmware (BIOS configuration on PCs), and OS version, so we cannot 

assume anything from the numbering. For the particular configuration of yuca, logical 

cores 0 and 32 share the same physical core. Now we better understand the meaning of 

the last four lines of lscpu on yuca:

NUMA node0 CPU(s):     0-7,32-39

NUMA node1 CPU(s):     8-15,40-47

NUMA node2 CPU(s):     16-23,48-55

NUMA node3 CPU(s):     24-31,56-63

On yuca, each NUMA node has 63 GB of local memory, or 252 GB in total. Similarly, 

aloe also features 252 GB but organized in only two NUMA nodes. In Figure 20-4, we see 

a slightly edited version of the output of lstopo on aloe.

We see that on aloe each physical core includes a single logical core, numbered from 

0-15 in the first domain and from 16-31 in the second one.
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�Understanding the Costs of Accessing Memory
Now that we know the topology of our platform, let’s quantify the overhead due to 

nonlocal accesses assuming we already control processor affinity and data placement. 

Actually, we do control these two aspects on already available benchmarks, like likwid-

bench available in the likwid tool. Using this benchmark, we can run the STREAM triad 

code (see the previous two chapters) using a single command line:

likwid-bench -t stream -i 1 -w S0:12GB:16-0:S0,1:S0,2:S0

which runs a single iteration (-i 1) of the stream benchmark configured with -w 

argument so that

•	 S0: The threads are pinned to the NUMA node 0.

•	 12 GB: The three triad arrays occupy 12 GB (4 GB per array).

•	 16: 16 threads will share the computation, each one processing 

chunks of 31,250,000 doubles (this is, 4000 million bytes/8 bytes per 

double/16 threads).

•	 0:S0,1:S0,2:S0: The three arrays are allocated on the NUMA node 0.

On yuca, the result of this command reports a bandwidth of 8219 MB/s. But it is a 

no-brainer to change the data placement for the three arrays, for example to the NUMA 

node 1 (using 0:S1,1:S1,2:S1) keeping the computation by 16 threads confined in the 

NUMA node 0. Not surprisingly, the bandwidth we get now is only 5110 MB/s, which 

means we are losing a 38% of the bandwidth we measured when exploiting NUMA 

locality. We get similar results for other configurations that compute local data (data 

placement on the cores where the threads are pinned) and configurations that do not 

exploit locality (data placement on cores that do not have the thread affinity). On yuca, 

all nonlocal configurations result in the same bandwidth hit, but there are other NUMA 

topologies on which we pay different penalties depending on where the data is placed 

and where the threads are running.

On aloe we only have two NUMA nodes 0 and 1. Having the data and the 

computation on the same domain gives us 38671 MB/s, whereas going down the wrong 

path results in only 20489 MB/s (almost half, exactly 47% less bandwidth). We are certain 

that a reader like you, eager to read and learn about performance programming topics, is 

now motivated to exploit NUMA locality in your own projects!
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�Our Baseline Example
Figure 20-5 shows a parallel version of the triad example that we have been using 

recently, with just a parallel_for algorithm.

Figure 20-5.  The baseline algorithm to evaluate and improve

The last two lines of this code, which is not yet optimized for NUMA, reports the 

execution time and the obtained bandwidth. For the latter, the total number of bytes 

accessed is computed as vsize × 8 bytes/double × 3 access per array element (two loads 

and one store), and this is divided by the execution time and by one million (to convert 

to Mbytes per second). On yuca, this results in the following output when running with 

32 threads and arrays of one giga-element:

./fig_20_05 32 1000000000

Time: 2.23835 seconds; Bandwidth: 10722.2MB/s
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and on aloe:

./fig_20_05 32 1000000000

Time: 0.621695 seconds; Bandwidth: 38604.2MB/s

Note that the bandwidth obtained with our triad implementation should not be 

compared with the one reported previously by likwid-bench. Now we are using 32 

threads (instead of 16) that, depending on the OS scheduler, can freely run on every core 

(instead of confined to a single NUMA node). Similarly, arrays are now placed by the OS 

following its own data placement policy. In Linux, the default policy2 is “local allocation” 

in which the thread that does the allocation determines the data placement: in local 

memory if there is enough space, or remote otherwise. This policy is sometimes called 

“first touch,” because data placement is not done at allocation time, but at first touch 

time. This means that a thread can allocate a region but the thread that first accesses this 

region is the one raising the page fault and actually allocating the page on memory local 

to that thread. In our example of Figure 20-5, the same thread allocates and initializes the 

arrays, which means that the parallel_for worker threads running on the same NUMA 

node will have faster access. A final difference is that likwid-bench implements the triad 

computation in assembly language which prevents further compiler optimizations.

�Mastering Data Placement and Processor Affinity
Binding data and computation is not trivial at all. Mainly because it depends on 

the Operating System and each one has its own system calls. In Linux, the low-

level interface is provided by libnuma3 which includes functions to control the data 

placement and processor affinity policies implemented in the Linux kernel. A higher-

level alternative is the numactl4 command that tackles the same problem, offering less 

flexibility though.

However, it is not the best idea in the world to ruin the portability of our TBB 

application marrying to an OS dependent NUMA library. A portable and widely used 

alternative is the already mentioned hwloc library. Currently, TBB does not offer its 

own API to deal with NUMA locality, but as we will see later, there are measures we can 

take to get our TBB tasks to access local data when possible. At the time of writing this, 

2�We can query the enforced NUMA policy using numactl --show.
3�http://man7.org/linux/man-pages/man3/numa.3.html.
4�http://man7.org/linux/man-pages/man8/numactl.8.html.
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manual control of data placement and processor affinity has to be done via a third-party 

library, and without loss of generality, we will resort to hwloc in this chapter. This library 

can be used in Windows, MacOS, and Linux (actually, in Linux hwloc uses numactl/

libnuma underneath).

In Figure 20-6, we present an example that queries the number of NUMA nodes and 

then allocates some data on each node to later create a thread per node and bind it to 

the corresponding domain. We are using hwloc 2.0.1 in the following.

Figure 20-6.  Using hwloc to allocate memory and bind threads to each NUMA 
node
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A recurrent argument of all hwloc functions is the object topology, topo in our 

example. This object is first initialized and then loaded with the available information 

of the platform. After that, we are ready to get information from the topo data structure, 

as we do with hwloc_get_nbobjs_by_type that returns the number of NUMA nodes 

when the second argument is HWLOC_OBJ_NUMANODE (several other types are available, 

as HWLOC_OBJ_CORE or HWLOC_OBJ_PU – logical core or processing unit). This number of 

NUMA nodes is stored in the variable num_nodes.

The example continues by creating an array of num_nodes pointers to doubles that 

will be initialized inside the function alloc_mem_per_node. The function call to alloc_

thr_per_node creates num_nodes threads, each one pinned to the corresponding NUMA 

node. These two functions are described in Figures 20-7 and 20-8, respectively. The 

example finishes by freeing the allocated memory and the topo data structure.

Figure 20-7.  Function that allocates an array of doubles per NUMA node

Figure 20-7 shows the implementation of the function alloc_mem_per_node. The key 

operations are hwloc_get_obj_by_type that returns a handle to the ith NUMA node 

object, numa_node, when the second and third arguments are HWLOC_OBJ_NUMANODE  
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and i, respectively. This numa_node has several attributes like numa_node->cpuset  

(a bitmask identifying the logical cores included in the node) and numa_node->nodeset 

(a similar bitmask that identifies the node). The function hwloc_bitmap_asprintf 

comes in handy to translate these sets into strings as we will see latter in the output 

of the program. Using the nodeset bitmask, we can allocate memory in a node with 

hwloc_alloc_membind.

The output we get on yuca when running the code until alloc_mem_per_node returns 

to the main function is

There are 4 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x000000ff,0x000000ff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0x0000ff00,0x0000ff00

Allocate data on node 1 with node bitmask 0x00000002

NUMA node 2 has cpu bitmask: 0x00ff0000,0x00ff0000

Allocate data on node 2 with node bitmask 0x00000004

NUMA node 3 has cpu bitmask: 0xff000000,0xff000000

Allocate data on node 3 with node bitmask 0x00000008

where we see the cpuset and nodeset of each NUMA node. If we refresh our memory 

looking again at Figure 20-3, we see that in node 0 we have eight cores with 16 logical 

cores, numbered from 0 to 7 and from 32 to 39, which are represented in hwloc with the 

bitmask 0x000000ff,0x000000ff. Note that the “ , ” separates the two sets of logical cores 

sharing the eight physical ones. To compare with a Hyperthreading disabled platform, 

this is the corresponding output on aloe:

There are 2 NUMA node(s)

NUMA node 0 has cpu bitmask: 0x0000ffff

Allocate data on node 0 with node bitmask 0x00000001

NUMA node 1 has cpu bitmask: 0xffff0000

Allocate data on node 1 with node bitmask 0x00000002

In Figure 20-8, we list the function alloc_thr_per_node that spawns a thread per 

NUMA node and then bind it using the cpuset attribute.
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This function also queries the number of NUMA nodes, num_nodes, to later iterates this 

number of times inside a loop that creates the threads. In the lambda expression that each 

thread executes, we use hwloc_set_cpubind to bind the thread to each particular NUMA 

node, now relying on the numa_node->cpuset. To validate the pinning, we print the thread 

id (using std::this_thread::get_id) and the id of the logical core on which the thread is 

running (using sched_getcpu). The result on yuca is next, also illustrated in Figure 20-9.

Before: Thread 0 with tid 873342720 on core 33

After: Thread 0 with tid 873342720 on core 33

Before: Thread 1 with tid 864950016 on core 2

After: Thread 1 with tid 864950016 on core 8

Before: Thread 2 with tid 856557312 on core 33

After: Thread 2 with tid 856557312 on core 16

Before: Thread 3 with tid 848164608 on core 5

After: Thread 3 with tid 848164608 on core 24

Figure 20-8.  Function that creates and pins a thread per NUMA node
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Figure 20-9.  Depicting the movement of threads due to pinning to NUMA nodes 
on yuca

Two things are worth mentioning here. First, the threads are initially allocated by 

the OS on logical cores in the same NUMA node, since it assumes they will collaborate. 

Threads 0 and 2 are even allocated on the same logical core. Second, the threads are not 

pinned to a single core, but to the whole set of cores belonging to the same NUMA node. 

This allows for some leeway if the OS considers it better to move a thread to a different 

core of the same node. For completeness, here is the equivalent output on aloe:

Before: Thread: 0 with tid 140117643171584 on core 3

After: Thread: 0 with tid 140117643171584 on core 3

Before: Thread: 1 with tid 140117634778880 on core 3

After: Thread: 1 with tid 140117634778880 on core 16

There are many more features of hwloc and likwid that the interested reader can 

learn from the respective documentation and online tutorials. However, what we have 

covered in this section suffices to move on, roll up our sleeves, and implement a NUMA-

conscious version of the triad algorithm using TBB.
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�Putting hwloc and TBB to Work Together
Clearly, the overarching goal is to minimize the number of nonlocal accesses, which 

implies conducting the computation on the cores nearest to the memory in which the 

data is stored. A quite simple approach is to manually partition the data on the NUMA 

nodes and confine the threads that process this data to the same nodes. For educational 

purposes, we will first describe this solution and in the next section briefly elaborate on 

more advanced alternatives.

We can rely on the hwloc API to accomplish the data placement and processor 

affinity tasks, but we want a NUMA-aware TBB implementation of the triad benchmark. 

In this case, the TBB scheduler is the one managing the threads. From Chapter 11, 

we know that a number of threads are created inside the tbb::task_scheduler_

init function. Additionally, this TBB function creates a default arena with enough 

worker slots to allow the threads to participate in executing tasks. In our baseline 

implementation of triad (see Figure 20-5), a parallel_for takes care of partitioning the 

iteration space into different tasks. All the threads will collaborate on processing these 

tasks, irrespectively of the chunk of iterations that each task processes and of the core on 

which the thread is running. But we don’t want that on a NUMA platform, right?

Our simplest alternative to the baseline triad implementation will enhance the 

implementation by performing the following three steps:

•	 It will partition and allocate the three vectors, A, B, and C, of the triad 

algorithm on the different NUMA nodes. As the simplest solution, 

a static block partitioning will do for now. On yuca, this means that 

four big chunks of A, B, and C will be allocated on each one of the 

four nodes.

•	 It will create a master thread on each NUMA node. Each  

master thread will create its own task arena and its own local  

task_scheduler_observer. Then, each master thread executes its 

own tbb::parallel_for algorithm to process the fraction of A, B, 

and C that correspond to this NUMA node.

•	 It will automatically pin the threads that join each arena to the 

corresponding NUMA node. The local task_scheduler_observer 

that we create for each arena will take care of this.
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Let’s see the implementation of each one of the described bullet points. For the main 

function we slightly modify the one we presented for the hwloc example of Figure 20-6. 

In Figure 20-10, we list the new lines required for this new example, using ellipsis (…) on 

the lines that do not change.

Figure 20-10.  Main function of the NUMA-conscious implementation of triad

The program argument, thds_per_node, allows us to play with different number 

of threads per NUMA node. As in the example of Figure 20-6, num_nodes is the number 

of NUMA nodes that we obtain using the hwloc API. Consequently, we pass to the TBB 

scheduler constructor (thds_per_node-1)*(num_nodes) instead of thds_per_node*num_

nodes because we will explicitly create the additional num_nodes master threads inside 

alloc_thr_per_node.

The function alloc_mem_per_node is essentially the same as the one listed in 

Figure 20-7, but now it is called with a different size argument: doubles_per_node = 

vsize*3/num_nodes, where vsize is the size of the three vectors, so the total amount of 

doubles is multiplied by 3, but divided by the number of nodes to implement the block 

partitioning. For the sake of cleanness, we assume that vsize is a multiple of num_nodes. 

At the completion of alloc_mem_per_node, data[i] points to the data allocated on the 

ith NUMA node.
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Figure 20-11.  Function that creates a thread per node to compute the triad 
computation on each NUMA node

There are other differences in the adapted version of the alloc_thr_per_node 

function as we see in Figure 20-11. It now receives a handle to the data, the size of the 

local vectors that will be traversed per node, lsize, and the number of threads per node 

set by the user, thds_per_node.
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Note that in the code snippet presented in Figure 20-11, inside the i-loop that 

traverses the num_nodes, there are three nested lambda expressions: (1) for the thread 

object; (2) for task_arena::execute member function; and (3) for the parallel_for 

algorithm. In the outer one, we first pin the thread to the corresponding NUMA node, i.

The second step is to initialize the pointers to arrays A, B, and C that were allocated 

in the data[i] array. In Figure 20-10, we call alloc_thr_per_node using as the third 

argument vsize/num_nodes because on each node we traverse just one chunk of the 

block distribution of the three arrays. Hence, the function’s argument lsize = vsize/

num_nodes, which is used in the loop that initializes arrays A and B and as the argument 

to the parallel_for that computes C.

Next, we initialize a per NUMA node arena, numa_arena, that is later passed as 

argument to a task_scheduler_observer object, p, and used to invoke a parallel_for 

confined to this arena (using numa_arena.execute). Here lies the key of our NUMA-

aware implementation of triad.

The parallel_for will create tasks that traverse chunks of the local partition of 

the three vectors. These tasks will be executed by threads running on the cores of the 

same NUMA node. But up to now, we just have thds_per_node*num_nodes threads, 

out of which num_nodes have been explicitly spawned as master threads and pinned 

to a different NUMA node, but the rest are still free to run everywhere. The threads 

that are available in the global thread pool will each join one of the num_nodes arenas. 

Conveniently, each numa_arena has been initialized with thds_per_node slots, one 

already occupied by a master thread and the rest available for worker threads. Our 

goal now is to pin the first thds_per_node-1 threads that enter each numa_arena to the 

corresponding NUMA node. To that end, we create a PinningObserver class (deriving 

from task_scheduler_observer) and construct an object, p, passing four arguments 

to the constructor: PinningObserver p{numa_arena, topo, i, thds_per_node}. 

Remember that here, i is the id of the NUMA node for the master thread i.

In Figure 20-12, we see the implementation of the PinningObserver class.
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The task_scheduler_observer class was introduced in Chapter 13. It has a preview 

feature that allows us to have an observer per task arena – also called a local task_

scheduler_observer. This kind of observer is initialized with a reference to the arena, as 

we do in the initializer list of the PinningObserver constructor using task_scheduler_

observer{arena}. This results in the execution of the member function on_scheduler_

entry for each thread that enters this particular arena. The constructor of the class also 

sets the number of NUMA nodes, num_nodes, and the numa_node object that will give 

us access to the numa_node->cpuset bitmask. The constructor finally calls the member 

function observe(true) to start tracking whether or not a task enters the arena.

Figure 20-12.  Implementation of the local task_scheduler_observer for triad
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The function on_scheduler_entry keeps track of the number of threads that have 

been already pinned to the numa_node in the atomic variable thds_per_node. This 

variable is set in the initializer list of the constructor to the number of threads per node 

that the user pass as the first argument of the program. This variable is decremented 

for each thread entering the arena, which will get pinned to the node only if the value 

is greater than 0. Since each numa_arena was initialized with thds_per_node slots, and 

the already pinned master thread that creates the arena occupies one of the slots, the 

thds_per_node - 1 threads that join the arena first will get pinned to the node and work 

on tasks generated by the parallel_for that this arena is executing.

Note T he implementation of our PinningObserver class is not totally correct. One 
thread may leave the arena and reenter the same arena, getting pinned twice, but 
decrementing the number thds_per_node. A more correct implementation would 
check that the thread entering the arena is a new one that has not been pinned to 
this arena already. To avoid complicating the example, we leave this correction as 
an exercise to the reader.

We can now assess on yuca and aloe the bandwidth (in Mbytes per second) of 

this NUMA optimized version of the triad algorithm. To compare with the baseline 

implementation in Figure 20-5, we set the vector sizes to 109 doubles and set the number 

of threads per NUMA node so that we end up with 32 threads total. For example, in yuca 

we call the executables as follows:

baseline:           ./fig_20_05 32 1000000000

NUMA conscious:     ./fig_20_10  8 1000000000

The results presented in the table of Figure 20-13 are the average of ten runs in which 

yuca and aloe had a single user that was using the platform exclusively to conduct the 

experiments.

Figure 20-13.  Speedup due to the NUMA-conscious implementation
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This is 74% faster execution on yuca, and 54% on aloe! Would you ignore this extra 

amount of performance that we can squeeze out of a NUMA architecture with some 

extra implementation work?

To further investigate this improvement, we can take advantage of the likwid-

perfctr application that is able to read out hardware performance counters. Invoking 

likwid-perctr -a, we get a list of groups of events that can be specified using only the 

group name. In aloe, likwid offers a NUMA group, which collects information about local 

and remote memory accesses. To measure the events in this group on our baseline and 

NUMA-conscious implementations, we can invoke these two commands:

likwid-perfctr -g NUMA ./fig_20_05 32 1000000000

likwid-perfctr -g NUMA ./fig_20_10 16 1000000000

This will report plenty of information about the value of some performance counters 

on all the cores. Among the counted events are

OFFCORE_RESPONSE_0_LOCAL_DRAM

OFFCORE_RESPONSE_1_REMOTE_DRAM

which give us approximate information (because is based on event-based sampling) 

of the amount of data accessed in local memory and remote memory. For the baseline 

triad implementation, the ratio of local data over remote data is only 3.25, but it raises up 

to 25.5 in the NUMA optimized triad-numa version. This confirms that, for this memory 

bound application, the effort we made to exploit NUMA locality pays off in terms of both 

the amount of local accesses and consequently the execution bandwidth.

�More Advanced Alternatives
For the regular triad code, the simple solution we have implemented is okay, but 

TBB’s work-stealing scheduler is confined to balancing the load on each NUMA node 

independently. On yuca, there will be four parallel_for algorithms running, each on 

a NUMA node with eight threads served by eight physical cores. The downside of our 

simple approach is that the four arenas have been configured with eight slots, which is 

okay for the steady-state part of the execution, but limits TBB’s flexibility if the load is not 

perfectly balanced between the NUMA nodes.
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For example, if one of the parallel_for algorithms ends first, eight threads become 

idle. They come back to the global thread pool but cannot join any of the other three 

busy arenas because all the slots are already filled. A simple solution for this involves 

increasing the number of slots of the arenas, while keeping the number of pinned 

threads to thds_per_node. In such a case, if a parallel_for finishes first, the eight 

threads returning to the global pool can be redistributed in the free slots of the other 

three arenas. Note that these threads are still pinned to the original node, although they 

will work now in a different arena of a different node and therefore memory accesses will 

be remote.

We could pin the threads entering the extended arena to the corresponding NUMA 

node when they occupy its free slots (even if they were pinned to a different NUMA 

node before). Now these helping threads will also access local memory. However, 

the node can become oversubscribed, which usually hurts performance (if not, you 

should oversubscribe every NUMA node from the very beginning). For each particular 

application and architecture, thorough experimentation should be carried out to decide 

whether it is advantageous to migrate the thread to the NUMA node or to remotely 

access the data from the original node. For the simple and regular triad algorithm, 

none of these discussed approaches significantly improves the performance, but in 

more complex and irregular applications they might. Not only do remote access have 

overhead, but also thread migration from one arena to another, as well as pinning 

the thread once again, represent an overhead that has to be amortized by better load 

balancing of the work.

Another battle that we can choose to fight concerns the data partitioning. We used 

a basic block distribution of the three arrays in our simple triad implementation, but we 

certainly know of better data distributions for more irregular applications. For example, 

instead of partitioning upfront the iteration space among the NUMA nodes, we can 

follow a guided scheduling approach. Each master thread leading the computation on 

each NUMA node can get larger chunks of the iteration space at the beginning of the 

computation and smaller as we approach the end of the space. The caveat here is to 

guarantee that chunks have enough granularity to be repartitioned again among the 

cores of each NUMA node.

A more elaborate alternative consists in generalizing the work-stealing framework in 

a hierarchical way. In order to allow work stealing both between arenas and within each 

arena, a hierarchy of arenas can be implemented. A similar idea was implemented for 

Cilk by Chen and Guo (see the “For More Information” section) who proposed a triple-

level work-stealing scheduler that yielded up to 54% of performance improvement over 
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more traditional work-stealing alternatives for memory-bound applications. Note that 

memory-bound applications will benefit more from NUMA locality exploitation than 

CPU-bound ones. For the latter, memory access overhead is usually hidden by CPU 

intensive computations. Actually, for CPU-bound applications, adding extra complexity 

to the scheduler in order to exploit NUMA locality can result in an extra overhead that 

ends up not paying off.

�Summary
In this chapter, we explored some alternatives to exploit NUMA locality combining 

TBB and third-party libraries that help in controlling the data placement and processor 

affinity. We began by studying the enemy that we want to defeat: the NUMA architecture. 

To that end, we introduced some ally libraries, hwloc and likwid. With them we can not 

only query the low-level details of the NUMA topology but also control data placement 

and processor affinity. We illustrated the use of some of the hwloc functions to allocate 

per-node memory, create one thread per NUMA node and pin threads to the cores of the 

node. With this template, we re-implemented a baseline version of the triad algorithm, 

now paying attention to NUMA locality. The simplest solution consisted of distributing 

the three triad arrays in blocks that are allocated and traversed in the different NUMA 

nodes. The library hwloc was key to allocate and pin the threads, and the TBB task_

arena and task_scheduler_observer classes were instrumental in identifying the 

threads entering a particular NUMA node. This initial solution is good enough for 

a code as regular as the triad benchmark, which reports 74% and 54% performance 

improvement (with respect to the baseline triad implementation) on two different 

NUMA platforms, respectively. For more irregular and complex applications, more 

advanced alternatives are sketched in the last section of the chapter.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 Christoph Lameter, NUMA (Non-Uniform Memory Access): An 

Overview, ACMqueue, Volume 11, issue 7, 2013.

•	 Ulrich Drepper, What Every Programmer Should Know About 

Memory, www.akkadia.org/drepper/cpumemory.pdf, 2017.
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•	 Quan Chen, Minyi Guo and Haibing Guan, LAWS: Locality-

Aware Work-Stealing for Multi-socket Multi-core Architectures, 

International Conference on Supercomputing, ICS, 2014.

Open Access   This chapter is licensed under the terms of the Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

noncommercial use, sharing, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license and indicate if you modified the licensed material. 

You do not have permission under this license to share adapted material derived from 

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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