
387
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_15

CHAPTER 15

Cancellation and
Exception Handling
More or less frequently, we all get bitten by run-time errors, either in our sequential or

parallel developments. To try to assuage the pain, we have learnt to capture them using

error codes or a more high-level alternative like exception handling. C++, as most OO

languages, supports exception handling, which, when conveniently exercised, enables

the development of robust applications. Now, considering that TBB adds task-based

parallelism on top of C++, it is perfectly understandable that developers should expect

that exception handling is well supported. As we will see in this chapter, exception

handling is indeed well and automatically supported in TBB. This means that in case

of an error, perish the thought, our code can resort to an exception handler if such is

available, or terminate the whole work otherwise. Implementing support in TBB was

certainly nontrivial considering that

	 1.	 Exceptions can be thrown inside of tasks that are executed by a

number of threads.

	 2.	 Cancellation of tasks has to be implemented in order to terminate

the work that threw the exception.

	 3.	 TBB composability has to be preserved.

	 4.	 Exception management should not affect performance if no

exception arises.

The implementation of exceptions within TBB meets all these requirements,

including the support of task cancellation. As we said, task cancellation support is

necessary since throwing an exception can result in the need to cancel the execution of

https://doi.org/10.1007/978-1-4842-4398-5_15

388

the parallel algorithm that has generated the exception. For example, if a parallel_for

algorithm incurs in an out-of-bound or division by zero exception, the library may need

to cancel the whole parallel_for. This requires TBB to cancel all of the tasks involved

in processing chunks of the parallel iteration space and then jump to the exception

handler. TBB’s implementation of task cancellation seamlessly achieves the necessary

cancellation of tasks involved in the offending parallel_for without affecting tasks that

are executing unrelated parallel work.

Task cancellation is not only a requirement for exception handling but has a

value in its own. Therefore, in this chapter, we begin by showing how cancellation

can be leveraged to speed up some parallel algorithms. Although cancellation of TBB

algorithms just work out-of-the-box, advanced TBB developers might want to know how

to get full control of task cancellation and how it is implemented in TBB. We also try to

satisfy advanced developers in this chapter (remember this is the advanced part of the

book). The second part of this chapter moves on to cover exception handling. Again,

exception handling “just works” without any added complication: relying on our well-

known try-catch construction (as we do in sequential codes) is all we need to be ready to

capture standard C++ predefined exceptions plus some additional TBB ones. And again,

we don’t settle for the basics in this respect either. To close the chapter, we describe how

to build our own custom TBB exceptions and delve into how TBB exception handling

and TBB cancellation interplay under the hood.

Even if you are skeptical of exception handling because you belong to the “error

code” school of thought, keep reading and discover if we end up convincing you of the

advantages of TBB exception handling when developing reliable, fault-tolerant parallel

applications.

�How to Cancel Collective Work
There are situations in which a piece of work has to be canceled. Examples range from

external reasons (the user cancels the execution by pressing a GUI button) to internal

ones (an item has been found, which alleviates the need for any further searching). We

have seen such situations in sequential code, but they also arise in parallel applications.

For example, some expensive global optimization algorithms follow a branch-and-

bound parallel pattern in which the search space is organized as a tree and we may wish

to cancel the tasks traversing some branches if the solution is likely to be found in a

different branch.

Chapter 15 Cancellation and Exception Handling

389

Let’s see how we can put cancellation to work with a somewhat contrived example:

we want to find the position of the single -2 in a vector of integers, data. The example

is contrived because we set data[500]=-2, so we do know the output beforehand

(i.e., where –2 is stored). The implementation uses a parallel_for algorithm as we see

in Figure 15-1.

The idea is to cancel all other concurrent tasks collaborating in the parallel_for

when one of them finds that data[500]==-2. So, what does task::self().cancel_

group_execution()? Well, task::self() returns a reference to the innermost task that

the calling thread is running. Tasks have been covered in several chapters, but details

were provided in Chapters 10–14. In those chapters, we saw some of the member

functions included in the task class, and cancel_group_execution() is just one more.

As the name indicates, this member function does not cancel just the calling task, but all
the tasks belonging to the same group.

In this example, the group of tasks consists of all the tasks collaborating in the

parallel_for algorithm. By canceling this group, we are stopping all its tasks and

essentially interrupting the parallel search. Picture the task that finds data[500]==-2

shouting to the other sibling tasks “Hey guys, I got it! don’t search any further!”. In

general, each TBB algorithm creates its own group of tasks, and every task collaborating

in this TBB algorithm belongs to this group. That way, any task of the group/algorithm

can cancel the whole TBB algorithm.

Figure 15-1.  Finding the index in which –2 is stored

Chapter 15 Cancellation and Exception Handling

https://doi.org/10.1007/978-1-4842-4398-5_10
https://doi.org/10.1007/978-1-4842-4398-5_14

390

For a vector of size n=1,000,000,000, this loop consumes 0.01 seconds, and the

output can be like

Index 500 found in 0.01368 seconds!

However, if task::self().cancel_group_execution() is commented out, the

execution time goes up to 1.56 seconds on the laptop on which we happen to be writing

these lines.

That’s it. We are all set. That is all we need to know to do (basic) TBB algorithm

cancellation. However, now that we have a clear motivation for canceling tasks (more

than 100× speedup in the previous example!), we can also (optionally) dive into how task

cancellation is working and some considerations to fully control which tasks actually get

canceled.

�Advanced Task Cancellation
In Chapter 14, the task_group_context concept was introduced. Every task belongs

to one and only one task_group_context that, for brevity, we will call TGC from now

on. A TGC represents a group of tasks that can be canceled or have their priority level

set. In Chapter 14, some examples illustrated how to change the priority level of a TGC.

We also said that a TGC object can optionally be passed to high-level algorithms like

the parallel_for or flow graph. For instance, an alternative way to write the code of

Figure 15-1 is sketched in Figure 15-2.

Figure 15-2.  Alternative implementation of the code in Figure 15-1

Chapter 15 Cancellation and Exception Handling

https://doi.org/10.1007/978-1-4842-4398-5_14
https://doi.org/10.1007/978-1-4842-4398-5_14

391

In this code, we see that a TGC, tg, is created and passed as the last argument of

the parallel_for, and also used to call tg.cancel_group_execution() (now using a

member function of the task_group_context class).

Note that the codes of Figures 15-1 and 15-2 are completely equivalent. The optional

TGC parameter, tg, passed as the last argument of the parallel_for, just opens the door

to more elaborated developments. For example, say that we also pass the same TGC

variable, tg, to a parallel_pipeline that we launch in a parallel thread. Now, any task

collaborating either in the parallel_for or in the parallel_pipeline can call

tg.cancel_group_execution() to cancel both parallel algorithms.

A task can also query the TGC to which it belongs by calling the member function

group() that returns a pointer to the TGC. That way, we can safely add this line inside the

lambda of the parallel_for in Figure 15-2: assert(task::self().group()==&tg);.

This means that the following three lines are completely equivalent and can be

interchanged in the code of Figure 15-2:

 tg.cancel_group_execution();

 tbb::task::self().group()->cancel_group_execution();

 tbb::task::self().cancel_group_execution();

When a task triggers the cancellation of the whole TGC, spawned tasks waiting

in the queues are finalized without being run, but already running tasks will not be

canceled by the TBB scheduler because, as you certainly remember, the scheduler is

non-preemptive. This is, before passing the control to the task::execute() function,

the scheduler checks the cancellation flag of the task’s TGC and then decides if the task

should be executed or the whole TGC canceled. But if the task already has the control,

well, it has the control until it deigns to return it to the scheduler. However, in case we

want to also do away with running tasks, each task can pool the canceling status using

one of these two alternatives:

Chapter 15 Cancellation and Exception Handling

392

Next question: to which TGC are the new tasks assigned? Of course, we have the

devices to fully control this mapping, but there is also a default behavior that is advisable

to know. First, we cover how to manually map tasks into a TGC.

�Explicit Assignment of TGC
As we have seen, we can create TGC objects and pass them to the high-level parallel

algorithms (parallel_for,...) and to the low-level tasking API (allocate_root()).

Remember that in Chapter 10 we also presented the task_group class as a medium-

level API to easily create tasks sharing a TGC that can be canceled or assigned a priority

simultaneously with a single action. All the tasks launched using the same task_

group::run() member function will belong to the same TGC, and therefore one of the

tasks in the group can cancel the whole gang.

As an example, consider the code of Figure 15-3 in which we rewrite the parallel

search of a given value “hidden” in a data vector, and get the index in which it is stored.

This time, we use a manually implemented divide-and-conquer approach using the

task_group features (the parallel_for approach is actually doing something similar

under the hood, even if we don’t see it).

Chapter 15 Cancellation and Exception Handling

https://doi.org/10.1007/978-1-4842-4398-5_10

393

Figure 15-3.  Manual implementation of the parallel search using task_group
class

Chapter 15 Cancellation and Exception Handling

394

For the sake of expediency, the vector, data, the resulting index, myindex, and the

task_group, g, are global variables. This code recursively bisections the search space

until a certain grainsize (a cutoff value as we saw in Chapter 10). The function

ParallelSearch(begin,end) is the one used to accomplish this parallel partitioning.

When the grainsize becomes small enough (100 iterations in our example), the

SequentialSearch(begin,end) is invoked. If the value we were looking for, –2, is found

in one of the ranges traversed inside the SequentialSearch, all spawned tasks are

canceled using g.cancel(). In our laptop with four cores, and for N equal to 10 million,

this is the output of our algorithm:

 SerialSearch: 5000000 Time: 0.012667

 ParallelSearch: 5000000 Time: 0.000152 Speedup: 83.3355

5000000 is the index of the -2 value we have found. Looking at the speedup, we can

be baffled by it running 83× faster than the sequential code. However, this is one of the

situations in which we are witness to a parallel implementation having to carry out less

work than the sequential counterpart: once a task finds the key, no more traversal of

the vector Data is needed. In our run, the key is in the middle of the vector, N/2, and the

sequential version has to get to that point, whereas the parallel version starts searching

in parallel at different positions, for example, 0, N/4, N/2, N·3/4, and so on.

If your mind was blown by the achieved speedup, wait and see because we can

do even better. Remember that cancel() cannot terminate already running tasks. But

again, we can query from within a running task to check if a different task in the TGC

has canceled the execution. To achieve this using the task_group class, we just need to

insert:

at the beginning of the ParallelSearch() function. This apparently minor mod results

in these execution times:

SerialSearch: 5000000 Time: 0.012634

ParallelSearch: 5000000 Time: 2e-06 Speedup: 6317

We wish we could always get that kind of parallel speedup in a quad-core machine!!

Chapter 15 Cancellation and Exception Handling

https://doi.org/10.1007/978-1-4842-4398-5_10

395

Note A dvanced and seldom needed: In addition to explicitly creating a task_
group, setting the TGC for a TBB parallel algorithm, and setting the TCG for a root
task using allocate_root, we can also change the TGC of any task using its
member function:

void task::change_group(task_group_context& ctx);

and because we can query any task’s TGC using task::group(), we have full
control to move any task to the TGC of any other task. For example, if two tasks
have access to a TGC_X variable (say you have a global task_group_context
∗TGC_X) and a first task has previously executed this:

TGC_X=task::self().group();

then a second one can execute this:

task::self().change_group(∗TGC_X);

�Default Assignment of TGC
Now, what happens if we do not explicitly specify the TGC? Well, the default behavior has

some rules:

•	 A thread that creates a task_scheduler_init (either explicitly or

implicitly by using a TBB algorithm) creates its own TGC, tagged as

“isolated.” The first task executed by this thread belongs to that TGC

and subsequent child tasks inherit the same parent’s TGC.

•	 When one of these tasks invokes a parallel algorithm without

explicitly passing a TGC as optional argument (e.g., parallel_for,

parallel_reduce, parallel_do, pipeline, flow graph, etc.), a new

TGC, now tagged as “bound,” is implicitly created for the new tasks

that will collaborate in this nested algorithm. This TGC is therefore a

child bound to the isolated parent TGC.

•	 If tasks of a parallel algorithm invoke a nested parallel algorithm, a

new bound child TGC is created for this new algorithm, where the

parent is now the TGC of the invoking task.

Chapter 15 Cancellation and Exception Handling

396

An example of a forest of TGC trees automatically built by a hypothetical TBB code is

depicted in Figure 15-4.

In our hypothetical TBB code, the user wants to nest several TBB algorithms but

knows nothing about TGCs so he just calls the algorithms without passing the optional

and explicit TGC object. In one master thread, there is a call to a parallel_invoke, which

automatically initializes the scheduler creating one arena and the first isolated TGC, A.

Then, inside the parallel_invoke, two TBB algorithms are created, a flow graph and a

pipeline. For each of these algorithms, a new TGC, B and C in this case, is automatically

created and bound to A. Inside one of the flow graph nodes, a task_group is created, and

a parallel_for is instantiated in a different flow graph node. This results in two newly

created TGCs, D and E, that are bound to B. This forms the first tree of our TGC forest, with

an isolated root and where all the other TGCs are bound, that is, they have a parent. The

second tree is built in a different master thread that creates a parallel_for with just two

parallel ranges, and for each one a nested parallel_for is called. Again, the root of the

tree is an isolated TGC, F, and the other TGCs, G and H, are bound. Note that the user just

wrote the TBB code, nesting some TBB algorithms into other TBB algorithms. It is the

TBB machinery creating the forest of TGCs for us. And do not forget about the tasks: there

are several tasks sharing each TGC.

Figure 15-4.  A forest of TGC trees automatically created when running a
hypothetical TBB code

Chapter 15 Cancellation and Exception Handling

397

Now, what happens if a task gets canceled? Easy. The rule is that the whole TGC

containing this task is canceled, but the cancellation also propagates downward. For

example, if we cancel a task of the flow graph (TGC B), we will also cancel the task_group

(TGC D) and the parallel_for (TGC E), as shown in Figure 15-5. It makes sense: we

are canceling the flow graph, and everything created from there on. The example is

somewhat contrived since it may be difficult to find a real application with this nesting of

algorithms. However, it serves to illustrate how different TGCs are automatically linked in

order to deal with the much vaunted TBB’s composability.

But wait, we may want to cancel the flow graph and the task_group but keep the

parallel_for (TGC E) alive and kicking. Fine, this is also possible by manually creating

an isolated TGC object and passing it as the last argument of the parallel for. To that end,

we can write code similar to the one of Figure 15-6, where a function_node of the flow

graph, g, exploits this possibility.

Figure 15-5.  Cancel is called from a task belonging to TGC B

Figure 15-6.  Alternative to detach a nested algorithm from the tree of TGCs

Chapter 15 Cancellation and Exception Handling

398

The isolated TGC object, TGC_E, is created on the stack and passed as the last

argument to the parallel_for. Now, as depicted in Figure 15-7, even if a task of the flow

graph cancels its TGC B, the cancellation propagates downward till TGC D but cannot

reach TGC E because it has been created detached from the tree.

More precisely, the isolated TGC E can now be the root of another tree in our forest of

TGCs because it is an isolated TGC and it can be the parent of new TGCs created for deeper

nested algorithms. We will see an example of this in the next section.

Summarizing, if we nest TBB algorithms without explicitly passing a TGC object

to them, the default forest of TGCs will result in the expected behavior in case of

cancellation. However, this behavior can be controlled at our will by creating the

necessary number of TGC objects and passing them to the desired algorithms. For

example, we can create a single TGC, A, and pass it to all the parallel algorithms invoked

in the first thread of our hypothetical TBB example. In such a case, all tasks collaborating

in all algorithms will belong to that TGC A, as depicted in Figure 15-8. If now a task of the

flow graph gets canceled, not only the nested task_group and parallel_for algorithms

are also canceled, but all the algorithms sharing the TGC A.

Figure 15-7.  TGC E is now isolated and won’t be canceled

Chapter 15 Cancellation and Exception Handling

399

As a final note regarding cancellation, we want to underscore that efficiently keeping

track of the forest of TGCs and how they get linked is quite challenging. The interested

reader can have a look at the paper of Andrey Marochko and Alexey Kukanov (see

the “For More Information” section) in which they elaborate on the implementation

decisions and internal details. The main take-away is that great care was taken to ensure

that TGC bookkeeping does not affect performance if cancellation is not required.

�Exception Handling in TBB

Note I f C++ exception is not completely familiar, here is an example to help
illustrate the fundamentals:

Figure 15-8.  After modifying our hypothetical TBB code so that we pass a single
TGC A to all the parallel algorithms

Chapter 15 Cancellation and Exception Handling

400

The output after running this code is

Re-throwing value: 5

Value caught: 5

As we can see, the first try block includes a nested try catch. This one throws as
an exception as an integer with value 5. Since the catch block matches the type,
this code becomes the exception handler. Here, we only print the value received
and re-throw the exception upward. At the outer level there are two catch blocks,
but the first one is executed because the argument type matches the type of
the thrown value. The second catch in the outer level receives an ellipsis (…) so
it becomes the actual handler if the exception has a type not considered in the
preceding chain of catch functions. For example, if we throw 5.0 instead of 5, the
output message would be “Exception occurred.”

Now that we understand cancellation as the keystone mechanism supporting TBB

exception management, let’s go into the meat of the matter. Our goal is to master the

development of bulletproof code that exercise exceptions, as the one in Figure 15-9.

Okay, maybe it is not completely bulletproof yet, but for a first example it is good

enough. The thing is that the vector data has only 1000 elements, but the parallel_for

algorithm insists on walking till position 2000-1. To add insult to injury, data is not

accessed using data[i], but using Data.at(i), which, contrary to the former, adds

Figure 15-9.  Basic example of TBB exception handling

Chapter 15 Cancellation and Exception Handling

401

bound-checking and throws std::out_of_range objects if we don’t toe the line.

Therefore, when we compile and run the code of Figure 15-9, we will get

Out_of_range: vector

As we know, several tasks will be spawned to increment data elements in parallel.

Some of them will try to increment at positions beyond 999. The task that first touches an

out-of-range element, for example, data.at(1003)++, clearly has to be canceled. Then,

the std::vector::at() member function instead of incrementing the inexistent 1003

position throws std::out_of_range. Since the exception object is not caught by the task,

it is re-thrown upward, getting to the TBB scheduler. Then, the scheduler catches the

exception and proceeds to cancel all concurrent tasks of the corresponding TGC

(we already know how the whole TGC gets canceled). In addition, a copy of the exception

object is stored in the TGC data structure. When all TGC tasks are canceled, the TGC is

finalized, which re-throws the exception in the thread that started the TGC execution. In

our example, this is the thread that called parallel_for. But the parallel_for is in a

try block with a catch function that receives an out_of_range object. This means that

the catch function becomes the exception handler which finally prints the exception

message. The ex.what() member function is responsible of returning a string with some

verbose information about the exception.

Note I mplementation detail. The compiler is not aware of the threading nature of
a TBB parallel algorithm. This means that enclosing such algorithm in a try block
results in only the calling thread (master thread) being guarded, but the worker
threads will be executing tasks that can throw exceptions too. To solve this, the
scheduler already includes try-catch blocks so that every worker thread is able to
intercept exceptions escaping from its tasks.

The argument of the catch() function should be passed by reference. That way,

a single catch function capturing a base class is able to capture objects of all derived

types. For example, in Figure 15-9, we could have written catch(std::exception& ex)

instead of catch(std::out_of_range& ex) because std::out_of_range is derived from

std::logic_failure that in turn is derived from the base class std::exception and

capturing by reference captures all related classes.

Chapter 15 Cancellation and Exception Handling

402

Not all C++ compilers support the exception propagation feature of C++11. More

precisely, if the compiler does not support std::exception_ptr (as happen in a

pre-C++11 compiler), TBB cannot re-throw an exact copy of the exception object.

To make up for it, in such cases, TBB summarizes the exception information into a

tbb::captured_exception object, and this is the one that can be re-thrown. There are

some additional details regarding how different kinds of exceptions (std::exception,

tbb::tbb_exception, or others) are summarized. However, since nowadays it is

becoming difficult to get our hands on a compiler not supporting C++11, we will not pay

extra attention to this TBB backward compatibility feature.

�Tailoring Our Own TBB Exceptions
The TBB library already comes with some predefined exception classes that are listed in

the table of Figure B-77.

However, in some cases, it is good practice to derive our own specific TBB

exceptions. To this end, we could use the abstract class tbb::tbb_exception that we

see in Figure 15-10. This abstract class is actually an interface since it declares five pure

virtual functions that we are forced to define in the derived class.

The details of the pure virtual functions of the tbb_exception interface are

•	 move() should create a pointer to a copy of the exception object

that can outlive the original. It is advisable to move the contents of

the original, especially if it is going to be destroyed. The function

specification throw() just after move() (as well as in destroy(),

what(), and name()) is only to inform the compiler that this function

won’t throw anything.

•	 destroy() should destroy a copy created by move().

Figure 15-10.  Deriving our own exception class from tbb::tbb_exception

Chapter 15 Cancellation and Exception Handling

403

•	 throw_self() should throw ∗this.

•	 name() typically returns the RTTI (Run-time type information) name

of the originally intercepted exception. It can be obtained using the

typeid operator and std::type_info class. For example, we could

return typeid(∗this).name().

•	 what() returns a null-terminated string describing the exception.

However, instead of implementing all the virtual functions required to derive from

tbb_exception, it is easier and recommended to build our own exception using the TBB

class template, tbb::movable_exception. Internally, this class template implements

for us the required virtual functions. The five virtual functions described before are now

regular member functions that we can optionally override or not. There are however

other available functions as we see in an excerpt of the signature:

The movable_exception constructor and the data() member function will be

explained with an example. Let’s say that division by 0 is an exceptional event that we

want to explicitly capture. In Figure 15-11, we present how we create our own exception

with the help of the class template tbb::movable_exception.

Chapter 15 Cancellation and Exception Handling

404

We create our custom class div_ex with the data that we want to move along with the

exception. In this case, the payload is the integer it that will store the position at which

division by 0 occurs. Now we are able to create an object, de, of the movable_exception

class instantiated with the template argument div_ex as we do in the line:

tbb::movable_exception<div_ex> de{div_ex{i}};

Figure 15-11.  Convenient alternative to configure our own movable exception

Chapter 15 Cancellation and Exception Handling

405

where we can see that we pass a constructor of div_ex, div_ex{i}, as the argument to

the constructor of movable_exception<div_ex>.

Later, in the catch block, we capture the exception object as ex, and use the ex.

data() member function to get a reference to the div_ex object. That way, we have

access to the member variables and member functions defined in div_ex, as name(),

what(), and it. The output of this example when input parameter n=1000000 is

Exception name: div_ex

Exception: Division by 0! at position: 500000

Although we added what() and name() as member functions of our custom div_ex

class, now they are optional, so we can get rid of them if we don’t need them. In such a

case, we can change the catch block as follows:

since this exception handler will be executed only if receiving movable_

exception<div_ex> which only happens when a division by 0 is thrown.

�Putting All Together: Composability, Cancellation,
and Exception Handling
To close this chapter, let us go back to the composability aspects of TBB with a final

example. In Figure 15-12, we have a code snippet showing a parallel_for that would

traverse the rows of a matrix Data, were it not for the fact that it throws an exception

(actually the string “oops”) in the first iteration!! For each row, a nested, parallel_for

should traverse the columns of Data also in parallel.

Chapter 15 Cancellation and Exception Handling

406

Say that four different tasks are running four different iterations i of the outer loop

and calling to the inner parallel_for. In that case, we may end up with a tree of TGCs

similar to the one of Figure 15-13.

Figure 15-13.  A possible tree of TGCs for the code of Figure 15-12

Figure 15-12.  A parallel_for nested in an outer parallel_for that throws an
exception

Chapter 15 Cancellation and Exception Handling

407

This means that when in the first iteration of the outer loop we get to the throw

keyword, there are several inner loops in flight. However, the exception in the outer level

propagates downward also canceling the inner parallel loops no matter what they are

doing. The visible result of this global cancellation is that some rows that were in the

process of changing the value from false to true were interrupted so these rows will have

some true values and some false values.

But look, there is, per-row, an isolated task_group_context named root, thanks to

this line:

tbb::task_group_context root(task_group_context::isolated);

Now, if we pass this TGC root as the last argument of the inner parallel_for

uncommenting this line:

We get a different configuration of the TGC, as depicted in Figure 15-14.

In this new situation, the exception provokes cancellation of the TGC in which it is

thrown, TGC A, but there are no children of TGC A to cancel. Now, if we check the values

of the array data we will see that rows either have all true or all false elements, but not a

mix as in the previous case. This is because once an inner loop starts setting a row with

true values, it won’t be canceled halfway.

Figure 15-14.  Different configuration of the TGC

Chapter 15 Cancellation and Exception Handling

408

In a more general case, if we can say so of our forest of TGC trees of Figure 15-4,

what happens if a nested algorithm throws an exception that is not caught at any level?

For example, let’s suppose that in the tree of TGCs of Figure 15-15 an exception is thrown

inside the flow graph (TGC B).

Of course, TGC B and descendent TGCs D and E are also canceled. We know that. But

the exception propagates upward, and if at that level it is not caught either, it will provoke

also the cancellation of the tasks in the TGC A, and because cancellation propagates

downward, TGC C dies as well. Great! This is the expected behavior: a single exception,

no matter at what level it is thrown, can gracefully do away with the whole parallel

algorithm (as it would do with a serial one). We can prevent the chain of cancellations by

either catching the exception at the desired level or by configuring the required nested

algorithm in an isolated TGC. Isn’t it neat?

Figure 15-15.  The effect of an exception thrown in a nested TBB algorithm

Chapter 15 Cancellation and Exception Handling

409

�Summary
In this chapter, we saw that canceling a TBB parallel algorithm and using exception

handling to manage run-time error are straightforward. Both features just work right-

out-of-the-box as expected if we resort to the default behavior. We also discussed

an important feature of TBB, the task group context, TGC. This element is key in

the implementation of the cancellation and exception handling in TBB and can be

manually leveraged to get a closer control of these two features. We started covering

the cancellation operation, explaining how a task can cancel the whole TGC to which

it belongs. Then we reviewed how to manually set the TGC to which a task is mapped

and the rules that apply when this mapping is not specified by the developer. The

default rules result in the expected behavior: if a parallel algorithm is canceled, so are

all the nested parallel algorithms. Then we moved on to exception handling. Again, the

behavior of TBB exceptions resemble exceptions in sequential code, though the internal

implementation in TBB is way more complex since an exception thrown in one task

executed by one thread may end up being captured by a different thread. When the

compiler supports C++11 features, an exact copy of the exception can be moved between

threads, otherwise, a summary of the exception is captured in a tbb::captured_

exception so that it can be re-thrown in a parallel context. We also described how to

configure our own exception classes using the class template tbb::movable_exception.

Finally, we closed the chapter by elaborating on how composability, cancellation, and

exception handling interplay.

�For More Information
Here are some additional reading materials we recommend related to this chapter:

•	 A. Marochko and A. Kukanov, Composable Parallelism Foundations

in the Intel Threading Building Blocks Task Scheduler, Advances in

Parallel Computing, vol 22, 2012.

•	 Deb Haldar, Top 15 C++ Exception handling mistakes and how

to avoid them. www.acodersjourney.com/2016/08/top-15-c-

exception-handling-mistakes-avoid/.

Chapter 15 Cancellation and Exception Handling

http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/
http://www.acodersjourney.com/2016/08/top-15-c-exception-handling-mistakes-avoid/

410

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 15 Cancellation and Exception Handling

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 15: Cancellation and Exception Handling
	How to Cancel Collective Work
	Advanced Task Cancellation
	Explicit Assignment of TGC
	Default Assignment of TGC

	Exception Handling in TBB
	Tailoring Our Own TBB Exceptions
	Putting All Together: Composability, Cancellation, and Exception Handling
	Summary
	For More Information

