
357
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_13

CHAPTER 13

Creating Thread-to-Core
and Task-to-Thread
Affinity
When developing parallel applications with the Threading Building Blocks library, we

create tasks by using the high-level execution interfaces or the low-level APIs. These

tasks are scheduled by the TBB library onto software threads using work stealing. These

software threads are scheduled by the Operating System (OS) onto the platform’s cores

(hardware threads). In this chapter, we discuss the features in TBB that let us influence

the scheduling choices made by the OS and by TBB. Thread-to-core affinity is used when

we want to influence the OS so that it schedules the software threads onto particular

core(s). Task-to-thread affinity is used when we want to influence the TBB scheduler so

that it schedules tasks onto particular software threads. Depending on what we are trying

to achieve, we may be interested in one kind of affinity or the other, or a combination

of both.

There can be different motivations for creating affinity. One of the most common

motivations is to take advantage of data locality. As we have repeatedly noted in this

book, data locality can have a huge impact on the performance of a parallel application.

The TBB library, its high-level execution interfaces, its work-stealing scheduler, and

its concurrent containers have all been designed with locality in mind. For many

applications, using these features will lead to good performance without any manual

tuning. Sometimes though, we will need to provide hints or take matters completely into

our own hands so that the schedulers, in TBB and the OS, more optimally schedule work

near its data. In addition to data locality, we might also be interested in affinity when

using heterogeneous systems, where the capabilities of cores differ, or when software

threads have different properties, such as higher or lower priorities.

https://doi.org/10.1007/978-1-4842-4398-5_13

358

In Chapter 16, the high-level features for data locality that are exposed by the

TBB parallel algorithms are presented. In Chapter 17, the features for tuning cache

and memory use in TBB flow graphs are discussed. In Chapter 20, we showed how

to use features of the TBB library to tune for Non-Uniform Memory Access (NUMA)

architectures. For many readers, the information in those chapters will be sufficient

to accomplish the specific tasks they need to perform to tune their applications. In

this chapter, we focus on the lower-level, fundamental support provided by the TBB’s

scheduler and tasks that are sometimes abstracted by the high-level features described

in those chapters or sometimes used directly in those chapters to create affinity.

�Creating Thread-to-Core Affinity
All of the major operating systems provide interfaces that allow users to set the affinity of

software threads, including pthread_setaffinity_np or sched_setaffinity on Linux

and SetThreadAffinityMask on Windows. In Chapter 20, we use the Portable Hardware

Locality (hwloc) package as a portable way to set affinity across platforms. In this

chapter, we do not focus on the mechanics of setting affinity – since these mechanics will

vary from system to system – instead we focus on the hooks provided by the TBB library

that allow us to use these interfaces to set affinity for TBB master and worker threads.

The TBB library by default creates enough worker threads to match the number of

available cores. In Chapter 11, we discussed how we can change those defaults. Whether

we use the defaults or not, the TBB library does not automatically affinitize these threads

to specific cores. TBB allows the OS to schedule and migrate the threads as it sees fit.

Giving the OS flexibility in where it places TBB threads is an intentional design choice in

the library. In a multiprogrammed environment, an environment in which TBB excels,

the OS has visibility of all of the applications and threads. If we make decisions about

where threads should execute from within our limited view inside of a single application,

we might make choices that lead to poor overall system resource utilization. Therefore, it

is often better to not affinitize threads to cores and instead allow the OS to choose where

the TBB master and worker threads execute, including allowing it to dynamically migrate

threads during a program’s execution.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_17
https://doi.org/10.1007/978-1-4842-4398-5_20
https://doi.org/10.1007/978-1-4842-4398-5_20
https://doi.org/10.1007/978-1-4842-4398-5_11

359

However, like we will see in many chapters of this book, the TBB library provides

features that let us change this behavior if we wish. If we want to force TBB threads to

have affinity for cores, we can use the task_scheduler_observer class to do so (see

Observing the scheduler with the task_scheduler_observer class). This class lets an

application define callbacks that are invoked whenever a thread enters and leaves the

TBB scheduler, or a specific task arena, and use these callbacks to assign affinity. The

TBB library does not provide an abstraction to assist with making the OS-specific calls

required to set thread affinity, so we have to handle these low-level details ourselves

using one of the OS-specific or portable interfaces we mentioned earlier.

OBSERVING THE SCHEDULER WITH THE TASK_SCHEDULER_OBSERVER CLASS

The task_scheduler_observer class provides a way to observe when a thread starts or

stops participating in task scheduling. The interface of this class is shown as follows:

To use the class, we create our own class that inherits from task_scheduler_observer

and implements the on_scheduler_entry and on_scheduler_exit callbacks. When an

instance of this class is constructed and its observe state is set to true, the entry and exit

functions will be called whenever a master or worker thread enters or exits the global TBB

task scheduler.

A recent extension to the class now allows us to pass a task_arena to the constructor. This

extension was a preview feature prior to TBB 2019 Update 4 but is now fully supported. When

a task_arena reference is passed, the observer will only receive callbacks for threads that

enter and exit that specific arena:

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

360

Figure 13-1 shows a simple example of how to use a task_scheduler_observer

object to pin threads to cores on Linux. In this example, we use the sched_setaffinity

function to set the CPU mask for each thread as it joins the default arena. In Chapter 20,

we show an example that assigns affinity using the hwloc software package. In the

example in Figure 13-1, we use tbb::this_task_arena::max_concurrency() to find the

number of slots in the arena and tbb::this_task_arena::current_thread_index() to

find the slot that the calling thread is assigned to. Since we know there will be the same

number of slots in the default arena as the number of logical cores, we pin each thread to

the logical core that matches its slot number.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_20

361

Figure 13-1.  Using a task_scheduler_observer to pin threads to cores on a
Linux platform

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

362

We can of course create more complicated schemes for assigning logical cores to

threads. And, although we don’t do this in Figure 13-1, we can also store the original CPU

mask for each thread so that we can restore it when the thread leaves the arena.

As we discuss in Chapter 20, we can use the task_scheduler_observer class,

combined with explicit task_arena instances, to create isolated groups of threads that

are restricted to the cores that share the same local memory banks in a Non-Uniform-

Memory Access (NUMA) system, a NUMA node. If we also control data placement, we

can greatly improve performance by spawning the work into the arena of the NUMA

node on which its data resides. See Chapter 20 for more details.

We should always remember that if we use thread-to-core affinity, we are preventing

the OS from migrating threads away from oversubscribed cores to less-used cores as it

attempts to optimize system utilization. If we do this in production applications, we need

to be sure that we will not degrade multiprogrammed performance! As we’ll mention

several more times, only systems dedicated to running a single application (at a time) are

likely to have an environment in which limiting dynamic migration can be of benefit.

�Creating Task-to-Thread Affinity
Since we express our parallel work in TBB using tasks, creating thread-to-core affinity,

as we described in the previous section, is only one part of the puzzle. We may not get

much benefit if we pin our threads to cores, but then let our tasks get randomly moved

around by work stealing!

When using the low-level TBB tasking interfaces introduced in Chapter 10, we can

provide hints that tell the TBB scheduler that it should execute a task on the thread in

a particular arena slot. Since we will likely use the higher-level algorithms and tasking

interfaces whenever possible, such as parallel_for, task_group and flow graphs, we

will rarely use these low-level interfaces directly however. Chapter 16 shows how the

affinity_partitioner and static_partitioner classes can be used with the TBB loop

algorithms to create affinity without resorting to these low-level interfaces. Similarly,

Chapter 17 discusses the features of TBB flow graphs that affect affinity.

So while task-to-thread affinity is exposed in the low-level task class, we will

almost exclusively use this feature through high-level abstractions. Therefore using the

interfaces we describe in this section is reserved for TBB experts that are writing their

own algorithms using the lowest-level tasking interfaces. If you’re such an expert, or

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_20
https://doi.org/10.1007/978-1-4842-4398-5_20
https://doi.org/10.1007/978-1-4842-4398-5_10
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_17

363

want to have a deeper understanding of how the higher-level interfaces achieve affinity,

keep reading this section.

Figure 13-2 shows the functions and types provided by the TBB task class that we

use to provide affinity hints.

The type affinity_id is used to represent the slot in an arena that a task has

affinity for. A value of zero means the task has no affinity. A nonzero value has an

implementation-defined value that maps to an arena slot. We can set the affinity of

task to an arena slot before spawning it by passing an affinity_id to its set_affinity

function. But since the meaning of affinity_id is implementation defined, we don’t

pass a specific value, for example 2 to mean slot 2. Instead, we capture an affinity_id

from a previous task execution by overriding the note_affinity callback function.

The function note_affinity is called by the TBB library before it invokes a task’s

execute function when (1) the task has no affinity but will execute on a thread other

than the one that spawned it or (2) the task has affinity but it will execute on a thread

different than the one specified by its affinity. By overriding this callback, we can track

TBB stealing behavior so we can provide hints to the library to recreate this same stealing

behavior in a subsequent execution of the algorithm, as we will see in the next example.

Finally, the affinity function lets us query a task’s current affinity setting.

Figure 13-3 shows a class that inherits from tbb::task and uses the task affinity

functions to record affinity_id values into a global array a. It only records the value

when its doMakeNotes variable is set to true. The execute function prints the task id,

the slot of the thread it is executing on, and the value that was recorded in the array for

this task id. It prefixes its reporting with “hmm” if the task’s doMakeNotes is true (it will

then record the value), “yay!” if the task is executing in the arena slot that was recorded

in array a (it was scheduled onto the same thread again), and “boo!” if it is executing

in a different arena slot. The details of the printing are contained in the function

printExclaim.

Figure 13-2.  The functions in tbb::task that are used for task to thread affinity

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

364

Figure 13-3.  Using the task affinity functions

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

365

While the meaning of affinity_id is implementation defined, TBB is open source,

and so we peaked at the implementation. We therefore know that the affinity_id is 0

if there is no affinity, but otherwise it is the slot index plus 1. We should not depend on

this knowledge in production uses of TBB, but we depend on it in our example’s execute

function so we can assign the correct exclamation “yay!” or “boo!”.

The function fig_13_3 in Figure 13-3 builds and executes three task trees, each with

eight tasks, and assigns them ids from 0 to 7. This sample uses the low-level tasking

interfaces we introduced in Chapter 10. The first task tree uses note_affinity to track

when a task has been stolen to execute on some other thread than the master. The

second task tree executes without noting or setting affinities. Finally, the last task tree

uses set_affinity to recreate the scheduling recorded during the first run.

When we executed this example on a platform with eight threads, we recorded the

following output:

note_affinity

id:slot:a[i]

hmm. 7:0:-1

hmm. 0:1:1

hmm. 1:6:6

hmm. 2:3:3

hmm. 3:2:2

hmm. 4:4:4

hmm. 5:7:7

hmm. 6:5:5

without set_affinity

id:slot:a[i]

yay! 7:0:-1

boo! 0:4:1

boo! 1:3:6

boo! 4:5:4

boo! 3:7:2

boo! 2:2:3

boo! 5:6:7

boo! 6:1:5

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_10

366

with set_affinity

id:slot:a[i]

yay! 7:0:-1

yay! 0:1:1

yay! 4:4:4

yay! 5:7:7

yay! 2:3:3

yay! 3:2:2

yay! 6:5:5

yay! 1:6:6

From this output, we see that the tasks in the first tree are distributed over the eight

available threads, and the affinity_id for each task is recorded in array a. When the

next set of tasks is executed, the recorded affinity_id for each task is not used to set

affinity, and the tasks are randomly stolen by different threads. This is what random

stealing does! But, when we execute the final task tree and use set_affinity, the thread

assignments from the first run are repeated. Great, this worked out exactly as we wanted!

However, set_affinity only provides an affinity hint and the TBB library is actually

free to ignore our request. When we set affinity using these interfaces, a reference to the

task-with-affinity is placed in the targeted thread’s affinity mailbox (see Figure 13-4).

But the actual task remains in the local deque of the thread that spawned it. The task

dispatcher only checks the affinity mailbox when it runs out of work in its local deque,

as shown in the task dispatch loop in Chapter 9. So, if a thread does not check its affinity

mailbox quickly enough, another thread may steal or execute its tasks first.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_9

367

To demonstrate this, we can change how task affinities are assigned in our small

example, as shown in Figure 13-5. Now, foolishly, we set all of the affinities to the same

slot, the one recorded in a[2].

Task Arena

local deque
head

tail

affinity mailbox
head

Task Dispatcher

M

local deque
head

tail

affinity mailbox
head

Task Dispatcher

Figure 13-4.  The affinity mailbox holds reference to a task that remains in the
local deque of the thread that spawned the task

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

368

If the TBB scheduler honors our affinity requests, there will be a large load imbalance

since we have asked it to mail all of the work to the same worker thread. But if we execute

this new version of the example, we see:

Figure 13-5.  A function that first runs different groups of tasks, sometimes noting
affinities and sometimes setting affinities. An example output is also shown.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

369

Because affinity is only a hint, the other idle threads still find tasks, stealing them

from the master thread’s local deque before the thread in slot a[2] is able to drain its

affinity mailbox. In fact, only the first task spawned, id==0, is executed by the thread in

the slot previously recorded in a[2]. So, we still see our tasks distributed across all eight

of the threads.

The TBB library has ignored our request and instead avoided the load imbalance

that would have been created by sending all of these tasks to the same thread. This weak

affinity is useful in practice because it lets us communicate affinities that should improve

performance, but it still allows the library to adjust so that we don’t inadvertently create

a large load imbalance.

While we can use these task interfaces directly, we see in Chapter 16 that the loop

algorithms provide a simplified abstraction, affinity_partitioner that luckily hides us

from most of these low-level details.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_16

370

�When and How Should We Use the TBB Affinity
Features?
We should use task_scheduler_observer objects to create thread-to-core affinity only

if we are tuning for absolute best performance on a dedicated system. Otherwise, we

should let the OS do its job and schedule threads as it sees fit from its global viewpoint.

If we do choose to pin threads to cores, we should carefully weigh the potential impact

of taking this flexibility away from the OS, especially if our application runs in a

multiprogrammed environment.

For task-to-thread affinity, we typically want to use the high-level interfaces, like

affinity_partitioner described in Chapter 16. The affinity_partitioner uses the

features described in this chapter to track where tasks are executed and provide hints to

the TBB scheduler to replay the partitioning on subsequent executions of the loop. It also

tracks changes to keep the hints up to date.

Because TBB task affinities are just scheduler hints, the potential impact of misusing

these interfaces is far less – so we don’t need to be as careful when we use task affinities.

In fact, we should be encouraged to experiment with task affinity, especially through the

higher-level interfaces, as a normal part of tuning our applications.

�Summary
In this chapter, we discussed how we can create thread-to-core and task-to-thread

affinity from within our TBB applications. While TBB does not provide an interface for

handling the mechanics of setting thread-to-core affinity, its class task_scheduler_

observer provides a callback mechanism that allows us to insert the necessary calls

to our own OS-specific or portable libraries that assign affinities. Because the TBB

work-stealing scheduler randomly assigns tasks to software threads, thread-to-core

affinity is not always sufficient on its own. We therefore also discussed the interfaces

in TBB’s class task that lets us provide affinity hints to the TBB scheduler about what

software thread we want a task to be scheduled onto. We noted that we will most likely

not use these interfaces directly, but instead use the higher-level interfaces described in

Chapters 16 and 17. For readers that are interested in learning more about these low-

level interfaces though, we provided examples that showed how we can use the note_

affinity and set_affinity functions to implement task-to-thread affinity for code that

uses the low-level TBB tasking interface.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_17

371

Like with many of the optimization features of the TBB library, affinities need to

be used carefully. Using thread-to-core affinity incorrectly can degrade performance

significantly by restricting the Operating System’s ability to balance load. Using the

task-to-thread affinity hints, being just hints that the TBB scheduler can ignore, might

negatively impact performance if used unwisely, but much less so.

�For More Information
•	 Posix set/get CPU affinity of a thread, http://man7.org/linux/

man-pages/man3/pthread_setaffinity_np.3.html

•	 SetThreadAffinityMask function, https://docs.microsoft.

com/en-us/windows/desktop/api/winbase/

nf-winbase-setthreadaffinitymask

•	 Portable Hardware Locality (hwloc),

www.open-mpi.org/projects/hwloc/

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 13 Creating Thread-to-Core and Task-to-Thread Affinity

http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setthreadaffinitymask
http://www.open-mpi.org/projects/hwloc/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 13: Creating Thread-to-Core and Task-to-Thread Affinity
	Creating Thread-to-Core Affinity
	Creating Task-to-Thread Affinity
	When and How Should We Use the TBB Affinity Features?
	Summary
	For More Information

