
451
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_17

CHAPTER 17

Flow Graphs: Beyond
the Basics
This chapter contains some key tips on getting top performance from flow graphs in

TBB. The less structured nature of the TBB flow graph APIs offers an expressiveness that

requires some thinking to get the best scalable performance – we dive into details in this

chapter that let us tune flow graphs to their full potential.

In Chapter 3, we introduced the classes and functions in the tbb::flow namespace

and how they can be used to express simple data flow and dependency graphs. In this

chapter, we discuss some of the more advanced questions and issues that arise when

using TBB flow graphs. As in Chapter 16, much of our discussion will revolve around

granularity, effective memory use, and creating sufficient parallelism. But because

the flow graph APIs let us express parallelism that is less structured than the parallel

algorithms described in Chapter 16, we will also discuss some dos and don’ts to be

aware of when architecting a flow graph.

The section “Key FG Advice: Dos and Don’ts,” starting on page 480, gives very

specific rules of thumb that are invaluable when using flow graphs with TBB.

We conclude this chapter with a brief overview of the Flow Graph Analyzer (FGA),

a tool available within Intel Parallel Studio XE. It has strong support for the graphical

design and analysis of TBB flow graphs. While using FGA is not required when working

with flow graphs, visualizing graphs during design and analysis can be very helpful.

The tool is freely available to everyone, and we highly recommend it for anyone doing

serious TBB flow graph work.

https://doi.org/10.1007/978-1-4842-4398-5_17
https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16

452

�Optimizing for Granularity, Locality, and Parallelism
In this section, we focus on the same three concerns that drove our discussions in

Chapter 16. We first look at the impact of node granularity on performance. Because flow

graphs are used for less structured algorithms, we need to consider how parallelism is

introduced as we discuss granularity – does the structure require a significant amount of

stealing or is the generation of tasks spread well across the threads? Also, we may want to

use some very small nodes in a flow graph simply because they make the design clearer –

in such cases, we describe how a node with a lightweight execution policy can be used

to limit overheads. The second issue we will address is data locality. Unlike the TBB

parallel algorithms, the flow graph API does not provide abstractions like Ranges and

Partitioners; instead, it is designed to enhance locality naturally. We will discuss how

threads follow data to exploit locality. Our third issue is creating sufficient parallelism.

Just as in Chapter 16, optimizing for granularity and locality sometimes comes at the cost

of restricted parallelism – we need to be sure we walk this tightrope carefully.

�Node Granularity: How Big Is Big Enough?
In Chapter 16, we discussed Ranges and Partitioners and how these can be used to

ensure that the tasks created by the TBB generic algorithms are large enough to amortize

scheduling overheads while still being small enough to provide enough independent

work items for scalability. The TBB flow graph does not have support for Ranges and

Partitioners, but we still need to be concerned about task granularity.

To see if our rule of thumb for 1 microsecond tasks that we introduced in Chapter 16

applies as well to flow graph nodes as it does to parallel algorithm bodies, we will explore

a few simple microbenchmarks that capture the extremes that can exist in flow graphs.

We will compare the execution times of four functions and use different amounts of work

per node execution. We will refer to these functions as Serial, FG loop, Master loop, and

FG loop per worker.

It is our belief that studying these examples (Figures 17-1 to 17-4) is critical to

having an intuitive grasp of some key issues that differentiate highly scalable flow graph

usage and disappointing uses of flow graph. The APIs themselves, fully documented

in Appendix B, do not provide this education – we hope you will study these examples

enough to grasp the concepts as we believe this will make you much better at getting

the most out of using TBB flow graphs (peek at Figure 17-5 to see a quantification of the

benefits on performance of understanding these!).

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16

453

The Serial loop is our baseline and contains a for-loop that calls an active spin-wait

function N times, as shown in Figure 17-1.

The FG loop function is shown in Figure 17-2. This function builds a flow graph

that has a single multifunction_node with an edge from its output to its input. A single

message starts the cycle and the node then spin-waits and sends a message back to its

input. The cycle repeats N-1 times. Because the node spins before sending the message

back to its input, this graph is still a mostly serial loop – the bulk of the work in the body

tasks will not overlap. However, because the message is sent before the body returns,

there is still a small-time gap during which another thread can steal the task that the

try_put generates. We can use this graph to see the basic overhead of the flow graph

infrastructure.

Figure 17-1.  Serial: A function that times the baseline serial loop

Chapter 17 Flow Graphs: Beyond the Basics

454

Our next microbenchmarking function, Master loop shown in Figure 17-3, does

not create a cycle. It instead sends all N messages to the multifunction_node directly

from the master thread in a serial loop. Since the multifunction_node has unlimited

parallelism and the serial for-loop will send messages very quickly, there are a lot of

parallel tasks created. However, because the master thread is the only thread that calls

the try_put method on node n, all body tasks are spawned into the master thread’s local

deque. Worker threads that participate in executing this graph will be forced to steal each

Figure 17-2.  FG loop: A function that times a serial flow graph

Chapter 17 Flow Graphs: Beyond the Basics

455

task they execute – and only after they have randomly selected the master as their victim.

We can use this graph to see the behavior of a flow graph with sufficient parallelism but

that requires an extreme amount of work-stealing.

Finally, Figure 17-4 shows the FG loop per worker function. This function spreads

the tasks across the master and worker threads’ local deques, since once a thread has

stolen its initial task, it will then spawn tasks into its own local deque. We can use this

graph to see the behavior of a flow graph with a very small amount of stealing.

Figure 17-3.  Master loop: A function that submits messages only from the master
thread; workers must steal every task they execute

Chapter 17 Flow Graphs: Beyond the Basics

456

Unless otherwise noted, all performance results presented in this chapter were

collected on a single socket server with an Intel Xeon Processor E3-1230 with four cores

supporting two hardware threads per core; the processor has a base frequency of 3.4 GHz,

Figure 17-4.  FG loop per worker: A function that creates just enough parallelism
to satisfy the number of workers. Once a worker has stolen its initial task, it will
execute the remainder of its tasks from its local deque.

Chapter 17 Flow Graphs: Beyond the Basics

457

a shared 8 MB L3 cache, and per-core 256 KB L2 caches. The system was running SUSE

Linux Enterprise Server 12. All samples were compiled using the Intel C++ Compiler 19.0

with Threading Building Blocks 2019, using the compiler flags “–std=c++11 –O2 –tbb”.

We ran these microbenchmarks using N=65,536 and spin-wait times of 100 ns, 1 us,

10 us, and 100 us. We collected their average execution times over 10 trials and present

the results in Figure 17-5. From these results, we can see that when the task sizes are

very small, 100 nanoseconds for example, the overhead of the flow graph infrastructure

leads to degraded performance in all cases. With task sizes of at least 1 microsecond,

we begin to profit from parallel execution. And by the time we reach a task size of 100

microseconds, we are able to reach close to perfect linear speedups.

We can further understand the performance of our microbenchmarks by collecting a

trace and viewing the results in Flow Graph Analyzer (FGA) – FGA is described in more

detail at the end of this chapter. Figure 17-6 shows per-thread timelines for the different

functions when using a spin-wait time of 1 microsecond. These timelines, which are

all of the same length, show the work done by each thread over time. The gaps (in

gray) in the timelines indicate when a thread is not actively executing a node’s body. In

Figure 17-6(a), we see the behavior of FG loop, which acts like a serial loop. But we can

see that the small gap between the try_put in the body and the exit from the task allows

the tasks to ping-pong between the threads since they are able to steal each task as it

Figure 17-5.  The speedups Tserial/Tbenchmark for different spin wait times

Chapter 17 Flow Graphs: Beyond the Basics

458

is spawned. This partially explains the fairly large overheads for this microbenchmark

shown in Figure 17-5. As we explain later in this chapter, most functional nodes

use scheduler bypass to follow their data to the next node when possible (see the

discussion on Pipelines and data locality and thread affinity in Chapter 16 for a more

detailed discussion of why scheduler bypass improves cache performance). Since a

multifunction_node puts output messages to its output ports directly inside of the body

implementation, it cannot immediately follow the data to the next node using scheduler

bypass – it has to finish its own body first! A multifunction_node therefore does not use

scheduler bypass to optimize for locality. In any case, this makes the performance in

Figure 17-6(a) a worst-case overhead, since scheduler bypass is not used.

In Figure 17-6(b), we see the case where the master thread is generating all of the

tasks and the workers must steal each task, but tasks can be executed in parallel once

they are stolen. Because the worker threads must steal each task, they are much slower

at finding tasks than the master thread. The master thread is continually busy in

Figure 17-6(b) – it can quickly pop a next task from its local deque – while the worker

threads’ timelines show gaps during which they are fighting with each other to steal their

next task from the master’s local deque.

Figure 17-6(c) shows the good behavior of FG loop per worker, where each thread

is able to quickly pop its next task from its local deque. Now we see very few gaps in the

timelines.

Figure 17-6.  Two millisecond regions of the timelines for each microbenchmark
when using a spin wait of 1 microsecond

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16

459

Looking at these extremes of behavior and noting the performance in Figure 17-5, we

feel comfortable recommending a similar rule of thumb for flow graph nodes. While a

pathological case, like Master loop, shows a limited speedup of 2.8 with a 1 microsecond

body, it still shows a speedup. If the work is more balanced, such as with FG loop per
worker, a 1 microsecond body provides a good speedup. With these caveats in mind, we

again recommend a 1 microsecond execution time as a crude guideline:

RULE OF THUMB  Flow graph nodes should be at least 1 microsecond in
execution time in order to profit from parallel execution. This translates to several
thousand CPU cycles – if you prefer using cycles, we suggest a 10,000 cycle
rule of thumb.

Just like with the TBB algorithms, this rule does not mean that we must avoid nodes

smaller than 1 microsecond at all costs. Only if our flow graph’s execution time is

dominated by small nodes do we really have a problem. If we have a mix of nodes with

different execution times, the overhead introduced by the small nodes may be negligible

compared to the execution time of the larger nodes.

�What to Do If Nodes Are Too Small

If some of the nodes in a flow graph are smaller than the recommended 1 microsecond

threshold, there are three options: (1) do nothing at all if the node does not have

significant impact on the total execution time of the application, (2) merge the node with

other surrounding nodes to increase granularity, or (3) use the lightweight execution

policy.

If the node’s granularity is small, but its contribution to total execution time is also

small, then the node can be safely ignored; just leave it as it is. In these cases, clarity of

design may trump any inconsequential efficiency gained.

If the node’s granularity has to be addressed, one option is to merge it with

surrounding nodes. Does the node really need to be encapsulated separately from its

predecessors and successors? If the node has a single predecessor or a single successor

and the same concurrency level, it might be easily combined with those nodes. If it has

multiple predecessors or successors, then perhaps the operations that are performed by

the node can be copied into each of the nodes. In any case, merging the nodes together

can be an option if the merging does not change the semantics of the graph.

Chapter 17 Flow Graphs: Beyond the Basics

460

Finally, the node can be changed to use a lightweight execution policy via a template

argument when the node is constructed. For example:

This policy indicates that the body of the node contains a small amount of work and

should, if possible, be executed without the overhead of scheduling a task.

There are three lightweight policies to choose from: queueing_lightweight,

rejecting_lightweight, and lightweight. These policies are described in detail

in Appendix B. All of the functional nodes, except source_node, support lightweight

policies. A lightweight node may not spawn a task to execute the body, but instead

execute the body immediately inside of the try_put within the context of the calling

thread. This means that the overheads of spawning are removed – but there is no

opportunity for other threads to steal the task, so parallelism is restricted!

Figure 17-7 shows two simple graphs that we can use to demonstrate the benefits

and risks of the lightweight policies: the first is a chain multifunction_node objects

and the second is a multifunction_node object that is connected to two chains of

multifunction_node objects.

Figure 17-7.  Flow graph used to examine the impacts of the lightweight policies

Chapter 17 Flow Graphs: Beyond the Basics

461

Figure 17-8 shows the impact of using the lightweight policy on the graphs

shown in Figure 17-7 using chains of 1000 nodes, all using the same execution policy

(lightweight or not). We send a single message through each graph and vary the time

each node spins from 0 to 1 millisecond. We should note that the single chain does not

allow for any parallelism when only one message is sent, while with two chains we can

achieve a maximum speedup of 2.

The lightweight policy cannot limit parallelism for the one chain case, since

there is no parallelism in this graph to begin with. We therefore see in Figure 17-8 that

it improves performance for all cases, although its impact becomes less significant

as the node granularity increases. For the one chain case, the ratio approaches 1.0 as

the overhead of spawning tasks becomes negligible compared to the body’s spin time.

The two-chain case does have potential parallelism. However, if all of the nodes use a

lightweight policy, both chains will be executed by the thread that executes the first

multifunction_node and the potential parallelism will be eliminated. As we might

expect then, as we approach our rule of thumb execution time of 1 microsecond, the

benefits of the lightweight policy are overshadowed by the restricted parallelism. Even

if the nodes spin for 0.1 microsecond, the ratio drops below 1. The ratio approaches 0.5

Figure 17-8.  The impact of using a lightweight policy for the one chain and two
chains samples. A value greater than 1 means that the lightweight policy improved
performance.

Chapter 17 Flow Graphs: Beyond the Basics

462

as the serialization of the graph results in the complete loss of our expected speedup of 2

when using two chains.

Addressing granularity issues through merging of nodes, or by using the lightweight

policy, can decrease overheads, but as we see, they can also limit scalability. These

“optimizations” can result in significant improvements, but must be applied judiciously

or else they may do more harm than good.

�Memory Usage and Data Locality
Unlike the TBB parallel algorithms that iterate over data structures, a flow graph passes

data structures from node to node. The messages can be primitive types, objects,

pointers or, in the case of a dependence graph, tbb::flow::continue_msg objects.

For best performance, we need to consider both data locality and memory consumption.

We will discuss both of these issues in this section.

�Data Locality in Flow Graphs

Data passes between nodes, and when a node receives a message, it executes its body

on the message as a TBB task. The task is scheduled using the same work-stealing

dispatchers used by all TBB tasks. In Figure 17-6(a) when a serial loop was executed as

a flow graph, we saw that a task spawned by one thread may be executed by another. We

noted however that this was due in part to the microbenchmark using multifunction_

node objects, which do not use scheduler bypass to optimize for performance.

In general, the other functional nodes, including source_node, function_node, and

continue_node, use scheduler bypass if one of the successors can be immediately run.

If the data accessed by one of these nodes fits into a data cache, then it can be reused by

the same thread when it executes the successor.

Since we can benefit from locality in a flow graph, it is worth considering data size

and even breaking the data into smaller pieces that can benefit from locality through

scheduler bypass. For example, we can revisit the matrix transposition kernel that we

used in Chapter 16 as an example to demonstrate this effect. We will now pass three pairs

of a, b matrices using the FGMsg structure shown in Figure 17-9. You can see the serial,

cache oblivious and parallel_for implementations of the matrix transposition kernel in

Chapter 16 in Figure 16-6 through Figure 16-13.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16#Fig6
https://doi.org/10.1007/978-1-4842-4398-5_16#Fig13

463

Our first implementation that does not break the arrays into small pieces is also

shown in Figure 17-9. The source_node, initialize, sends three messages, each being

one of three matrix pairs. This node is connected to a single function_node, transpose,

that has an unlimited concurrency. The transpose node invokes the simple, serial

matrix transposition function from Chapter 16. A final node, check, confirms that the

transposition is done correctly.

Figure 17-9.  A graph that sends a series of matrices to transpose, each of which is
transposed using the simple serial matrix transposition from Chapter 16

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16

464

Our simple implementation sends the full matrices, and these are processed, in a

non-cache-oblivious fashion, by transpose. As we might expect, this does not perform

well. On our test machine, it was only 8% faster than executing the non-cache-oblivious

serial implementation of our matrix transposition from Chapter 16 three times in a row,

once on each pair of matrices. This isn’t very surprising since the benchmark is memory

bound – trying to execute multiple transpositions in parallel doesn’t help much when

we can’t feed one transposition with the data it needs from memory. If we compare our

simple flow graph to the serial cache-oblivious transposition from Chapter 16, it looks

even worse, taking 2.5 times longer to process the three pairs of matrices when executed

on our test machine. Luckily, there are many options for improving the performance of

this flow graph. For example, we can use a serial cache-oblivious implementation in the

transpose node. Or, we can use the parallel_for implementation from Chapter 16 that

uses a blocked_range2d and simple_partitioner in the transpose node. We will see

shortly that each of these will greatly improve our base case speedup of 1.08.

However, we might also send blocks of the matrices as messages instead of sending

each pair of a and b matrices as a single big message. To do so, we extend our message

structure to include a blocked_range2d:

We can then construct an implementation in which the initialize node sends

blocks of the a and b matrices as messages; sending all of the blocks from one pair of

matrices before moving on to the next. Figure 17-10 shows one possible implementation.

In this implementation, a stack is maintained by the source_node to mimic the depth-

first subdivision and execution of the blocks that would come about through the

recursive subdivision of ranges performed by a TBB parallel_for. We will not describe

the implementation in Figure 17-10 in depth. Instead, we will simply note that it sends

blocks instead of full matrices.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16

465

Figure 17-10.  A graph that sends a series of tiles of matrices to transpose,
leveraging the blocked_range2d described in Chapter 16 (Advanced Algorithms)

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16

466

Figure 17-11 shows the speedup of several variants of matrix transposition

when executed on our test machine. We can see that our first implementation, labeled

“flow graph,” shows the small 8% improvement. The pfor-br2d implementation is the

parallel_for based implementation from Figure 16-11, with blocked_range2d and

simple_partitioner, executed three times, once on each pair of matrices. The remaining

bars all correspond to optimized flow graph versions: “flow graph + oblivious” is similar

to Figure 17-9 but calls the serial cache-oblivious implementation of matrix transposition

from within the body of the transpose node; “flow graph + pfor-br2d” uses a parallel_for

in the transpose body; “tiled flow graph” is our implementation from Figure 17-10; and

“tiled flow graph + pfor2d” is similar to Figure 17-10 but uses a parallel_for to process its

tiles. The tiled flow graph from Figure 17-10 performed the best.

It might be surprising that the tiled flow graph version with nested parallel_fors

did not perform as well as the tiled flow graph without nested parallelism. In Chapter 9,

we claimed that we can use nested parallelism with impunity in TBB – so what went

wrong? The harsh reality is that once we start tuning the performance of our TBB

applications – we often need to trade away full composability for performance (see the

Aspects of Composability Sidebar). In this case, the nested parallelism interfered with

the cache optimizations we were carefully trying to implement. Each node was sent a tile

to process that was a good fit for its data cache – with nested parallelism, we then undid

this perfect fit by sharing the tile with other threads.

Figure 17-11.  The speedup of the different variants of matrix transposition.
We use 32×32 tiles since this performed best on our test system.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16#Fig11
https://doi.org/10.1007/978-1-4842-4398-5_9

467

ASPECTS OF COMPOSABILITY

We can break down composability into three desires:

	(1)	 Correctness (as an absolute)

	(2)	A bility to use (as a practical matter)

	(3)	P erformance (as an aspiration)

In the first, we hope we can mix and match code without concerns that it will suddenly

malfunction (get the wrong answer). TBB gives us this ability, and it is largely a solved

problem – the one wrinkle being that nondeterministic order-of-execution will make answers

vary when using finite precision math such as native floating-point arithmetic. We discuss that

in Chapter 16 offering approaches to maintain the “correctness” aspects of composability in

this light.

In the second, we hope that the program will not crash. This is a practical matter in many

cases, because the most common problem (unbounded memory usage) could be theoretically

solved with infinite sized memories. ☺ TBB largely solves this aspect of composability, giving

it an advantage of programming models that do not (such as OpenMP). TBB does need more

help here for the less structured flow graphs, so we discuss using limiter_nodes with flow

graphs to keep memory usage in check – especially important in large flow graphs.

Finally, for optimal performance, we know of no general solution to full performance

composability. The reality is that highly optimized code competing with other code running

on the same hardware will interfere with the optimal performance of either code. This means

we can benefit from manually tuning the code. Fortunately, TBB gives us control to tune, and

tools like Flow Graph Analyzer help give us insights to guide our tuning. Once tuned, it is our

experience that code can work well and feel composable – but the technology to blindly use

code and get top performance does not exist. “Good enough” performance may happen often,

but “great” requires work.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_16

468

We shouldn’t get too focused on the specifics of the results in Figure 17-11 – this is,

after all, a single memory-bound microbenchmark. But it does make clear that we can

benefit by considering the size of our nodes, not only from a granularity perspective, but

also from a data locality perspective. When we moved from a naïve implementation that

sent whole arrays and did not implement tuned kernels in the nodes to our more

cache-aware tiled flow graph version, we saw a significant performance improvement.

�Picking the Best Message Type and Limiting the Number
of Messages in Flight

As we allow messages into a graph, or make copies as we split them along multiple paths

through a flow graph, we consume more memory. In addition to worrying about locality,

we may also need to limit memory growth.

When a message is passed to a node in a data flow graph, it may be copied into the

internal buffers in that node. For example, if a serial node needs to defer the spawning

of task, it holds incoming messages in a queue until it is legal to spawn a task to process

them. If we pass very large objects around in our flow graph, this copying can be

expensive! Therefore, when possible, it is better to pass around pointers to large objects

instead of the objects themselves.

The C++11 standard introduced classes (in namespace std) unique_ptr and

shared_ptr, which are very useful for simplifying memory management of objects

passed by pointer in a flow graph. For example, in Figure 17-12, let us assume that a

BigObject is large and slow to construct. By passing the object using a shared_ptr, only

the shared_ptr is copied into the serial node n’s input buffer not the entire BigObject.

Also, since a shared_ptr is used, each BigObject is automatically destroyed once it

reaches the end of the graph and its reference count reaches zero. How convenient!

Chapter 17 Flow Graphs: Beyond the Basics

469

Of course, we need to be careful when we use pointers to objects. By passing

pointers and not objects, multiple nodes may have access to the same object at the same

time through the shared_ptr. This is especially true if your graph relies on functional

parallelism, where the same message is broadcast to multiple nodes. The shared_ptr

will correctly handle the increments and decrements of the reference counts, but we

need to be sure that we are properly using edges to prevent any potential race conditions

when accessing the object that is pointed to.

Figure 17-12.  Using a std::shared_ptr to avoid slow copies while simplifying
memory management

Chapter 17 Flow Graphs: Beyond the Basics

470

As we saw in our discussion of how nodes map to tasks, when messages arrive at

functional nodes, tasks may be spawned or messages may be buffered. When designing

a data flow graph, we should not forget about these buffers and tasks, and their memory

footprint.

For example, let’s consider Figure 17-13. There are two nodes, serial_node and

unlimited_node; both contain a long spin loop. The for loop quickly allocates a large

number of inputs for both nodes. Node serial_node is serial and so its internal buffer

will grow quickly as it receives messages faster than its tasks complete. In contrast,

node unlimited_node will immediately spawn tasks as each message arrives – quickly

flooding the system with a very large number of tasks – many more than the number

of worker threads. These spawned tasks will be buffered in the internal worker thread

queues. In both cases, our graph might quickly consume a large amount of memory

because they allow BigObject messages to enter the graph more quickly than they can be

processed.

Our example uses an atomic counter, bigObjectCount, to track how many

ObjectCount objects are currently allocated at any given time. At the end of the

execution, the example prints the maximum value. When we ran the code in Figure 17-13

with A_VERY_LARGE_NUMBER=4096, we saw a "maxCount == 8094". Both the serial_node

and the unlimited_node quickly accumulate BigObject objects!

Chapter 17 Flow Graphs: Beyond the Basics

471

Figure 17-13.  An example with a serial function_node, serial_node, and an
unlimited function_node, unlimited_node

Chapter 17 Flow Graphs: Beyond the Basics

472

There are three common approaches to managing resource consumption in a flow

graph: (1) use a limiter_node, (2) use concurrency limits, and/or (3) use a token-

passing pattern.

We use a limiter_node to set a limit on the number of messages that can flow

through a given point in a graph. A subset of the interface of limiter_node is shown in

Figure 17-14.

A limiter_node maintains an internal count of the messages that pass through it.

A message sent to the decrement port on a limiter_node decrements the count, allowing

additional messages to pass through. If the count is equal to the node’s threshold, any

new messages that arrive at its input port are rejected.

In Figure 17-15, a source_node source generates a large number of BigObjects.

A source_node only spawns a new task to generate a message once its previously

generated message is consumed. We insert a limiter_node limiter, constructed with

a limit of 3, between source and unlimited_node to limit the number of messages that

are sent to unlimited_node. We also add an edge from unlimited_node back to the

limiter_node’s decrement port. The number of messages sent through limiter will now

at most be 3 more than the number of messages sent back through limiter’s decrement

port.

Figure 17-14.  The subset of limiter_node interface used by the examples

Chapter 17 Flow Graphs: Beyond the Basics

473

Figure 17-15.  Using a limiter_node to allow only three BigObjects to reach
unlimited_node at a time

Chapter 17 Flow Graphs: Beyond the Basics

474

We can also use the concurrency limits on nodes to limit resource consumption

as shown in Figure 17-16. In the code, we have a node that can safely execute with an

unlimited concurrency, but we choose a smaller number to limit the number of tasks

that will be spawned concurrently.

Figure 17-16.  Using a tbb::flow::rejecting policy and a concurrency_limit
to allow only three BigObjects to reach the limited_to_3_node at a time

Chapter 17 Flow Graphs: Beyond the Basics

475

We can turn off the internal buffering for a function_node by constructing it with an

execution policy, flow::rejecting or flow::rejecting_lightweight. The source_node

in Figure 17-16 continues to generate new outputs only if they are being consumed.

The final common approach for limiting resource consumption in a data flow graph

is to use a token-based system. As described in Chapter 2, tbb::parallel_pipeline

algorithm uses tokens to limit the maximum number of items that will be in flight in

a pipeline. We can create a similar system using tokens and a reserving join_node as

shown in Figure 17-17. In this example, we create a source_node source and buffer_

node token_buffer. These two nodes are connected to the inputs of a reserving join_

node join. A reserving join_node, join_node< tuple< BigObjectPtr, token_t >,

flow::reserving >, only consumes items when it can first reserve inputs at each of its

ports. Since a source_node stops generating new messages when its previous message

has not been consumed, the availability of tokens in the token_buffer limits the number

of items that can be generated by the source_node. As tokens are returned to the token_

buffer by node unlimited_node, they can be paired with additional messages generated

by the source, allowing new source tasks to be spawned.

Figure 17-18 shows the speedup of each approach over a serial execution of the node

bodies. In this figure, the spin time is 100 microseconds, and we can see that the token

passing approach has a slightly higher overhead, although all three approaches show

speedups close to 3, as we would expect.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_2

476

Figure 17-17.  A token passing pattern uses tokens and a tbb::flow::reserving
join_node to limit the items that can reach node unlimited_node

Chapter 17 Flow Graphs: Beyond the Basics

477

In Figure 17-18, we use int as the token type. In general, we can use any type as a

token, even large objects or pointers. For example, we could use BigObjectPtr objects

as the tokens if we want to recycle BigObject objects instead of allocating them for each

new input.

�Task Arenas and Flow Graph
Both implicit and explicit task arenas impact the behavior of TBB tasks and the TBB

generic parallel algorithms. The arena in which tasks are spawned controls which

threads can participate in executing the tasks. In Chapter 11, we saw how we can use

implicit and explicit arenas to control the number of threads that participate in executing

parallel work. In Chapters 12–14, we saw that explicit task arenas can be used with task_

sheduler_observer objects to set the properties of threads as they join arenas. Because

of the impact of task arenas on available parallelism and data locality, in this section, we

take a closer look at how task arenas mix with flow graphs.

�The Default Arena Used by a Flow Graph

When we construct a tbb::flow::graph object, the graph object captures a reference

to the arena of the thread that constructed the object. Whenever a task is spawned to

execute work in the graph, the tasks are spawned in this arena, not in the arena of the

thread that caused the task to be spawned.

Figure 17-18.  All three approaches limit the speedup since only three items are
allowed into node n at a time

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_11
https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_14

478

Why?

Well, TBB flow graphs are less structured than TBB parallel algorithms. TBB

algorithms use fork-join parallelism and the behavior of TBB task arenas matches this

pattern well – each master thread has its own default arena and so if different master

threads execute algorithms concurrently, their tasks are isolated from each other in

different task arenas. But with a TBB flow graph, there may be one or more master

threads explicitly putting messages into the same graph. If the tasks related to these

interactions are spawned in each master thread’s arena, some tasks from a graph would

be isolated from other tasks from the same graph. This is very likely not the behavior we

would like.

So instead, all tasks are spawned into a single arena, the arena of the thread that

constructed the graph object.

�Changing the Task Arena Used by a Flow Graph

We can change the task arena used by a graph by calling the graph’s reset() function.

This reinitializes the graph, including recapturing the task arena. We demonstrate this

in Figure 17-19 by constructing a simple graph with one function_node that prints the

number of slots in the arena in which its body task executes. Since the main thread

constructs the graph object, the graph will use the default arena, which we initialize with

eight slots.

Chapter 17 Flow Graphs: Beyond the Basics

479

In the first three calls to n.try_put in Figure 17-19, we do not reset that graph g, and

we can see that the tasks execute in the default arena with eight slots.

Without reset:

default : 8

a2 : 8

a4 : 8

Figure 17-19.  Using graph::reset to change the task arena used by a graph

Chapter 17 Flow Graphs: Beyond the Basics

480

But in the second set of calls, we call reset to reinitialize the graph, and the node

executes first in the default arena, then in arena a2, and finally in arena a4.

With reset:

default : 8

a2 : 2

a4 : 4

�Setting the Number of Threads, Thread-to-Core Affinities, etc.

Now that we know how to associate task arenas with flow graphs, we can use all of the

performance tuning optimizations described in Chapters 11–14 that rely on task arenas.

For example, we can use task arenas to isolate one flow graph from another. Or, we can

pin threads to cores for a particular task arena using a task_scheduler_observer object

and then associate that arena with a flow graph.

�Key FG Advice: Dos and Don’ts
The flow graph API is flexible – maybe too flexible. When first working with flow graph,

the interface can be daunting since there are so many options. In this section, we provide

several dos and don’ts that capture some of our experience when using this high-level

interface. However, just like with our rule of thumb for node execution time, these are

just suggestions. There are many valid patterns of usage that are not captured here, and

we’re sure that some of the patterns we say to avoid may have valid use cases. We present

these best-known methods, but your mileage may vary.

�Do: Use Nested Parallelism
Just like with a pipeline, a flow graph can have great scalability if it uses parallel

(flow::unlimited) nodes but can have limited scalability if it has serial nodes. One way

to increase scaling is to use nested parallel algorithms inside of TBB flow graph nodes.

TBB is all about composability, so we should use nested parallelism when possible.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_11
https://doi.org/10.1007/978-1-4842-4398-5_14

481

�Don’t: Use Multifunction Nodes in Place of Nested
Parallelism
As we have seen throughout this book, the TBB parallel algorithms such as parallel_

for and parallel_reduce are highly optimized and include features like Ranges and

Partitioners that let us optimize performance even more. We have also seen that the flow

graph interface is very expressive – we can express graphs that include loops and use nodes

like multifunction_node to output many messages from each invocation. We should

therefore be on the lookout for cases where we create patterns in our graphs that are better

expressed using nested parallelism. One simple example is shown in Figure 17-20.

In Figure 17-20, for each message that the multifunction_node receives, it generates

many output messages that flow into a function_node with unlimited concurrency. This

graph will act a lot like a parallel loop, with the multifunction_node acting as the control

loop and the function_node as the body. But it will require a lot of stealing to distribute

the work like the Master loop from Figures 17-3 and 17–5. While there may be valid uses

of this pattern, it is likely more efficient to use a highly optimized parallel loop algorithm

instead. This entire graph might be collapsed into a single node that contains a nested

parallel_for, for example. Of course, whether or not this replacement is possible or

desirable depends on the application.

�Do: Use join_node, sequencer_node, or
multifunction_node to Reestablish Order in a
Flow Graph When Needed
Because a flow graph is less structured than a simple pipeline, we may sometimes need

to establish an ordering of messages at points in the graph. There are three common

approaches for establishing order in a data flow graph: use a key-matching join_node,

use a sequencer_node, or use a multifunction_node.

Figure 17-20.  A multifunction_node that sends many messages for each message
it receives. This pattern may be better expressed as a nested parallel_for loop.

Chapter 17 Flow Graphs: Beyond the Basics

482

For example, in Chapter 3, the parallelism in our stereoscopic 3D flow graph allowed

the left and right images to arrive out of order at the mergeImageBuffersNode. In that

example, we ensured that the correct two images were paired together as inputs to the

mergeImageBuffersNode by using a tag-matching join_node. A tag-matching join_node

is a type of key-matching join_node. By using this join_node type, inputs can arrive in

different orders at the two input ports but will still be properly matched based on their

tag or key. You can find more information on the different join policies in Appendix B.

Another way to establish order is to use a sequencer_node. A sequencer_node is a

buffer that outputs messages in sequence order, using a user-provided body object to

obtain the sequence number from the incoming message.

In Figure 17-21, we can see a three-node graph, with nodes first_node, sequencer,

and last_node. We use a sequencer_node to reestablish the input order of the messages

before the final serial output node last_node. Because function_node first_node is

unlimited, its tasks can finish out of order and send their output as they complete. The

sequencer_node reestablishes the input order by using the sequence number assigned

when each message was originally constructed.

If we execute a similar example without a sequencer node and N=10, the output is

scrambled as the messages pass each other on their way to last_node:

9 no sequencer

8 no sequencer

7 no sequencer

0 no sequencer

1 no sequencer

2 no sequencer

6 no sequencer

5 no sequencer

4 no sequencer

3 no sequencer

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_3

483

Figure 17-21.  A sequencer_node is used to ensure that the messages print in the
order dictated by their my_seq_no member variables

Chapter 17 Flow Graphs: Beyond the Basics

484

When we execute the code in Figure 17-21, we see the output:

0 with sequencer

1 with sequencer

2 with sequencer

3 with sequencer

4 with sequencer

5 with sequencer

6 with sequencer

7 with sequencer

8 with sequencer

9 with sequencer

As we can see, a sequencer_node can reestablish the order of the messages, but

it does require us to assign the sequence number and also to provide a body to the

sequencer_node that can obtain that number from an incoming message.

A final approach to establishing order is to use a serial multifunction_node.

A multifunction_node can output zero or more messages on any of its output ports

for a given input message. Since it is not forced to output a message for each incoming

message, it can buffer incoming messages and hold them until some user-defined

ordering constraint is met.

For example, Figure 17-22 shows how we can implement a sequencer_node using

a multifunction_node by buffering incoming messages until the next message in

sequencer order has arrived. This example assumes that at most N messages are sent to

a node sequencer and that the sequence numbers start at 0 and are contiguous up to

N-1. Vector v is created with N elements initialized as empty shared_ptr objects. When

a message arrives at sequencer, it is assigned to the corresponding element of v. Then

starting at the last sent sequence number, each element of v that has a valid message is

sent and the sequence number is incremented. For some incoming messages, no output

message will be sent; for others, one or more messages may be sent.

Chapter 17 Flow Graphs: Beyond the Basics

485

While Figure 17-22 shows how a multifunction_node can be used to reorder

messages by sequence order, in general, any user-defined ordering or bundling of

messages can be used.

�Do: Use the Isolate Function for Nested Parallelism
In Chapter 12, we talked about how we may sometimes need to create isolation for

performance or correctness reasons when using TBB algorithms. The same is true

for flow graphs, and as with the generic algorithms, this can be especially true with

nested parallelism. The implementation of the graph in Figure 17-23 shows a simple

graph with nodes source and unlimited_node, and nested parallelism inside node

unlimited_node. A thread may moonlight (see Chapter 12) while waiting for the nested

parallel_for loop in node unlimited_node to complete, and pick up another instance

of node unlimited_node. The node unlimited_node prints “X started by Y”, where X is

the node instance number and Y is the thread id.

Figure 17-22.  A multifunction_node is used to implement a sequencer_node

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_12

486

Figure 17-23.  A graph with nested parallelism

Chapter 17 Flow Graphs: Beyond the Basics

487

On our test system with eight logical cores, one output showed that our thread 0 was

so bored it pick up not just one, but three different instances of unlimited_node, while

waiting for its first parallel_for algorithm to finish as shown in Figure 17-24.

As we discussed in Chapter 12, moonlighting is typically benign, which is the case

here since we’re not computing anything real. But as we highlighted in our previous

discussions about isolation, this behavior is not always benign and can lead to

correctness issues, or decreased performance, in some cases.

We can address moonlighting in a flow graph just as we did with general tasks in

Chapter 12, with the this_task_arena::isolate function or with explicit task arenas.

For example, instead of calling the parallel_for directly in the node body, we can

invoke it inside of an isolate call:

tbb::this_task_arena::isolate([P,spin_time]() {

 tbb::parallel_for(0, P-1, [spin_time](int i) {

 spinWaitForAtLeast((i+1)∗spin_time);
 });

});

After changing our code to use this function, we see that the threads no longer

moonlight and each thread stays focused on a single node until that node is complete as

shown in Figure 17-25.

Figure 17-24.  An output from the example in Figure 17-23 is shown on the
left, with a diagram showing the overlapped executions on the right. Thread 0
participates in the execution of three different node invocations concurrently.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_12

488

�Do: Use Cancellation and Exception Handling in Flow
Graphs
In Chapter 15, we discussed task cancellation and exception handling when using TBB

tasks in general. Since we are already familiar with this topic, we will only highlight the

flow graph related aspects in this section.

�Each Flow Graph Uses a Single task_group_context

A flow graph instance spawns all of its tasks into a single task arena, and it also uses a

single task_group_context object for all of these tasks. When we instantiate a graph

object, we can pass in an explicit task_group_context to the constructor:

tbb::task_group_context tgc;

tbb::flow::graph g{tgc};

If we don’t pass one to the constructor, a default object will be created for us.

�Canceling a Flow Graph

If we want to cancel a flow graph, we cancel it using the task_group_context, just as we

would with the TBB generic algorithms.

tgc.cancel_group_excution();

Figure 17-25.  None of the nodes execute different node invocations concurrently

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_15

489

And just as with TBB algorithms, the tasks that have already started will complete but

no new tasks related to the graph will start. As described in Appendix B, there is also a

helper function in the graph class that lets us check the status of a graph directly:

if (g.is_cancelled()) {

 std::cout << "My graph was cancelled!" << std::endl;

}

If we need to cancel a graph, but do not have a reference to its task_group_context,

we can get one from within the task:

tbb::task::self().cancel_group_execution();

�Resetting a Flow Graph After Cancellation

If a graph is canceled, whether directly or due to an exception, we need to reset the

graph, g.reset(), before we can use it again. This resets the state of the graph – clearing

internal buffers, putting the edges back into their initial states, and so on. See Appendix

B for more details.

�Exception Handling Examples

To learn about how exceptions work with a flow graph, let’s look at the implementation

of the graph in Figure 17-26. This figure provides a small, three-node graph that throws

an exception in its second node, node2.

Chapter 17 Flow Graphs: Beyond the Basics

490

If we execute this example, we get an exception (hopefully this did not come as a

surprise):

terminate called after throwing an instance of 'int'

Since we didn’t handle the exception, it propagates to the outer scope and our

program terminates. We can, of course, modify the implementation of our node node2,

so that it catches the exception within its own body, as shown in Figure 17-27.

Figure 17-26.  A flow graph that throws an exception in one of its nodes

Chapter 17 Flow Graphs: Beyond the Basics

491

If we make this change, our example will run to completion, printing out the

“Caught” messages, in no particular order:

Caught 2

Caught 1

So far, none of this is very exceptional (pun intended); it’s just how exceptions

should work.

The unique part of exception handling in a flow graph is that we can catch

exceptions at the call to the graph’s wait_for_all function, as shown in Figure 17-28.

Figure 17-27.  A flow graph that throws an exception in one of its nodes

Figure 17-28.  A flow graph that throws an exception in one of its nodes

If we re-run our original example from Figure 17-26 but use a try-catch block around

the call to wait_for_all, we will see only one “Catch” message (either for 1 or 2):

Caught 2

The exception thrown in node node2 is not caught in the node’s body, so it will

propagate to the thread that waits at the call to wait_for_all. If a node’s body throws an

exception, the graph it belongs to is canceled. In this case, we see that there is no second

“Caught” message, since node2 will only execute once.

Chapter 17 Flow Graphs: Beyond the Basics

492

And of course, if we want to re-execute the graph after we deal with the exception

that we catch at the wait_for_all, we need to call g.reset() since the graph has been

canceled.

�Do: Set a Priority for a Graph Using task_group_
context
We can set priorities for all of the tasks spawned by a graph by using the graph’s task_

group_context, for example:

if (auto t = g.root_task()) {

 t->group()->set_priority(tbb::priority_high);

}

Or we can pass in a task_group_context object with a preset priority to the graph’s

constructor. In either case though, this sets the priorities for all of the tasks related to

the graph. We can create one graph with a high priority and another graph with a low

priority.

Shortly before the publication of this book, support for relative priorities for

functional nodes was added to TBB as a preview feature. Using this feature, we can pass

a parameter to a node’s constructor to give it a priority relative to other functional nodes.

This interface was first provided in TBB 2019 Update 3. Interested readers can learn more

details about this new functionality in the online TBB release notes and documentation.

�Don’t: Make an Edge Between Nodes in Different Graphs
All graph nodes require a reference to a graph object as one of the arguments to their

constructor. In general, it is only safe to construct edges between nodes that are part of

the same graph. Connecting two nodes in different graphs can make it difficult to reason

about graph behaviors, such as what task arenas will be used, if our calls to wait_for_

all will properly detect graph termination, and so on. To optimize performance, the

TBB library takes advantage of its knowledge about edges. If we connect two graphs by

an edge, the TBB library will freely reach across this edge for optimization purposes.

Chapter 17 Flow Graphs: Beyond the Basics

493

We may believe that we have created two distinct graphs, but if there are shared edges,

TBB can start mixing their executions together in unexpected ways.

To demonstrate how we can get unexpected behavior, we implemented the class

WhereAmIRunningBody shown in Figure 17-29. It prints max_concurrency and priority

settings, which we will use to infer what task arena and task_group_context this body’s

task is using when it executes.

Figure 17-30 provides an example that uses the WhereAmIRunningBody to

demonstrate an unexpected behavior. In this example, we create two nodes: g2_node and

g4_node. The node g2_node is constructed with a reference to g2. The graph g2 is passed

a reference to a task_group_context that has priority_normal and g2 is reset() in a

task_arena with a concurrency of 2. We should therefore expect g2_node to execute with

normal priority in an arena with 2 threads, right? The node g4_node is constructed such

that we should expect it to execute with high priority in an arena with four threads.

The first group of calls that include g2_node.try_put(0) and g4_node.try_put(1)

match these expectations:

Figure 17-29.  A body class that lets us infer what task arena and task_group_
context are used by a node execution

Chapter 17 Flow Graphs: Beyond the Basics

494

But, when we make an edge from g2_node to g4_node, we make a connection

between nodes that exist in two different graphs. Our second set of calls that include

g2_node.try_put(2) again cause the body of g2_node to execute with normal priority in

arena a2. But TBB, trying to reduce scheduling overheads, uses scheduler bypass (see

Scheduler Bypass in Chapter 10) when it invokes g4_node due to the edge from g2_node

to g4_node. The result is that g4_node executes in the same thread as g2_node, but this

Figure 17-30.  An example that has unexpected behavior because of cross-graph
communication

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_10

495

thread belongs to arena a2 not a4. It still uses the correct task_group_context when the

task is constructed, but it winds up being scheduled in an unexpected arena.

2:g2_node executing in arena 2 with priority normal

2:g4_node executing in arena 2 with priority high

From this simple example, we can see that this edge breaks the separation between

the graphs. If we were using arenas a2 and a4 to control the number of threads, for work

isolation or for thread affinity purposes, this edge will undo our efforts. We should not

make edges between graphs.

�Do: Use try_put to Communicate Across Graphs
In the previous “Don’t,” we decided that we should not make edges between graphs. But

what if we really need to communicate across graphs? The least dangerous option is to

explicitly call try_put to send a message from a node in one graph to a node in another

graph. We don’t introduce an edge, so the TBB library won’t do anything sneaky to

optimize the communication between the two nodes. Even in this case though, we still

need to be careful as our example in Figure 17-31 demonstrates.

Here, we create a graph g2 that sends a message to graph g1 and then waits for both

graph g1 and g2. But, the waiting is done in the wrong order!

Since node g2_node2 sends a message to g1_node1, the call to g1.wait_for_all()

will likely return immediately since nothing is going on in g1 at the time of the call.

We then call g2.wait_for_all(), which returns after g2_node2 is done. After this call

returns, g2 is finished but g1 has just received a message from g2_node2 and its node

g1_node1 has just started to execute!

Chapter 17 Flow Graphs: Beyond the Basics

496

Figure 17-31.  A flow graph that sends a message to another flow graph

Chapter 17 Flow Graphs: Beyond the Basics

497

Luckily, if we call the waits in the reverse order, things will work as expected:

g2.wait_for_all();

g1.wait_for_all();

But still, we can see that using explicit try_puts is not without dangers. We need to

be very careful when graphs communicate with each other!

�Do: Use composite_node to Encapsulate Groups
of Nodes
In the previous two sections, we warned that communication between graphs can lead

to errors. Often developers use more than one graph because they want to logically

separate some nodes from others. Encapsulating a group of nodes is convenient if there

is a common pattern that needs to be created many times or if there is too much detail in

one large flat graph.

In both of these cases, we can use a tbb::flow::composite_node. A composite_node

is used to encapsulate a collection of other nodes so they can be used like a first-class

graph node. Its interface follows:

Unlike the other node types that we have discussed in this chapter and in Chapter 3,

we need to create a new class that inherits from tbb::flow::composite_node to make

use of its functionality. For example, let’s consider the flow graph in Figure 17-32(a). This

graph combines two inputs from source1 and source2, and uses a token passing scheme

to limit memory consumption.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_3

498

If this token passing pattern is commonly used in our application, or by members

of our development team, it might make sense to encapsulate it into its own node type,

as shown in Figure 17-32(b). It also cleans up the high-level view of our application by

hiding the details.

Figure 17-33 shows what a flow graph implementation looks like if we have a

node that implements the dotted parts of Figure 17-32(a), replacing it with a single

merge node. In Figure 17-33, we use the merge node object like any other flow graph

node, making edges to its input and output ports. Figure 17-34 shows how we use

tbb::flow::composite_node to implement our MergeNode class.

Figure 17-32.  An example that benefits from a composite_node

Chapter 17 Flow Graphs: Beyond the Basics

499

Figure 17-33.  Creating a flow graph that uses a class MergeNode that inherits from
tbb::flow::composite_node

Chapter 17 Flow Graphs: Beyond the Basics

500

Figure 17-34.  The implementation of MergeNode

Chapter 17 Flow Graphs: Beyond the Basics

501

In Figure 17-34, MergeNode inherits from CompositeType, which is an alias for

The two template arguments indicate that a MergeNode will have two input ports, both

that receive BigObjectPtr messages, and a single output port that sends BigObjectPtr

messages. The class MergeNode has a member variable for each node it encapsulates: a

tokenBuffer, a join, and a combine node. And these member variables are initialized in

the member initializer list of the MergeNode constructor. In the constructor body, calls to

tbb::flow::make_edge set up all of the internal edges. A call to set_external_ports is

used to assign the ports from the member nodes to the external ports of the MergeNode.

In this case, the first two input ports of join become the inputs of the MergeNode and

the output of combine becomes the output the MergeNode. Finally, because the node is

implementing a token passing scheme, the tokenBuffer is filled with tokens.

While creating a new type that inherits from tbb::flow::composite_node may

appear daunting at first, using this interface can lead to more readable and reusable

code, especially as your flow graphs become larger and more complicated.

�Introducing Intel Advisor: Flow Graph Analyzer
The Flow Graph Analyzer (FGA) tool is available in Intel Parallel Studio XE 2019 and later.

It is provided as a feature of the Intel Advisor tool. Instructions for getting the tool can be

found at https://software.intel.com/en-us/articles/intel-advisor-xe-release-

notes.

FGA was developed to support the design, debugging, visualization, and analysis

of graphs built using the TBB flow graph API. That said, many of the capabilities of FGA

are generically useful for analyzing computational graphs, regardless of their origin.

Currently, the tool has limited support for other parallel programming models including

the OpenMP API.

For our purposes in this book, we will focus only on how the design and analysis

workflows in the tool apply to TBB. We also use FGA to analyze some of the samples in

this chapter. However, all of the optimizations presented in this chapter can be done with

or without FGA. So, if you have no interest in using FGA, you can skip this section. But

again, we believe there is significant value in this tool, so skipping it would be a mistake.

Chapter 17 Flow Graphs: Beyond the Basics

https://software.intel.com/en-us/articles/intel-advisor-xe-release-notes
https://software.intel.com/en-us/articles/intel-advisor-xe-release-notes

502

�The FGA Design Workflow
The design workflow in FGA lets us graphically design TBB flow graphs, validate that

they are correct, estimate their scalability, and, after we are satisfied with our design,

generate a C++ implementation that uses the TBB flow graph classes and functions. FGA

is not a full Integrated Development Environment (IDE) like Microsoft Visual Studio,

Eclipse or Xcode. Instead, it gets us started with our flow graph design, but then we need

to step outside of the tool to complete the development. However, if we use the design

workflow in a constrained way, as we will describe later, iterative development in the

designer is possible.

Figure 17-35 shows the FGA GUI used during the design workflow. We will only

briefly describe the components of the tool here as we describe the typical workflow; the

Flow Graph Analyzer documentation provides a more complete description.

The typical design workflow starts with a blank canvas and project. As highlighted

by the black circle numbered 1 in Figure 17-35, we select nodes in the node palette and

place them on the canvas, connecting them together by drawing edges between their

ports. The node palette contains all of the node types available in the TBB flow graph

interface and provides tooltips that remind us about the functionality of each type. For

each node on the canvas, we can modify its type-specific properties; for a function_node

1

2

Figure 17-35.  Using the FGA design workflow

Chapter 17 Flow Graphs: Beyond the Basics

503

for example, we can provide the C++ code for the body, set a concurrency limit, and

so on. We can also provide an estimated “weight” that represents the computational

complexity of the node so that later we can run a Scalability Analysis to see if our graph

will perform well.

Once we have drawn our graph on the canvas, we run a Rule Check that analyzes

the graph looking for common mistakes and anti-patterns. The Rule Check results,

highlighted by the black circle numbered 2 in Figure 17-35, show issues such as

unnecessary buffering, type mismatches, suspicious cycles in the graph, and so on.

In Figure 17-35, the Rule Check has discovered that there is a type mismatch between the

input of our limiter_node and the output of our multifunction_node. In response, we

can then, for example, modify the port output type of our multifunction_node to fix

this issue.

When we have fixed all correctness issues uncovered by the Rule Check, we can

then run a Scalability Analysis. The Scalability Analysis constructs a TBB flow graph in

memory, replacing the computational node bodies with dummy bodies that actively

spin for a time proportional to their “weight” property. FGA runs this model of our graph

on various numbers of threads and provides a table of the speedups, for example:

Using these features, we can iteratively refine our graph design. Along the way, we

can save our graph design in GraphML format (a common standard for representing

graphs). When we are satisfied with our design we can generate C++ code that uses the

TBB flow graph interface to express our design. This code generator is more accurately

viewed as a code wizard than an IDE since it does not directly support an iterative code

development model. If we change the generated code, there is no way to reimport our

changes into the tool.

�Tips for Iterative Development with FGA

If we want to create a design that we can continue to tune from within FGA, we can use

a constrained approach, where we specify node bodies that redirect to implementations

that are maintained outside of FGA. This is necessary because there is no way to

reimport modified C++ code back into FGA.

Chapter 17 Flow Graphs: Beyond the Basics

504

For example, if we want to make iterative development easier, we should not specify

a function_node that exposes its implementation directly in the body code:

Instead, we should specify only the interface and redirect to an implementation that

can be maintained separately:

If we take this constrained approach, we can often maintain the graph design in

FGA and its GraphML representation, iteratively tuning the topology and node properties

without losing any node body implementation changes we make outside of the tool.

Whenever we generate new C++ code from FGA, we simply include the most up-to-

date implementation header and the node bodies use these implementations that are

maintained outside of the tool.

Flow Graph Analyzer does not require us to use this approach of course, but it is

good practice if we want to use the code generation features of FGA as more than a

simple code wizard.

Chapter 17 Flow Graphs: Beyond the Basics

505

�The FGA Analysis Workflow
The analysis workflow in FGA is independent of the design workflow. While we can

surely analyze a flow graph that was designed in FGA, we can just as easily analyze a

TBB flow graph that is designed and implemented outside of the tool. This is possible

because the TBB library is instrumented to provide runtime events to the FGA trace

collector. A trace collected from a TBB application lets FGA reconstruct the graph

structure and the timeline of the node body executions – it does not depend on the

GraphML files developed during the design workflow.

If we want to use FGA to analyze a TBB application that uses a flow graph, the first

step is to collect an FGA trace. By default, TBB does not generate traces, so we need to

activate trace collection. The FGA instrumentation in TBB was a preview feature prior

to TBB 2019. We need to take extra steps if we are using an older version of TBB. We

refer readers to the FGA documentation for instructions on how to collect traces for the

version of TBB and FGA that they are using.

Once we have a trace of our application, the analysis workflow in FGA uses the

activities highlighted by the numbered circles in Figure 17-36: (1) inspect the tree-map

view for an overview of the graph performance and use this as an index into the graph

topology display, (2) run the critical path algorithm to determine the critical paths

through the computation, and (3) examine the timeline and concurrency data for

insight into performance over time. Analysis is most commonly an interactive process

that moves between these different activities as the performance of the application is

explored.

Chapter 17 Flow Graphs: Beyond the Basics

506

The tree-map view labeled as (1) in Figure 17-36 provides an overview of the

overall health of a graph. In the tree map, the area of each rectangle represents the total

aggregated CPU time of the node and the color of each square indicates the concurrency

observed during the execution of the node. The concurrency information is categorized

as poor (red), ok (orange), good (green), and oversubscribed (blue).

Nodes with a large area that are marked as “poor” are hotspots and have an average

concurrency between 0% and 25% of the hardware concurrency. These are therefore good

candidates for optimization. The tree-map view also serves as an index into a large graph;

clicking on a square will highlight the node in the graph and selecting this highlighted

node will in turn mark tasks from all instances of this node in the timeline trace view.

The graph topology canvas is synchronized with other views in the tool. Selecting a

node in the tree-map view, the timeline, or in a data analytics report will highlight the

node in the canvas. This lets users quickly relate performance data to the graph structure.

1
2

3

Figure 17-36.  Using the FGA analysis workflow. These results were collected on a
system with 16 cores.

Chapter 17 Flow Graphs: Beyond the Basics

507

One of the most important analytic reports provided by FGA is the list of critical

paths in a graph. This feature is particularly useful when one has to analyze a large

and complex graph. Computing the critical paths results in a list of nodes that form

the critical paths as shown in the region labeled (2) in Figure 17-36. As we discussed in

Chapter 3, an upper bound on speedup of dependency graphs can be quickly computed

by dividing the aggregate total time spent by all nodes in a graph by the time spent on

the longest critical path, T1/T∞. This upper bound can be used to set expectations on the

potential speedup for an application expressed as a graph.

The timeline and concurrency view labeled as (3) in Figure 17-36 displays the raw

traces in swim lanes mapped to software threads. Using this trace information, FGA

computes additional derived data such as the average concurrency of each node and the

concurrency histogram over time for the graph execution. Above the per-thread swim

lanes, a histogram shows how many nodes are active at that point in time. This view

lets users quickly identify time regions with low concurrency. Clicking on nodes in the

timelines during these regions of low concurrency lets developers find the structures in

their graph that lead to these bottlenecks.

�Diagnosing Performance Issues with FGA
In this chapter, we discussed a number of potential performance issues that can arise

when using a flow graph. In this section, we briefly discuss how FGA can be used to

explore these issues in a TBB-based application.

�Diagnosing Granularity Issues with FGA

Just like with our TBB generic loop algorithms, we need to be concerned about tasks that

are too small to profit from parallelization. But we need to balance this concern with the

need to create enough tasks to allow our workload to scale. In particular, as we discussed

in Chapter 3, scalability can be limited by serial nodes if they become a bottleneck in the

computation.

In an example timeline from FGA shown in Figure 17-37, we can see that there is a

dark serial task, named m, which causes regions of low concurrency. The color indicates

that this task is about 1 millisecond in length – this is above the threshold for efficient

scheduling but, from the timeline, it appears to be a serializing bottleneck. If possible, we

should break this task up into tasks that can be scheduled in parallel – either by breaking

it into multiple independent nodes or through nested parallelism.

Chapter 17 Flow Graphs: Beyond the Basics

https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_3

508

In contrast, there are regions in Figure 17-37 where smaller tasks, named n, are

executed in parallel. By their coloring, it appears these are close to the 1 microsecond

threshold, and consequently we can see gaps in the timelines during this region,

indicating that there may be some non-negligible scheduling overheads involved.

In this case, it may benefit us to merge nodes or to use a lightweight policy if possible to

decrease overheads.

�Recognizing Slow Copies in FGA

Figure 17-38 shows how we might recognize slow copies in FGA. In the figure, we see

100 millisecond segments from the timelines of runs of graphs similar to Figure 17-12,

but that pass BigObject messages directly (Figure 17-38(a)) and shared_ptr<BigObject>

messages (Figure 17-38(b)). To make the construction appear expensive, we inserted

a spin-wait in the BigObject constructor so that it takes 10 milliseconds to construct

each object – making the construction time of a BigObject and our function_node

body’s execution times equal. In Figure 17-38(a), we can see the time it takes to copy the

message between nodes appears as gaps in the timeline. In Figure 17-38(b), where we

pass by pointer, the message passing time is negligible, so no gaps are seen.

Figure 17-37.  The FGA timeline colors tasks according to their execution times.
Lighter tasks are smaller.

Chapter 17 Flow Graphs: Beyond the Basics

509

When using FGA to analyze our flow graph applications, gaps in the timeline indicate

inefficiencies that need to be further investigated. In this section, they indicated costly

copies between nodes and in the previous section they indicated that the overhead

of scheduling was large compared to the task sizes. In both cases, these gaps should

prompt us to look for ways to improve performance.

Diagnosing Moonlighting using FGA

Earlier in this chapter, we discussed the execution of the moonlighting graph in

Figure 17-23 that generated the output in Figure 17-24. FGA provides a Stacked View in

its execution timeline that lets us easily detect moonlighting as shown in Figure 17-39.

Figure 17-38.  In FGA, the long copies appear as gaps between the node body
executions. Each timeline segment shown is approximately 100 milliseconds long.

Chapter 17 Flow Graphs: Beyond the Basics

510

In a Stacked View, we see all of the nested tasks that a thread is executing, including

those that come from flow graph nodes and those that come from TBB Generic Parallel

Algorithms. If we see that a thread executes two nodes concurrently, it is moonlighting.

In Figure 17-39, for example, we see that Thread 0 starts executing another instance

of node n0 inside of an existing instance of n0. In our previous discussions about

moonlighting, we know this can happen if a thread steals work while it is waiting for a

nested parallel algorithm to complete. The Stacked View in Figure 17-39, lets us easily

see that a nested parallel_for, labeled p8, is the culprit in this case.

Using the timeline views from FGA, we can identify when threads are moonlighting

simply by noticing a thread’s overlapped participation in more than one region or node. As

developers, and possibly through other interactions with FGA, we then need to determine

if the moonlighting is benign or needs to be addressed by TBB’s isolation features.

�Summary
The flow graph API is a flexible and powerful interface for creating dependency and data

flow graphs. In this chapter, we discussed some of the more advanced considerations in

using the TBB flow graph high-level execution interface. Because it is implemented on

Figure 17-39.  FGA timelines grouped by Node/Region. We can see that thread 0
is moonlighting since it shown as concurrently executing more than one parallel
region.

Chapter 17 Flow Graphs: Beyond the Basics

511

top of TBB tasks, it shares the composability and optimization features supported by TBB

tasks. We discussed how these can be used to optimize for granularity, effective cache,

and memory use and create sufficient parallelism. We then listed some dos and don’ts

that can be helpful when first exploring the flow graph interfaces. Finally, we provided a

brief overview of the Flow Graph Analyzer (FGA), a tool available in Intel Parallel Studio

XE that has support for the graphical design and analysis of TBB flow graphs.

�For More Information
Michael Voss, “The Intel Threading Building Blocks Flow Graph,” Dr. Dobb’s, October

5, 2011. www.drdobbs.com/tools/the-intel-threading-building-blocks-

flow/231900177.

Vasanth Tovinkere, Pablo Reble, Farshad Akhbari and Palanivel Guruvareddiar,

“Driving Code Performance with Intel Advisor’s Flow Graph Analyzer,” Parallel Universe

Magazine, https://software.seek.intel.com/driving-code-performance.

Richard Friedman, “Intel Advisor’s TBB Flow Graph Analyzer: Making Complex

Layers of Parallelism More Manageable,” Inside HPC, December 14, 2017, https://

insidehpc.com/2017/12/intel-flow-graph-analyzer/.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material.

If material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 17 Flow Graphs: Beyond the Basics

http://www.drdobbs.com/tools/the-intel-threading-building-blocks-flow/231900177
http://www.drdobbs.com/tools/the-intel-threading-building-blocks-flow/231900177
https://software.seek.intel.com/driving-code-performance
https://insidehpc.com/2017/12/intel-flow-graph-analyzer/
https://insidehpc.com/2017/12/intel-flow-graph-analyzer/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 17: Flow Graphs: Beyond the Basics
	Optimizing for Granularity, Locality, and Parallelism
	Node Granularity: How Big Is Big Enough?
	What to Do If Nodes Are Too Small

	Memory Usage and Data Locality
	Data Locality in Flow Graphs
	Picking the Best Message Type and Limiting the Number of Messages in Flight

	Task Arenas and Flow Graph
	The Default Arena Used by a Flow Graph
	Changing the Task Arena Used by a Flow Graph
	Setting the Number of Threads, Thread-to-Core Affinities, etc.

	Key FG Advice: Dos and Don’ts
	Do: Use Nested Parallelism
	Don’t: Use Multifunction Nodes in Place of Nested Parallelism
	Do: Use join_node, sequencer_node, or multifunction_node to Reestablish Order in a Flow Graph When Needed
	Do: Use the Isolate Function for Nested Parallelism
	Do: Use Cancellation and Exception Handling in Flow Graphs
	Each Flow Graph Uses a Single task_group_context
	Canceling a Flow Graph
	Resetting a Flow Graph After Cancellation
	Exception Handling Examples

	Do: Set a Priority for a Graph Using task_group_ context
	Don’t: Make an Edge Between Nodes in Different Graphs
	Do: Use try_put to Communicate Across Graphs
	Do: Use composite_node to Encapsulate Groups of Nodes

	Introducing Intel Advisor: Flow Graph Analyzer
	The FGA Design Workflow
	Tips for Iterative Development with FGA

	The FGA Analysis Workflow
	Diagnosing Performance Issues with FGA
	Diagnosing Granularity Issues with FGA
	Recognizing Slow Copies in FGA
	Diagnosing Moonlighting using FGA

	Summary
	For More Information

