
451
© Intel Corporation 2019 
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_17

CHAPTER 17

Flow Graphs: Beyond 
the Basics
This chapter contains some key tips on getting top performance from flow graphs in 

TBB. The less structured nature of the TBB flow graph APIs offers an expressiveness that 

requires some thinking to get the best scalable performance – we dive into details in this 

chapter that let us tune flow graphs to their full potential.

In Chapter 3, we introduced the classes and functions in the tbb::flow namespace 

and how they can be used to express simple data flow and dependency graphs. In this 

chapter, we discuss some of the more advanced questions and issues that arise when 

using TBB flow graphs. As in Chapter 16, much of our discussion will revolve around 

granularity, effective memory use, and creating sufficient parallelism. But because 

the flow graph APIs let us express parallelism that is less structured than the parallel 

algorithms described in Chapter 16, we will also discuss some dos and don’ts to be 

aware of when architecting a flow graph.

The section “Key FG Advice: Dos and Don’ts,” starting on page 480, gives very 

specific rules of thumb that are invaluable when using flow graphs with TBB.

We conclude this chapter with a brief overview of the Flow Graph Analyzer (FGA), 

a tool available within Intel Parallel Studio XE. It has strong support for the graphical 

design and analysis of TBB flow graphs. While using FGA is not required when working 

with flow graphs, visualizing graphs during design and analysis can be very helpful.  

The tool is freely available to everyone, and we highly recommend it for anyone doing 

serious TBB flow graph work.
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�Optimizing for Granularity, Locality, and Parallelism
In this section, we focus on the same three concerns that drove our discussions in 

Chapter 16. We first look at the impact of node granularity on performance. Because flow 

graphs are used for less structured algorithms, we need to consider how parallelism is 

introduced as we discuss granularity – does the structure require a significant amount of 

stealing or is the generation of tasks spread well across the threads? Also, we may want to 

use some very small nodes in a flow graph simply because they make the design clearer – 

in such cases, we describe how a node with a lightweight execution policy can be used 

to limit overheads. The second issue we will address is data locality. Unlike the TBB 

parallel algorithms, the flow graph API does not provide abstractions like Ranges and 

Partitioners; instead, it is designed to enhance locality naturally. We will discuss how 

threads follow data to exploit locality. Our third issue is creating sufficient parallelism. 

Just as in Chapter 16, optimizing for granularity and locality sometimes comes at the cost 

of restricted parallelism – we need to be sure we walk this tightrope carefully.

�Node Granularity: How Big Is Big Enough?
In Chapter 16, we discussed Ranges and Partitioners and how these can be used to 

ensure that the tasks created by the TBB generic algorithms are large enough to amortize 

scheduling overheads while still being small enough to provide enough independent 

work items for scalability. The TBB flow graph does not have support for Ranges and 

Partitioners, but we still need to be concerned about task granularity.

To see if our rule of thumb for 1 microsecond tasks that we introduced in Chapter 16 

applies as well to flow graph nodes as it does to parallel algorithm bodies, we will explore 

a few simple microbenchmarks that capture the extremes that can exist in flow graphs. 

We will compare the execution times of four functions and use different amounts of work 

per node execution. We will refer to these functions as Serial, FG loop, Master loop, and 

FG loop per worker.

It is our belief that studying these examples (Figures 17-1 to 17-4) is critical to 

having an intuitive grasp of some key issues that differentiate highly scalable flow graph 

usage and disappointing uses of flow graph. The APIs themselves, fully documented 

in Appendix B, do not provide this education – we hope you will study these examples 

enough to grasp the concepts as we believe this will make you much better at getting 

the most out of using TBB flow graphs (peek at Figure 17-5 to see a quantification of the 

benefits on performance of understanding these!).
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The Serial loop is our baseline and contains a for-loop that calls an active spin-wait 

function N times, as shown in Figure 17-1.

The FG loop function is shown in Figure 17-2. This function builds a flow graph 

that has a single multifunction_node with an edge from its output to its input. A single 

message starts the cycle and the node then spin-waits and sends a message back to its 

input. The cycle repeats N-1 times. Because the node spins before sending the message 

back to its input, this graph is still a mostly serial loop – the bulk of the work in the body 

tasks will not overlap. However, because the message is sent before the body returns, 

there is still a small-time gap during which another thread can steal the task that the 

try_put generates. We can use this graph to see the basic overhead of the flow graph 

infrastructure.

Figure 17-1.  Serial: A function that times the baseline serial loop
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Our next microbenchmarking function, Master loop shown in Figure 17-3, does 

not create a cycle. It instead sends all N messages to the multifunction_node directly 

from the master thread in a serial loop. Since the multifunction_node has unlimited 

parallelism and the serial for-loop will send messages very quickly, there are a lot of 

parallel tasks created. However, because the master thread is the only thread that calls 

the try_put method on node n, all body tasks are spawned into the master thread’s local 

deque. Worker threads that participate in executing this graph will be forced to steal each 

Figure 17-2.  FG loop: A function that times a serial flow graph
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task they execute – and only after they have randomly selected the master as their victim. 

We can use this graph to see the behavior of a flow graph with sufficient parallelism but 

that requires an extreme amount of work-stealing.

Finally, Figure 17-4 shows the FG loop per worker function. This function spreads 

the tasks across the master and worker threads’ local deques, since once a thread has 

stolen its initial task, it will then spawn tasks into its own local deque. We can use this 

graph to see the behavior of a flow graph with a very small amount of stealing.

Figure 17-3.  Master loop: A function that submits messages only from the master 
thread; workers must steal every task they execute
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Unless otherwise noted, all performance results presented in this chapter were 

collected on a single socket server with an Intel Xeon Processor E3-1230 with four cores 

supporting two hardware threads per core; the processor has a base frequency of 3.4 GHz, 

Figure 17-4.  FG loop per worker: A function that creates just enough parallelism 
to satisfy the number of workers. Once a worker has stolen its initial task, it will 
execute the remainder of its tasks from its local deque.
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a shared 8 MB L3 cache, and per-core 256 KB L2 caches. The system was running SUSE 

Linux Enterprise Server 12. All samples were compiled using the Intel C++ Compiler 19.0 

with Threading Building Blocks 2019, using the compiler flags “–std=c++11 –O2 –tbb”.

We ran these microbenchmarks using N=65,536 and spin-wait times of 100 ns, 1 us, 

10 us, and 100 us. We collected their average execution times over 10 trials and present 

the results in Figure 17-5. From these results, we can see that when the task sizes are 

very small, 100 nanoseconds for example, the overhead of the flow graph infrastructure 

leads to degraded performance in all cases. With task sizes of at least 1 microsecond, 

we begin to profit from parallel execution. And by the time we reach a task size of 100 

microseconds, we are able to reach close to perfect linear speedups.

We can further understand the performance of our microbenchmarks by collecting a 

trace and viewing the results in Flow Graph Analyzer (FGA) – FGA is described in more 

detail at the end of this chapter. Figure 17-6 shows per-thread timelines for the different 

functions when using a spin-wait time of 1 microsecond. These timelines, which are 

all of the same length, show the work done by each thread over time. The gaps (in 

gray) in the timelines indicate when a thread is not actively executing a node’s body. In 

Figure 17-6(a), we see the behavior of FG loop, which acts like a serial loop. But we can 

see that the small gap between the try_put in the body and the exit from the task allows 

the tasks to ping-pong between the threads since they are able to steal each task as it 

Figure 17-5.  The speedups Tserial/Tbenchmark for different spin wait times
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is spawned. This partially explains the fairly large overheads for this microbenchmark 

shown in Figure 17-5. As we explain later in this chapter, most functional nodes 

use scheduler bypass to follow their data to the next node when possible (see the 

discussion on Pipelines and data locality and thread affinity in Chapter 16 for a more 

detailed discussion of why scheduler bypass improves cache performance). Since a 

multifunction_node puts output messages to its output ports directly inside of the body 

implementation, it cannot immediately follow the data to the next node using scheduler 

bypass – it has to finish its own body first! A multifunction_node therefore does not use 

scheduler bypass to optimize for locality. In any case, this makes the performance in 

Figure 17-6(a) a worst-case overhead, since scheduler bypass is not used.

In Figure 17-6(b), we see the case where the master thread is generating all of the 

tasks and the workers must steal each task, but tasks can be executed in parallel once 

they are stolen. Because the worker threads must steal each task, they are much slower  

at finding tasks than the master thread. The master thread is continually busy in 

Figure 17-6(b) – it can quickly pop a next task from its local deque – while the worker 

threads’ timelines show gaps during which they are fighting with each other to steal their 

next task from the master’s local deque.

Figure 17-6(c) shows the good behavior of FG loop per worker, where each thread 

is able to quickly pop its next task from its local deque. Now we see very few gaps in the 

timelines.

Figure 17-6.  Two millisecond regions of the timelines for each microbenchmark 
when using a spin wait of 1 microsecond
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Looking at these extremes of behavior and noting the performance in Figure 17-5, we 

feel comfortable recommending a similar rule of thumb for flow graph nodes. While a 

pathological case, like Master loop, shows a limited speedup of 2.8 with a 1 microsecond 

body, it still shows a speedup. If the work is more balanced, such as with FG loop per 
worker, a 1 microsecond body provides a good speedup. With these caveats in mind, we 

again recommend a 1 microsecond execution time as a crude guideline:

RULE OF THUMB  Flow graph nodes should be at least 1 microsecond in 
execution time in order to profit from parallel execution. This translates to several 
thousand CPU cycles – if you prefer using cycles, we suggest a 10,000 cycle 
rule of thumb.

Just like with the TBB algorithms, this rule does not mean that we must avoid nodes 

smaller than 1 microsecond at all costs. Only if our flow graph’s execution time is 

dominated by small nodes do we really have a problem. If we have a mix of nodes with 

different execution times, the overhead introduced by the small nodes may be negligible 

compared to the execution time of the larger nodes.

�What to Do If Nodes Are Too Small

If some of the nodes in a flow graph are smaller than the recommended 1 microsecond 

threshold, there are three options: (1) do nothing at all if the node does not have 

significant impact on the total execution time of the application, (2) merge the node with 

other surrounding nodes to increase granularity, or (3) use the lightweight execution 

policy.

If the node’s granularity is small, but its contribution to total execution time is also 

small, then the node can be safely ignored; just leave it as it is. In these cases, clarity of 

design may trump any inconsequential efficiency gained.

If the node’s granularity has to be addressed, one option is to merge it with 

surrounding nodes. Does the node really need to be encapsulated separately from its 

predecessors and successors? If the node has a single predecessor or a single successor 

and the same concurrency level, it might be easily combined with those nodes. If it has 

multiple predecessors or successors, then perhaps the operations that are performed by 

the node can be copied into each of the nodes. In any case, merging the nodes together 

can be an option if the merging does not change the semantics of the graph.
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Finally, the node can be changed to use a lightweight execution policy via a template 

argument when the node is constructed. For example:

 

This policy indicates that the body of the node contains a small amount of work and 

should, if possible, be executed without the overhead of scheduling a task.

There are three lightweight policies to choose from: queueing_lightweight, 

rejecting_lightweight, and lightweight. These policies are described in detail 

in Appendix B. All of the functional nodes, except source_node, support lightweight 

policies. A lightweight node may not spawn a task to execute the body, but instead 

execute the body immediately inside of the try_put within the context of the calling 

thread. This means that the overheads of spawning are removed – but there is no 

opportunity for other threads to steal the task, so parallelism is restricted!

Figure 17-7 shows two simple graphs that we can use to demonstrate the benefits 

and risks of the lightweight policies: the first is a chain multifunction_node objects 

and the second is a multifunction_node object that is connected to two chains of 

multifunction_node objects.

Figure 17-7.  Flow graph used to examine the impacts of the lightweight policies

Chapter 17  Flow Graphs: Beyond the Basics



461

Figure 17-8 shows the impact of using the lightweight policy on the graphs 

shown in Figure 17-7 using chains of 1000 nodes, all using the same execution policy 

(lightweight or not). We send a single message through each graph and vary the time 

each node spins from 0 to 1 millisecond. We should note that the single chain does not 

allow for any parallelism when only one message is sent, while with two chains we can 

achieve a maximum speedup of 2.

The lightweight policy cannot limit parallelism for the one chain case, since 

there is no parallelism in this graph to begin with. We therefore see in Figure 17-8 that 

it improves performance for all cases, although its impact becomes less significant 

as the node granularity increases. For the one chain case, the ratio approaches 1.0 as 

the overhead of spawning tasks becomes negligible compared to the body’s spin time. 

The two-chain case does have potential parallelism. However, if all of the nodes use a 

lightweight policy, both chains will be executed by the thread that executes the first 

multifunction_node and the potential parallelism will be eliminated. As we might 

expect then, as we approach our rule of thumb execution time of 1 microsecond, the 

benefits of the lightweight policy are overshadowed by the restricted parallelism. Even 

if the nodes spin for 0.1 microsecond, the ratio drops below 1. The ratio approaches 0.5 

Figure 17-8.  The impact of using a lightweight policy for the one chain and two 
chains samples. A value greater than 1 means that the lightweight policy improved 
performance.
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as the serialization of the graph results in the complete loss of our expected speedup of 2 

when using two chains.

Addressing granularity issues through merging of nodes, or by using the lightweight 

policy, can decrease overheads, but as we see, they can also limit scalability. These 

“optimizations” can result in significant improvements, but must be applied judiciously 

or else they may do more harm than good.

�Memory Usage and Data Locality
Unlike the TBB parallel algorithms that iterate over data structures, a flow graph passes 

data structures from node to node. The messages can be primitive types, objects, 

pointers or, in the case of a dependence graph, tbb::flow::continue_msg objects.  

For best performance, we need to consider both data locality and memory consumption. 

We will discuss both of these issues in this section.

�Data Locality in Flow Graphs

Data passes between nodes, and when a node receives a message, it executes its body 

on the message as a TBB task. The task is scheduled using the same work-stealing 

dispatchers used by all TBB tasks. In Figure 17-6(a) when a serial loop was executed as 

a flow graph, we saw that a task spawned by one thread may be executed by another. We 

noted however that this was due in part to the microbenchmark using multifunction_

node objects, which do not use scheduler bypass to optimize for performance.

In general, the other functional nodes, including source_node, function_node, and 

continue_node, use scheduler bypass if one of the successors can be immediately run. 

If the data accessed by one of these nodes fits into a data cache, then it can be reused by 

the same thread when it executes the successor.

Since we can benefit from locality in a flow graph, it is worth considering data size 

and even breaking the data into smaller pieces that can benefit from locality through 

scheduler bypass. For example, we can revisit the matrix transposition kernel that we 

used in Chapter 16 as an example to demonstrate this effect. We will now pass three pairs 

of a, b matrices using the FGMsg structure shown in Figure 17-9. You can see the serial, 

cache oblivious and parallel_for implementations of the matrix transposition kernel in 

Chapter 16 in Figure 16-6 through Figure 16-13.
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Our first implementation that does not break the arrays into small pieces is also 

shown in Figure 17-9. The source_node, initialize, sends three messages, each being 

one of three matrix pairs. This node is connected to a single function_node, transpose, 

that has an unlimited concurrency. The transpose node invokes the simple, serial 

matrix transposition function from Chapter 16. A final node, check, confirms that the 

transposition is done correctly.

Figure 17-9.  A graph that sends a series of matrices to transpose, each of which is 
transposed using the simple serial matrix transposition from Chapter 16

Chapter 17  Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16


464

Our simple implementation sends the full matrices, and these are processed, in a 

non-cache-oblivious fashion, by transpose. As we might expect, this does not perform 

well. On our test machine, it was only 8% faster than executing the non-cache-oblivious 

serial implementation of our matrix transposition from Chapter 16 three times in a row, 

once on each pair of matrices. This isn’t very surprising since the benchmark is memory 

bound – trying to execute multiple transpositions in parallel doesn’t help much when 

we can’t feed one transposition with the data it needs from memory. If we compare our 

simple flow graph to the serial cache-oblivious transposition from Chapter 16, it looks 

even worse, taking 2.5 times longer to process the three pairs of matrices when executed 

on our test machine. Luckily, there are many options for improving the performance of 

this flow graph. For example, we can use a serial cache-oblivious implementation in the 

transpose node. Or, we can use the parallel_for implementation from Chapter 16 that 

uses a blocked_range2d and simple_partitioner in the transpose node. We will see 

shortly that each of these will greatly improve our base case speedup of 1.08.

However, we might also send blocks of the matrices as messages instead of sending 

each pair of a and b matrices as a single big message. To do so, we extend our message 

structure to include a blocked_range2d:

 

We can then construct an implementation in which the initialize node sends 

blocks of the a and b matrices as messages; sending all of the blocks from one pair of 

matrices before moving on to the next. Figure 17-10 shows one possible implementation. 

In this implementation, a stack is maintained by the source_node to mimic the depth-

first subdivision and execution of the blocks that would come about through the 

recursive subdivision of ranges performed by a TBB parallel_for. We will not describe 

the implementation in Figure 17-10 in depth. Instead, we will simply note that it sends 

blocks instead of full matrices.
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Figure 17-10.  A graph that sends a series of tiles of matrices to transpose, 
leveraging the blocked_range2d described in Chapter 16 (Advanced Algorithms) 
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Figure 17-11 shows the speedup of several variants of matrix transposition  

when executed on our test machine. We can see that our first implementation, labeled 

“flow graph,” shows the small 8% improvement. The pfor-br2d implementation is the 

parallel_for based implementation from Figure 16-11, with blocked_range2d and 

simple_partitioner, executed three times, once on each pair of matrices. The remaining 

bars all correspond to optimized flow graph versions: “flow graph + oblivious” is similar 

to Figure 17-9 but calls the serial cache-oblivious implementation of matrix transposition 

from within the body of the transpose node; “flow graph + pfor-br2d” uses a parallel_for 

in the transpose body; “tiled flow graph” is our implementation from Figure 17-10; and 

“tiled flow graph + pfor2d” is similar to Figure 17-10 but uses a parallel_for to process its 

tiles. The tiled flow graph from Figure 17-10 performed the best.

It might be surprising that the tiled flow graph version with nested parallel_fors 

did not perform as well as the tiled flow graph without nested parallelism. In Chapter 9,  

we claimed that we can use nested parallelism with impunity in TBB – so what went 

wrong? The harsh reality is that once we start tuning the performance of our TBB 

applications – we often need to trade away full composability for performance (see the 

Aspects of Composability Sidebar). In this case, the nested parallelism interfered with 

the cache optimizations we were carefully trying to implement. Each node was sent a tile 

to process that was a good fit for its data cache – with nested parallelism, we then undid 

this perfect fit by sharing the tile with other threads.

Figure 17-11.  The speedup of the different variants of matrix transposition.  
We use 32×32 tiles since this performed best on our test system.
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ASPECTS OF COMPOSABILITY

We can break down composability into three desires:

	(1)	 Correctness (as an absolute)

	(2)	A bility to use (as a practical matter)

	(3)	P erformance (as an aspiration)

In the first, we hope we can mix and match code without concerns that it will suddenly 

malfunction (get the wrong answer). TBB gives us this ability, and it is largely a solved 

problem – the one wrinkle being that nondeterministic order-of-execution will make answers 

vary when using finite precision math such as native floating-point arithmetic. We discuss that 

in Chapter 16 offering approaches to maintain the “correctness” aspects of composability in 

this light.

In the second, we hope that the program will not crash. This is a practical matter in many 

cases, because the most common problem (unbounded memory usage) could be theoretically 

solved with infinite sized memories. ☺ TBB largely solves this aspect of composability, giving 

it an advantage of programming models that do not (such as OpenMP). TBB does need more 

help here for the less structured flow graphs, so we discuss using limiter_nodes with flow 

graphs to keep memory usage in check  – especially important in large flow graphs.

Finally, for optimal performance, we know of no general solution to full performance 

composability. The reality is that highly optimized code competing with other code running 

on the same hardware will interfere with the optimal performance of either code. This means 

we can benefit from manually tuning the code. Fortunately, TBB gives us control to tune, and 

tools like Flow Graph Analyzer help give us insights to guide our tuning. Once tuned, it is our 

experience that code can work well and feel composable – but the technology to blindly use 

code and get top performance does not exist. “Good enough” performance may happen often, 

but “great” requires work.
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We shouldn’t get too focused on the specifics of the results in Figure 17-11 – this is, 

after all, a single memory-bound microbenchmark. But it does make clear that we can 

benefit by considering the size of our nodes, not only from a granularity perspective, but 

also from a data locality perspective. When we moved from a naïve implementation that 

sent whole arrays and did not implement tuned kernels in the nodes to our more  

cache-aware tiled flow graph version, we saw a significant performance improvement.

�Picking the Best Message Type and Limiting the Number 
of Messages in Flight

As we allow messages into a graph, or make copies as we split them along multiple paths 

through a flow graph, we consume more memory. In addition to worrying about locality, 

we may also need to limit memory growth.

When a message is passed to a node in a data flow graph, it may be copied into the 

internal buffers in that node. For example, if a serial node needs to defer the spawning 

of task, it holds incoming messages in a queue until it is legal to spawn a task to process 

them. If we pass very large objects around in our flow graph, this copying can be 

expensive! Therefore, when possible, it is better to pass around pointers to large objects 

instead of the objects themselves.

The C++11 standard introduced classes (in namespace std) unique_ptr and 

shared_ptr, which are very useful for simplifying memory management of objects 

passed by pointer in a flow graph. For example, in Figure 17-12, let us assume that a 

BigObject is large and slow to construct. By passing the object using a shared_ptr, only 

the shared_ptr is copied into the serial node n’s input buffer not the entire BigObject. 

Also, since a shared_ptr is used, each BigObject is automatically destroyed once it 

reaches the end of the graph and its reference count reaches zero. How convenient!
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Of course, we need to be careful when we use pointers to objects. By passing 

pointers and not objects, multiple nodes may have access to the same object at the same 

time through the shared_ptr. This is especially true if your graph relies on functional 

parallelism, where the same message is broadcast to multiple nodes. The shared_ptr 

will correctly handle the increments and decrements of the reference counts, but we 

need to be sure that we are properly using edges to prevent any potential race conditions 

when accessing the object that is pointed to.

Figure 17-12.  Using a std::shared_ptr to avoid slow copies while simplifying 
memory management
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As we saw in our discussion of how nodes map to tasks, when messages arrive at 

functional nodes, tasks may be spawned or messages may be buffered. When designing 

a data flow graph, we should not forget about these buffers and tasks, and their memory 

footprint.

For example, let’s consider Figure 17-13. There are two nodes, serial_node and 

unlimited_node; both contain a long spin loop. The for loop quickly allocates a large 

number of inputs for both nodes. Node serial_node is serial and so its internal buffer 

will grow quickly as it receives messages faster than its tasks complete. In contrast, 

node unlimited_node will immediately spawn tasks as each message arrives – quickly 

flooding the system with a very large number of tasks – many more than the number 

of worker threads. These spawned tasks will be buffered in the internal worker thread 

queues. In both cases, our graph might quickly consume a large amount of memory 

because they allow BigObject messages to enter the graph more quickly than they can be 

processed.

Our example uses an atomic counter, bigObjectCount, to track how many 

ObjectCount objects are currently allocated at any given time. At the end of the 

execution, the example prints the maximum value. When we ran the code in Figure 17-13 

with A_VERY_LARGE_NUMBER=4096, we saw a "maxCount == 8094". Both the serial_node 

and the unlimited_node quickly accumulate BigObject objects!
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Figure 17-13.  An example with a serial function_node, serial_node, and an 
unlimited function_node, unlimited_node
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There are three common approaches to managing resource consumption in a flow 

graph: (1) use a limiter_node, (2) use concurrency limits, and/or (3) use a token-

passing pattern.

We use a limiter_node to set a limit on the number of messages that can flow 

through a given point in a graph. A subset of the interface of limiter_node is shown in 

Figure 17-14.

A limiter_node maintains an internal count of the messages that pass through it.  

A message sent to the decrement port on a limiter_node decrements the count, allowing 

additional messages to pass through. If the count is equal to the node’s threshold, any 

new messages that arrive at its input port are rejected.

In Figure 17-15, a source_node source generates a large number of BigObjects. 

A source_node only spawns a new task to generate a message once its previously 

generated message is consumed. We insert a limiter_node limiter, constructed with 

a limit of 3, between source and unlimited_node to limit the number of messages that 

are sent to unlimited_node. We also add an edge from unlimited_node back to the 

limiter_node’s decrement port. The number of messages sent through limiter will now 

at most be 3 more than the number of messages sent back through limiter’s decrement 

port.

Figure 17-14.  The subset of limiter_node interface used by the examples
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Figure 17-15.  Using a limiter_node to allow only three BigObjects to reach 
unlimited_node at a time
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We can also use the concurrency limits on nodes to limit resource consumption 

as shown in Figure 17-16. In the code, we have a node that can safely execute with an 

unlimited concurrency, but we choose a smaller number to limit the number of tasks 

that will be spawned concurrently.

Figure 17-16.  Using a tbb::flow::rejecting policy and a concurrency_limit 
to allow only three BigObjects to reach the limited_to_3_node at a time
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We can turn off the internal buffering for a function_node by constructing it with an 

execution policy, flow::rejecting or flow::rejecting_lightweight. The source_node 

in Figure 17-16 continues to generate new outputs only if they are being consumed.

The final common approach for limiting resource consumption in a data flow graph 

is to use a token-based system. As described in Chapter 2, tbb::parallel_pipeline 

algorithm uses tokens to limit the maximum number of items that will be in flight in 

a pipeline. We can create a similar system using tokens and a reserving join_node as 

shown in Figure 17-17. In this example, we create a source_node source and buffer_

node token_buffer. These two nodes are connected to the inputs of a reserving join_

node join. A reserving join_node, join_node< tuple< BigObjectPtr, token_t >, 

flow::reserving >, only consumes items when it can first reserve inputs at each of its 

ports. Since a source_node stops generating new messages when its previous message 

has not been consumed, the availability of tokens in the token_buffer limits the number 

of items that can be generated by the source_node. As tokens are returned to the token_

buffer by node unlimited_node, they can be paired with additional messages generated 

by the source, allowing new source tasks to be spawned.

Figure 17-18 shows the speedup of each approach over a serial execution of the node 

bodies. In this figure, the spin time is 100 microseconds, and we can see that the token 

passing approach has a slightly higher overhead, although all three approaches show 

speedups close to 3, as we would expect.
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Figure 17-17.  A token passing pattern uses tokens and a tbb::flow::reserving 
join_node to limit the items that can reach node unlimited_node
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In Figure 17-18, we use int as the token type. In general, we can use any type as a 

token, even large objects or pointers. For example, we could use BigObjectPtr objects 

as the tokens if we want to recycle BigObject objects instead of allocating them for each 

new input.

�Task Arenas and Flow Graph
Both implicit and explicit task arenas impact the behavior of TBB tasks and the TBB 

generic parallel algorithms. The arena in which tasks are spawned controls which 

threads can participate in executing the tasks. In Chapter 11, we saw how we can use 

implicit and explicit arenas to control the number of threads that participate in executing 

parallel work. In Chapters 12–14, we saw that explicit task arenas can be used with task_

sheduler_observer objects to set the properties of threads as they join arenas. Because 

of the impact of task arenas on available parallelism and data locality, in this section, we 

take a closer look at how task arenas mix with flow graphs.

�The Default Arena Used by a Flow Graph

When we construct a tbb::flow::graph object, the graph object captures a reference 

to the arena of the thread that constructed the object. Whenever a task is spawned to 

execute work in the graph, the tasks are spawned in this arena, not in the arena of the 

thread that caused the task to be spawned.

Figure 17-18.  All three approaches limit the speedup since only three items are 
allowed into node n at a time
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Why?

Well, TBB flow graphs are less structured than TBB parallel algorithms. TBB 

algorithms use fork-join parallelism and the behavior of TBB task arenas matches this 

pattern well – each master thread has its own default arena and so if different master 

threads execute algorithms concurrently, their tasks are isolated from each other in 

different task arenas. But with a TBB flow graph, there may be one or more master 

threads explicitly putting messages into the same graph. If the tasks related to these 

interactions are spawned in each master thread’s arena, some tasks from a graph would 

be isolated from other tasks from the same graph. This is very likely not the behavior we 

would like.

So instead, all tasks are spawned into a single arena, the arena of the thread that 

constructed the graph object.

�Changing the Task Arena Used by a Flow Graph

We can change the task arena used by a graph by calling the graph’s reset() function. 

This reinitializes the graph, including recapturing the task arena. We demonstrate this 

in Figure 17-19 by constructing a simple graph with one function_node that prints the 

number of slots in the arena in which its body task executes. Since the main thread 

constructs the graph object, the graph will use the default arena, which we initialize with 

eight slots.
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In the first three calls to n.try_put in Figure 17-19, we do not reset that graph g, and 

we can see that the tasks execute in the default arena with eight slots.

Without reset:

default : 8

a2 : 8

a4 : 8

Figure 17-19.  Using graph::reset to change the task arena used by a graph
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But in the second set of calls, we call reset to reinitialize the graph, and the node 

executes first in the default arena, then in arena a2, and finally in arena a4.

With reset:

default : 8

a2 : 2

a4 : 4

�Setting the Number of Threads, Thread-to-Core Affinities, etc.

Now that we know how to associate task arenas with flow graphs, we can use all of the 

performance tuning optimizations described in Chapters 11–14 that rely on task arenas. 

For example, we can use task arenas to isolate one flow graph from another. Or, we can 

pin threads to cores for a particular task arena using a task_scheduler_observer object 

and then associate that arena with a flow graph.

�Key FG Advice: Dos and Don’ts
The flow graph API is flexible – maybe too flexible. When first working with flow graph, 

the interface can be daunting since there are so many options. In this section, we provide 

several dos and don’ts that capture some of our experience when using this high-level 

interface. However, just like with our rule of thumb for node execution time, these are 

just suggestions. There are many valid patterns of usage that are not captured here, and 

we’re sure that some of the patterns we say to avoid may have valid use cases. We present 

these best-known methods, but your mileage may vary.

�Do: Use Nested Parallelism
Just like with a pipeline, a flow graph can have great scalability if it uses parallel 

(flow::unlimited) nodes but can have limited scalability if it has serial nodes. One way 

to increase scaling is to use nested parallel algorithms inside of TBB flow graph nodes. 

TBB is all about composability, so we should use nested parallelism when possible.
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�Don’t: Use Multifunction Nodes in Place of Nested 
Parallelism
As we have seen throughout this book, the TBB parallel algorithms such as parallel_

for and parallel_reduce are highly optimized and include features like Ranges and 

Partitioners that let us optimize performance even more. We have also seen that the flow 

graph interface is very expressive – we can express graphs that include loops and use nodes 

like multifunction_node to output many messages from each invocation. We should 

therefore be on the lookout for cases where we create patterns in our graphs that are better 

expressed using nested parallelism. One simple example is shown in Figure 17-20.

In Figure 17-20, for each message that the multifunction_node receives, it generates 

many output messages that flow into a function_node with unlimited concurrency. This 

graph will act a lot like a parallel loop, with the multifunction_node acting as the control 

loop and the function_node as the body. But it will require a lot of stealing to distribute 

the work like the Master loop from Figures 17-3 and 17–5. While there may be valid uses 

of this pattern, it is likely more efficient to use a highly optimized parallel loop algorithm 

instead. This entire graph might be collapsed into a single node that contains a nested 

parallel_for, for example. Of course, whether or not this replacement is possible or 

desirable depends on the application.

�Do: Use join_node, sequencer_node, or  
multifunction_node to Reestablish Order in a  
Flow Graph When Needed
Because a flow graph is less structured than a simple pipeline, we may sometimes need 

to establish an ordering of messages at points in the graph. There are three common 

approaches for establishing order in a data flow graph: use a key-matching join_node, 

use a sequencer_node, or use a multifunction_node.

Figure 17-20.  A multifunction_node that sends many messages for each message 
it receives. This pattern may be better expressed as a nested parallel_for loop.

Chapter 17  Flow Graphs: Beyond the Basics



482

For example, in Chapter 3, the parallelism in our stereoscopic 3D flow graph allowed 

the left and right images to arrive out of order at the mergeImageBuffersNode. In that 

example, we ensured that the correct two images were paired together as inputs to the 

mergeImageBuffersNode by using a tag-matching join_node. A tag-matching join_node 

is a type of key-matching join_node. By using this join_node type, inputs can arrive in 

different orders at the two input ports but will still be properly matched based on their 

tag or key. You can find more information on the different join policies in Appendix B.

Another way to establish order is to use a sequencer_node. A sequencer_node is a 

buffer that outputs messages in sequence order, using a user-provided body object to 

obtain the sequence number from the incoming message.

In Figure 17-21, we can see a three-node graph, with nodes first_node, sequencer, 

and last_node. We use a sequencer_node to reestablish the input order of the messages 

before the final serial output node last_node. Because function_node first_node is 

unlimited, its tasks can finish out of order and send their output as they complete. The 

sequencer_node reestablishes the input order by using the sequence number assigned 

when each message was originally constructed.

If we execute a similar example without a sequencer node and N=10, the output is 

scrambled as the messages pass each other on their way to last_node:

9 no sequencer

8 no sequencer

7 no sequencer

0 no sequencer

1 no sequencer

2 no sequencer

6 no sequencer

5 no sequencer

4 no sequencer

3 no sequencer
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Figure 17-21.  A sequencer_node is used to ensure that the messages print in the 
order dictated by their my_seq_no member variables
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When we execute the code in Figure 17-21, we see the output:

0 with sequencer

1 with sequencer

2 with sequencer

3 with sequencer

4 with sequencer

5 with sequencer

6 with sequencer

7 with sequencer

8 with sequencer

9 with sequencer

As we can see, a sequencer_node can reestablish the order of the messages, but 

it does require us to assign the sequence number and also to provide a body to the 

sequencer_node that can obtain that number from an incoming message.

A final approach to establishing order is to use a serial multifunction_node.  

A multifunction_node can output zero or more messages on any of its output ports 

for a given input message. Since it is not forced to output a message for each incoming 

message, it can buffer incoming messages and hold them until some user-defined 

ordering constraint is met.

For example, Figure 17-22 shows how we can implement a sequencer_node using 

a multifunction_node by buffering incoming messages until the next message in 

sequencer order has arrived. This example assumes that at most N messages are sent to 

a node sequencer and that the sequence numbers start at 0 and are contiguous up to 

N-1. Vector v is created with N elements initialized as empty shared_ptr objects. When 

a message arrives at sequencer, it is assigned to the corresponding element of v. Then 

starting at the last sent sequence number, each element of v that has a valid message is 

sent and the sequence number is incremented. For some incoming messages, no output 

message will be sent; for others, one or more messages may be sent.
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While Figure 17-22 shows how a multifunction_node can be used to reorder 

messages by sequence order, in general, any user-defined ordering or bundling of 

messages can be used.

�Do: Use the Isolate Function for Nested Parallelism
In Chapter 12, we talked about how we may sometimes need to create isolation for 

performance or correctness reasons when using TBB algorithms. The same is true 

for flow graphs, and as with the generic algorithms, this can be especially true with 

nested parallelism. The implementation of the graph in Figure 17-23 shows a simple 

graph with nodes source and unlimited_node, and nested parallelism inside node 

unlimited_node. A thread may moonlight (see Chapter 12) while waiting for the nested 

parallel_for loop in node unlimited_node to complete, and pick up another instance 

of node unlimited_node. The node unlimited_node prints “X started by Y”, where X is 

the node instance number and Y is the thread id.

Figure 17-22.  A multifunction_node is used to implement a sequencer_node
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Figure 17-23.  A graph with nested parallelism
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On our test system with eight logical cores, one output showed that our thread 0 was 

so bored it pick up not just one, but three different instances of unlimited_node, while 

waiting for its first parallel_for algorithm to finish as shown in Figure 17-24.

As we discussed in Chapter 12, moonlighting is typically benign, which is the case 

here since we’re not computing anything real. But as we highlighted in our previous 

discussions about isolation, this behavior is not always benign and can lead to 

correctness issues, or decreased performance, in some cases.

We can address moonlighting in a flow graph just as we did with general tasks in 

Chapter 12, with the this_task_arena::isolate function or with explicit task arenas. 

For example, instead of calling the parallel_for directly in the node body, we can 

invoke it inside of an isolate call:

tbb::this_task_arena::isolate([P,spin_time]() {

  tbb::parallel_for(0, P-1, [spin_time](int i) {

    spinWaitForAtLeast((i+1)∗spin_time);
  });

});

After changing our code to use this function, we see that the threads no longer 

moonlight and each thread stays focused on a single node until that node is complete as 

shown in Figure 17-25.

Figure 17-24.  An output from the example in Figure 17-23 is shown on the 
left, with a diagram showing the overlapped executions on the right. Thread 0 
participates in the execution of three different node invocations concurrently.
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�Do: Use Cancellation and Exception Handling in Flow 
Graphs
In Chapter 15, we discussed task cancellation and exception handling when using TBB 

tasks in general. Since we are already familiar with this topic, we will only highlight the 

flow graph related aspects in this section.

�Each Flow Graph Uses a Single task_group_context

A flow graph instance spawns all of its tasks into a single task arena, and it also uses a 

single task_group_context object for all of these tasks. When we instantiate a graph 

object, we can pass in an explicit task_group_context to the constructor:

tbb::task_group_context tgc;

tbb::flow::graph g{tgc};

If we don’t pass one to the constructor, a default object will be created for us.

�Canceling a Flow Graph

If we want to cancel a flow graph, we cancel it using the task_group_context, just as we 

would with the TBB generic algorithms.

tgc.cancel_group_excution();

Figure 17-25.  None of the nodes execute different node invocations concurrently

Chapter 17  Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_15


489

And just as with TBB algorithms, the tasks that have already started will complete but 

no new tasks related to the graph will start. As described in Appendix B, there is also a 

helper function in the graph class that lets us check the status of a graph directly:

if (g.is_cancelled()) {

  std::cout << "My graph was cancelled!" << std::endl;

}

If we need to cancel a graph, but do not have a reference to its task_group_context, 

we can get one from within the task:

tbb::task::self().cancel_group_execution();

�Resetting a Flow Graph After Cancellation

If a graph is canceled, whether directly or due to an exception, we need to reset the 

graph, g.reset(), before we can use it again. This resets the state of the graph – clearing 

internal buffers, putting the edges back into their initial states, and so on. See Appendix 

B for more details.

�Exception Handling Examples

To learn about how exceptions work with a flow graph, let’s look at the implementation 

of the graph in Figure 17-26. This figure provides a small, three-node graph that throws 

an exception in its second node, node2.
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If we execute this example, we get an exception (hopefully this did not come as a 

surprise):

terminate called after throwing an instance of 'int'

Since we didn’t handle the exception, it propagates to the outer scope and our 

program terminates. We can, of course, modify the implementation of our node node2, 

so that it catches the exception within its own body, as shown in Figure 17-27.

Figure 17-26.  A flow graph that throws an exception in one of its nodes
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If we make this change, our example will run to completion, printing out the 

“Caught” messages, in no particular order:

Caught 2

Caught 1

So far, none of this is very exceptional (pun intended); it’s just how exceptions 

should work.

The unique part of exception handling in a flow graph is that we can catch 

exceptions at the call to the graph’s wait_for_all function, as shown in Figure 17-28.

Figure 17-27.  A flow graph that throws an exception in one of its nodes

Figure 17-28.  A flow graph that throws an exception in one of its nodes

If we re-run our original example from Figure 17-26 but use a try-catch block around 

the call to wait_for_all, we will see only one “Catch” message (either for 1 or 2):

Caught 2

The exception thrown in node node2 is not caught in the node’s body, so it will 

propagate to the thread that waits at the call to wait_for_all. If a node’s body throws an 

exception, the graph it belongs to is canceled. In this case, we see that there is no second 

“Caught” message, since node2 will only execute once.
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And of course, if we want to re-execute the graph after we deal with the exception 

that we catch at the wait_for_all, we need to call g.reset() since the graph has been 

canceled.

�Do: Set a Priority for a Graph Using task_group_ 
context
We can set priorities for all of the tasks spawned by a graph by using the graph’s task_

group_context, for example:

if (auto t = g.root_task()) {

  t->group()->set_priority(tbb::priority_high);

}

Or we can pass in a task_group_context object with a preset priority to the graph’s 

constructor. In either case though, this sets the priorities for all of the tasks related to 

the graph. We can create one graph with a high priority and another graph with a low 

priority.

Shortly before the publication of this book, support for relative priorities for 

functional nodes was added to TBB as a preview feature. Using this feature, we can pass 

a parameter to a node’s constructor to give it a priority relative to other functional nodes. 

This interface was first provided in TBB 2019 Update 3. Interested readers can learn more 

details about this new functionality in the online TBB release notes and documentation.

�Don’t: Make an Edge Between Nodes in Different Graphs
All graph nodes require a reference to a graph object as one of the arguments to their 

constructor. In general, it is only safe to construct edges between nodes that are part of 

the same graph. Connecting two nodes in different graphs can make it difficult to reason 

about graph behaviors, such as what task arenas will be used, if our calls to wait_for_

all will properly detect graph termination, and so on. To optimize performance, the  

TBB library takes advantage of its knowledge about edges. If we connect two graphs by 

an edge, the TBB library will freely reach across this edge for optimization purposes.  
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We may believe that we have created two distinct graphs, but if there are shared edges, 

TBB can start mixing their executions together in unexpected ways.

To demonstrate how we can get unexpected behavior, we implemented the class 

WhereAmIRunningBody shown in Figure 17-29. It prints max_concurrency and priority 

settings, which we will use to infer what task arena and task_group_context this body’s 

task is using when it executes.

Figure 17-30 provides an example that uses the WhereAmIRunningBody to 

demonstrate an unexpected behavior. In this example, we create two nodes: g2_node and 

g4_node. The node g2_node is constructed with a reference to g2. The graph g2 is passed 

a reference to a task_group_context that has priority_normal and g2 is reset() in a 

task_arena with a concurrency of 2. We should therefore expect g2_node to execute with 

normal priority in an arena with 2 threads, right? The node g4_node is constructed such 

that we should expect it to execute with high priority in an arena with four threads.

The first group of calls that include g2_node.try_put(0) and g4_node.try_put(1) 

match these expectations:

Figure 17-29.  A body class that lets us infer what task arena and task_group_
context are used by a node execution
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But, when we make an edge from g2_node to g4_node, we make a connection 

between nodes that exist in two different graphs. Our second set of calls that include 

g2_node.try_put(2) again cause the body of g2_node to execute with normal priority in 

arena a2. But TBB, trying to reduce scheduling overheads, uses scheduler bypass (see 

Scheduler Bypass in Chapter 10) when it invokes g4_node due to the edge from g2_node 

to g4_node. The result is that g4_node executes in the same thread as g2_node, but this 

Figure 17-30.  An example that has unexpected behavior because of cross-graph 
communication
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thread belongs to arena a2 not a4. It still uses the correct task_group_context when the 

task is constructed, but it winds up being scheduled in an unexpected arena.

2:g2_node executing in arena 2 with priority normal

2:g4_node executing in arena 2 with priority high

From this simple example, we can see that this edge breaks the separation between 

the graphs. If we were using arenas a2 and a4 to control the number of threads, for work 

isolation or for thread affinity purposes, this edge will undo our efforts. We should not 

make edges between graphs. 

�Do: Use try_put to Communicate Across Graphs
In the previous “Don’t,” we decided that we should not make edges between graphs. But 

what if we really need to communicate across graphs? The least dangerous option is to 

explicitly call try_put to send a message from a node in one graph to a node in another 

graph. We don’t introduce an edge, so the TBB library won’t do anything sneaky to 

optimize the communication between the two nodes. Even in this case though, we still 

need to be careful as our example in Figure 17-31 demonstrates.

Here, we create a graph g2 that sends a message to graph g1 and then waits for both 

graph g1 and g2. But, the waiting is done in the wrong order!

Since node g2_node2 sends a message to g1_node1, the call to g1.wait_for_all() 

will likely return immediately since nothing is going on in g1 at the time of the call. 

We then call g2.wait_for_all(), which returns after g2_node2 is done. After this call 

returns, g2 is finished but g1 has just received a message from g2_node2 and its node 

g1_node1 has just started to execute!

Chapter 17  Flow Graphs: Beyond the Basics



496

Figure 17-31.  A flow graph that sends a message to another flow graph
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Luckily, if we call the waits in the reverse order, things will work as expected:

g2.wait_for_all();

g1.wait_for_all();

But still, we can see that using explicit try_puts is not without dangers. We need to 

be very careful when graphs communicate with each other!

�Do: Use composite_node to Encapsulate Groups 
of Nodes
In the previous two sections, we warned that communication between graphs can lead 

to errors. Often developers use more than one graph because they want to logically 

separate some nodes from others. Encapsulating a group of nodes is convenient if there 

is a common pattern that needs to be created many times or if there is too much detail in 

one large flat graph.

In both of these cases, we can use a tbb::flow::composite_node. A composite_node 

is used to encapsulate a collection of other nodes so they can be used like a first-class 

graph node. Its interface follows:

 

Unlike the other node types that we have discussed in this chapter and in Chapter 3, 

we need to create a new class that inherits from tbb::flow::composite_node to make 

use of its functionality. For example, let’s consider the flow graph in Figure 17-32(a). This 

graph combines two inputs from source1 and source2, and uses a token passing scheme 

to limit memory consumption.
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If this token passing pattern is commonly used in our application, or by members 

of our development team, it might make sense to encapsulate it into its own node type, 

as shown in Figure 17-32(b). It also cleans up the high-level view of our application by 

hiding the details.

Figure 17-33 shows what a flow graph implementation looks like if we have a 

node that implements the dotted parts of Figure 17-32(a), replacing it with a single 

merge node. In Figure 17-33, we use the merge node object like any other flow graph 

node, making edges to its input and output ports. Figure 17-34 shows how we use 

tbb::flow::composite_node to implement our MergeNode class.

Figure 17-32.  An example that benefits from a composite_node
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Figure 17-33.  Creating a flow graph that uses a class MergeNode that inherits from 
tbb::flow::composite_node
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Figure 17-34.  The implementation of MergeNode
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In Figure 17-34, MergeNode inherits from CompositeType, which is an alias for

 

The two template arguments indicate that a MergeNode will have two input ports, both 

that receive BigObjectPtr messages, and a single output port that sends BigObjectPtr 

messages. The class MergeNode has a member variable for each node it encapsulates: a 

tokenBuffer, a join, and a combine node. And these member variables are initialized in 

the member initializer list of the MergeNode constructor. In the constructor body, calls to 

tbb::flow::make_edge set up all of the internal edges. A call to set_external_ports is 

used to assign the ports from the member nodes to the external ports of the MergeNode. 

In this case, the first two input ports of join become the inputs of the MergeNode and 

the output of combine becomes the output the MergeNode. Finally, because the node is 

implementing a token passing scheme, the tokenBuffer is filled with tokens.

While creating a new type that inherits from tbb::flow::composite_node may 

appear daunting at first, using this interface can lead to more readable and reusable 

code, especially as your flow graphs become larger and more complicated.

�Introducing Intel Advisor: Flow Graph Analyzer
The Flow Graph Analyzer (FGA) tool is available in Intel Parallel Studio XE 2019 and later. 

It is provided as a feature of the Intel Advisor tool. Instructions for getting the tool can be 

found at https://software.intel.com/en-us/articles/intel-advisor-xe-release-

notes.

FGA was developed to support the design, debugging, visualization, and analysis 

of graphs built using the TBB flow graph API. That said, many of the capabilities of FGA 

are generically useful for analyzing computational graphs, regardless of their origin. 

Currently, the tool has limited support for other parallel programming models including 

the OpenMP API.

For our purposes in this book, we will focus only on how the design and analysis 

workflows in the tool apply to TBB. We also use FGA to analyze some of the samples in 

this chapter. However, all of the optimizations presented in this chapter can be done with 

or without FGA. So, if you have no interest in using FGA, you can skip this section. But 

again, we believe there is significant value in this tool, so skipping it would be a mistake.
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�The FGA Design Workflow
The design workflow in FGA lets us graphically design TBB flow graphs, validate that 

they are correct, estimate their scalability, and, after we are satisfied with our design, 

generate a C++ implementation that uses the TBB flow graph classes and functions. FGA 

is not a full Integrated Development Environment (IDE) like Microsoft Visual Studio, 

Eclipse or Xcode. Instead, it gets us started with our flow graph design, but then we need 

to step outside of the tool to complete the development. However, if we use the design 

workflow in a constrained way, as we will describe later, iterative development in the 

designer is possible.

Figure 17-35 shows the FGA GUI used during the design workflow. We will only 

briefly describe the components of the tool here as we describe the typical workflow; the 

Flow Graph Analyzer documentation provides a more complete description.

The typical design workflow starts with a blank canvas and project. As highlighted 

by the black circle numbered 1 in Figure 17-35, we select nodes in the node palette and 

place them on the canvas, connecting them together by drawing edges between their 

ports. The node palette contains all of the node types available in the TBB flow graph 

interface and provides tooltips that remind us about the functionality of each type. For 

each node on the canvas, we can modify its type-specific properties; for a function_node 

1 

2 

Figure 17-35.  Using the FGA design workflow
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for example, we can provide the C++ code for the body, set a concurrency limit, and 

so on. We can also provide an estimated “weight” that represents the computational 

complexity of the node so that later we can run a Scalability Analysis to see if our graph 

will perform well.

Once we have drawn our graph on the canvas, we run a Rule Check that analyzes 

the graph looking for common mistakes and anti-patterns. The Rule Check results, 

highlighted by the black circle numbered 2 in Figure 17-35, show issues such as 

unnecessary buffering, type mismatches, suspicious cycles in the graph, and so on.  

In Figure 17-35, the Rule Check has discovered that there is a type mismatch between the 

input of our limiter_node and the output of our multifunction_node. In response, we 

can then, for example, modify the port output type of our multifunction_node to fix  

this issue.

When we have fixed all correctness issues uncovered by the Rule Check, we can 

then run a Scalability Analysis. The Scalability Analysis constructs a TBB flow graph in 

memory, replacing the computational node bodies with dummy bodies that actively 

spin for a time proportional to their “weight” property. FGA runs this model of our graph 

on various numbers of threads and provides a table of the speedups, for example:

 

Using these features, we can iteratively refine our graph design. Along the way, we 

can save our graph design in GraphML format (a common standard for representing 

graphs). When we are satisfied with our design we can generate C++ code that uses the 

TBB flow graph interface to express our design. This code generator is more accurately 

viewed as a code wizard than an IDE since it does not directly support an iterative code 

development model. If we change the generated code, there is no way to reimport our 

changes into the tool.

�Tips for Iterative Development with FGA

If we want to create a design that we can continue to tune from within FGA, we can use 

a constrained approach, where we specify node bodies that redirect to implementations 

that are maintained outside of FGA. This is necessary because there is no way to 

reimport modified C++ code back into FGA.
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For example, if we want to make iterative development easier, we should not specify 

a function_node that exposes its implementation directly in the body code:

 

Instead, we should specify only the interface and redirect to an implementation that 

can be maintained separately:

 

If we take this constrained approach, we can often maintain the graph design in 

FGA and its GraphML representation, iteratively tuning the topology and node properties 

without losing any node body implementation changes we make outside of the tool. 

Whenever we generate new C++ code from FGA, we simply include the most up-to-

date implementation header and the node bodies use these implementations that are 

maintained outside of the tool.

Flow Graph Analyzer does not require us to use this approach of course, but it is 

good practice if we want to use the code generation features of FGA as more than a 

simple code wizard.
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�The FGA Analysis Workflow
The analysis workflow in FGA is independent of the design workflow. While we can 

surely analyze a flow graph that was designed in FGA, we can just as easily analyze a 

TBB flow graph that is designed and implemented outside of the tool. This is possible 

because the TBB library is instrumented to provide runtime events to the FGA trace 

collector. A trace collected from a TBB application lets FGA reconstruct the graph 

structure and the timeline of the node body executions – it does not depend on the 

GraphML files developed during the design workflow.

If we want to use FGA to analyze a TBB application that uses a flow graph, the first 

step is to collect an FGA trace. By default, TBB does not generate traces, so we need to 

activate trace collection. The FGA instrumentation in TBB was a preview feature prior 

to TBB 2019. We need to take extra steps if we are using an older version of TBB. We 

refer readers to the FGA documentation for instructions on how to collect traces for the 

version of TBB and FGA that they are using.

Once we have a trace of our application, the analysis workflow in FGA uses the 

activities highlighted by the numbered circles in Figure 17-36: (1) inspect the tree-map 

view for an overview of the graph performance and use this as an index into the graph 

topology display, (2) run the critical path algorithm to determine the critical paths 

through the computation, and (3) examine the timeline and concurrency data for 

insight into performance over time. Analysis is most commonly an interactive process 

that moves between these different activities as the performance of the application is 

explored.
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The tree-map view labeled as (1) in Figure 17-36 provides an overview of the 

overall health of a graph. In the tree map, the area of each rectangle represents the total 

aggregated CPU time of the node and the color of each square indicates the concurrency 

observed during the execution of the node. The concurrency information is categorized 

as poor (red), ok (orange), good (green), and oversubscribed (blue).

Nodes with a large area that are marked as “poor” are hotspots and have an average 

concurrency between 0% and 25% of the hardware concurrency. These are therefore good 

candidates for optimization. The tree-map view also serves as an index into a large graph; 

clicking on a square will highlight the node in the graph and selecting this highlighted 

node will in turn mark tasks from all instances of this node in the timeline trace view.

The graph topology canvas is synchronized with other views in the tool. Selecting a 

node in the tree-map view, the timeline, or in a data analytics report will highlight the 

node in the canvas. This lets users quickly relate performance data to the graph structure.

1
2

3

Figure 17-36.  Using the FGA analysis workflow. These results were collected on a 
system with 16 cores.
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One of the most important analytic reports provided by FGA is the list of critical 

paths in a graph. This feature is particularly useful when one has to analyze a large 

and complex graph. Computing the critical paths results in a list of nodes that form 

the critical paths as shown in the region labeled (2) in Figure 17-36. As we discussed in 

Chapter 3, an upper bound on speedup of dependency graphs can be quickly computed 

by dividing the aggregate total time spent by all nodes in a graph by the time spent on 

the longest critical path, T1/T∞. This upper bound can be used to set expectations on the 

potential speedup for an application expressed as a graph.

The timeline and concurrency view labeled as (3) in Figure 17-36 displays the raw 

traces in swim lanes mapped to software threads. Using this trace information, FGA 

computes additional derived data such as the average concurrency of each node and the 

concurrency histogram over time for the graph execution. Above the per-thread swim 

lanes, a histogram shows how many nodes are active at that point in time. This view 

lets users quickly identify time regions with low concurrency. Clicking on nodes in the 

timelines during these regions of low concurrency lets developers find the structures in 

their graph that lead to these bottlenecks.

�Diagnosing Performance Issues with FGA
In this chapter, we discussed a number of potential performance issues that can arise 

when using a flow graph. In this section, we briefly discuss how FGA can be used to 

explore these issues in a TBB-based application.

�Diagnosing Granularity Issues with FGA

Just like with our TBB generic loop algorithms, we need to be concerned about tasks that 

are too small to profit from parallelization. But we need to balance this concern with the 

need to create enough tasks to allow our workload to scale. In particular, as we discussed 

in Chapter 3, scalability can be limited by serial nodes if they become a bottleneck in the 

computation.

In an example timeline from FGA shown in Figure 17-37, we can see that there is a 

dark serial task, named m, which causes regions of low concurrency. The color indicates 

that this task is about 1 millisecond in length – this is above the threshold for efficient 

scheduling but, from the timeline, it appears to be a serializing bottleneck. If possible, we 

should break this task up into tasks that can be scheduled in parallel – either by breaking 

it into multiple independent nodes or through nested parallelism.
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In contrast, there are regions in Figure 17-37 where smaller tasks, named n, are 

executed in parallel. By their coloring, it appears these are close to the 1 microsecond 

threshold, and consequently we can see gaps in the timelines during this region, 

indicating that there may be some non-negligible scheduling overheads involved.  

In this case, it may benefit us to merge nodes or to use a lightweight policy if possible to 

decrease overheads.

�Recognizing Slow Copies in FGA

Figure 17-38 shows how we might recognize slow copies in FGA. In the figure, we see  

100 millisecond segments from the timelines of runs of graphs similar to Figure 17-12, 

but that pass BigObject messages directly (Figure 17-38(a)) and shared_ptr<BigObject> 

messages (Figure 17-38(b)). To make the construction appear expensive, we inserted 

a spin-wait in the BigObject constructor so that it takes 10 milliseconds to construct 

each object – making the construction time of a BigObject and our function_node 

body’s execution times equal. In Figure 17-38(a), we can see the time it takes to copy the 

message between nodes appears as gaps in the timeline. In Figure 17-38(b), where we 

pass by pointer, the message passing time is negligible, so no gaps are seen.

Figure 17-37.  The FGA timeline colors tasks according to their execution times. 
Lighter tasks are smaller.
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When using FGA to analyze our flow graph applications, gaps in the timeline indicate 

inefficiencies that need to be further investigated. In this section, they indicated costly 

copies between nodes and in the previous section they indicated that the overhead 

of scheduling was large compared to the task sizes. In both cases, these gaps should 

prompt us to look for ways to improve performance.

Diagnosing Moonlighting using FGA

Earlier in this chapter, we discussed the execution of the moonlighting graph in  

Figure 17-23 that generated the output in Figure 17-24. FGA provides a Stacked View in 

its execution timeline that lets us easily detect moonlighting as shown in Figure 17-39.

Figure 17-38.  In FGA, the long copies appear as gaps between the node body 
executions. Each timeline segment shown is approximately 100 milliseconds long.
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In a Stacked View, we see all of the nested tasks that a thread is executing, including 

those that come from flow graph nodes and those that come from TBB Generic Parallel 

Algorithms. If we see that a thread executes two nodes concurrently, it is moonlighting. 

In Figure 17-39, for example, we see that Thread 0 starts executing another instance 

of node n0 inside of an existing instance of n0. In our previous discussions about 

moonlighting, we know this can happen if a thread steals work while it is waiting for a 

nested parallel algorithm to complete. The Stacked View in Figure 17-39, lets us easily 

see that a nested parallel_for, labeled p8, is the culprit in this case.

Using the timeline views from FGA, we can identify when threads are moonlighting 

simply by noticing a thread’s overlapped participation in more than one region or node. As 

developers, and possibly through other interactions with FGA, we then need to determine 

if the moonlighting is benign or needs to be addressed by TBB’s isolation features.

�Summary
The flow graph API is a flexible and powerful interface for creating dependency and data 

flow graphs. In this chapter, we discussed some of the more advanced considerations in 

using the TBB flow graph high-level execution interface. Because it is implemented on 

Figure 17-39.  FGA timelines grouped by Node/Region. We can see that thread 0 
is moonlighting since it shown as concurrently executing more than one parallel 
region.
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top of TBB tasks, it shares the composability and optimization features supported by TBB 

tasks. We discussed how these can be used to optimize for granularity, effective cache, 

and memory use and create sufficient parallelism. We then listed some dos and don’ts 

that can be helpful when first exploring the flow graph interfaces. Finally, we provided a 

brief overview of the Flow Graph Analyzer (FGA), a tool available in Intel Parallel Studio 

XE that has support for the graphical design and analysis of TBB flow graphs.

�For More Information
Michael Voss, “The Intel Threading Building Blocks Flow Graph,” Dr. Dobb’s, October 

5, 2011. www.drdobbs.com/tools/the-intel-threading-building-blocks-

flow/231900177.

Vasanth Tovinkere, Pablo Reble, Farshad Akhbari and Palanivel Guruvareddiar, 

“Driving Code Performance with Intel Advisor’s Flow Graph Analyzer,” Parallel Universe 

Magazine, https://software.seek.intel.com/driving-code-performance.

Richard Friedman, “Intel Advisor’s TBB Flow Graph Analyzer: Making Complex 
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Open Access   This chapter is licensed under the terms of the Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

noncommercial use, sharing, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license and indicate if you modified the licensed material. 

You do not have permission under this license to share adapted material derived from 

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material.  

If material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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