
313
© Intel Corporation 2019 
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_11

CHAPTER 11

Controlling the Number 
of Threads Used for 
Execution
By default, the TBB library initializes its scheduler with what is typically the right number 

of threads to use. It creates one worker thread fewer than the number of logical cores on 

the platform, leaving one of the cores available to execute the main application thread. 

Because the TBB library implements parallelism using tasks that are scheduled on to 

these threads, this is usually the right amount of threads to have – there is exactly one 

software thread for each logical core, and the scheduling algorithms in TBB efficiently 

distribute tasks to these software threads using work stealing as described in Chapter 9.

Nevertheless, there are many scenarios in which we may justifiably want to change 

the default. Perhaps we are running scaling experiments and want to see how well 

our application performs with different numbers of threads. Or perhaps we know that 

several applications will always execute on our system in parallel, so we want to use 

only a subset of the available resources in our application. Or perhaps we know that our 

application creates extra native threads for rendering, AI, or some other purpose and we 

want to restrict TBB so that it leaves room on the system for those other native threads. In 

any case, if we want to change the default, we can.

There are three classes that can be used to influence how many threads participate 

in executing a specific TBB algorithm or flow graph. The interactions between these 

classes can be very complicated though! In this chapter, we focus on the common 

cases and best-known practices that will likely be enough for all but the most 

complicated applications. This level of detail will be sufficient for most readers, and the 

recommendations we make will be enough for almost all situations. Even so, readers 

https://doi.org/10.1007/978-1-4842-4398-5_11
https://doi.org/10.1007/978-1-4842-4398-5_9


314

who want to understand the lowest level nuts-and-bolts of TBB are welcome to wade 

into the weeds in the TBB documentation to get into all of the details of the possible 

interactions between these classes if they choose. But if you follow the patterns outlined 

in this chapter, we don’t think that will be necessary.

�A Brief Recap of the TBB Scheduler Architecture
Before we begin talking about controlling the number of threads used in executing 

parallel algorithms, let’s refresh our memory on the structure of the TBB scheduler 

shown in Figure 11-1. A more in-depth description of the TBB scheduler is found in 

Chapter 9.

The global thread pool (market) is where all of the worker threads start before migrating 

to task arenas. Threads migrate to task arenas that have tasks available to execute, and if 

there are not enough threads to fill all of the slots in all of the arenas, the threads fill slots 

in proportion to the number of slots in the arenas. For example, a task arena with twice as 

many slots as another arena will receive roughly twice as many workers.

Note  If task priorities are in use, worker threads will fully satisfy the requests 
from task arenas with higher priority tasks before filling slots in task arenas with 
lower priority tasks. We discuss task priorities in more detail in Chapter 14. For the 
rest of this chapter, we assume all tasks are of equal priority.

Chapter 11  Controlling the Number of Threads Used for Execution

https://doi.org/10.1007/978-1-4842-4398-5_9
https://doi.org/10.1007/978-1-4842-4398-5_14


315

Task arenas are created in one of two ways: (1) each master thread gets its own arena 

by default when it executes a TBB algorithm or spawns tasks and (2) we can explicitly 

create task arenas using class task_arena as described in more detail in Chapter 12.

If a task arena runs out of work, its worker threads return to the global thread pool to 

look for work to do in other arenas, or to sleep if there’s no work in any arena.

�Interfaces for Controlling the Number of Threads
The TBB library was first released over a decade ago, and it has evolved over that time 

to keep pace with the evolution of platforms and workloads. Now, TBB offers three 

ways to control threads: task_scheduler_init, task_arena, and global_control. In 

simple applications, we might be able to use just one of these interfaces to accomplish 

everything we need, but in more complex applications, we may need to use a 

combination of these interfaces.

�Controlling Thread Count with task_scheduler_init
When the TBB library was first released, there was only a single interface for controlling 

the number of threads in an application: class task_scheduler_init. The interface of 

this class is shown in Figure 11-2.

Figure 11-1.  The architecture of the TBB task scheduler

Chapter 11  Controlling the Number of Threads Used for Execution

https://doi.org/10.1007/978-1-4842-4398-5_12


316

A task_scheduler_init object can be used to (1) control when the task arena 

associated with a master thread is constructed and destroyed; (2) set the number of 

worker slots in that thread’s arena; (3) set the stack size for each worker thread in the 

arena; and, if needed, (4) set an initial soft limit (see the side bar) on the number of 

threads available in the global thread pool.

�Controlling Thread Count with task_arena
Later, as TBB was used on larger systems and in more complex applications, class 

task_arena was added to the library to create explicit task arenas as a way to isolate work. 

Work isolation is discussed in more detail in Chapter 12. In this chapter, we focus on how 

class task_arena lets us set the number of slots available in those explicit arenas. The 

functions in class task_arena used in this chapter are shown in Figure 11-3.

Figure 11-2.  The task_scheduler_init class interface

Chapter 11  Controlling the Number of Threads Used for Execution

https://doi.org/10.1007/978-1-4842-4398-5_12


317

Using the task_arena constructor, we can set the total number of slots in the arena 

using the max_concurrency argument and the number of slots reserved exclusively for 

master threads using the reserved_for_masters argument. When we pass a functor to 

the execute method, the calling thread attaches to the arena, and any tasks spawned 

from within the functor are spawned into that arena.

SOFT AND HARD LIMITS

The global thread pool has both a soft limit and a hard limit. The number of worker threads 

available for parallel execution is equal to the minimum of the soft limit value and the hard 

limit value.

The soft limit is a function of the requests made by the task_scheduler_init and 

global_control objects in the application. The hard limit is a function of the number of 

logical cores, P, on the system. At the time of the writing of this book, there is a hard limit of 

256 threads for platforms where P <= 64, 4P for platforms where 64 < P <= 128, and 2P 

for platforms where P > 128.

TBB tasks are executed non-preemptively on the TBB worker threads. So, oversubscribing a 

system with many more TBB threads than logical cores doesn’t make a lot of sense – there 

are just more threads for the OS to manage. If we want more TBB threads than the hard limit 

allows, it is almost guaranteed that we are either using TBB incorrectly or trying to accomplish 

something that TBB was not designed for.

Figure 11-3.  The task_arena class interface

Chapter 11  Controlling the Number of Threads Used for Execution



318

�Controlling Thread Count with global_control
After class task_arena was introduced to the library, TBB users began requesting an 

interface to directly control the number of threads available in the global thread pool. 

The class global_control was only a preview feature until TBB 2019 Update 4  

(it is now a full feature - meaning it is available by default without needing to enable with 

a preview macro definition) and is used to change the value of global parameters used 

by the TBB task scheduler – including the soft limit on the number of threads available in 

the global thread pool.

The class definition for class global_control is shown in Figure 11-4.

�Summary of Concepts and Classes
The concepts used in this chapter and the effects of the various classes are summarized 

in this section. Don’t worry too much about understanding all of the details presented 

here. In the next section, we present best-known methods for using these classes 

to achieve specific goals. So, while the interactions described here may appear 

complicated, typical usage patterns are much simpler.

The scheduler: The TBB scheduler refers to the global thread pool and at least one 

task arena. Once a TBB scheduler is constructed, additional task arenas may be added 

to it, incrementing a reference count on the scheduler. As task arenas are destroyed, they 

decrement the reference count on the scheduler. If the last task arena is destroyed, the 

TBB scheduler is destroyed, including the global thread pool. Any future uses of TBB 

tasks will require construction of a new TBB scheduler. There is never more than one 

TBB scheduler active in a process.

Figure 11-4.  The global_control class interface

Chapter 11  Controlling the Number of Threads Used for Execution



319

The hard thread limit: There is a hard limit on the total number of worker threads 

that will be created by a TBB scheduler. This is a function of the hardware concurrency of 

the platform (see Soft and Hard Limits for more details).

The soft thread limit: There is a dynamic soft limit on the number of worker threads 

available to a TBB scheduler. A global_control object can be used to change the 

soft limit directly. Otherwise, the soft limit is initialized by the thread that creates the 

scheduler (see Soft and Hard Limits for more details).

The default soft thread limit: If a thread spawns a TBB task, whether directly by 

using the low-level interface or indirectly by using a TBB algorithm or flow graph, a 

TBB scheduler will be created if none exists at that time. If no global_control objects 

have set an explicit soft limit, the soft limit is initialized to P-1, where P is the platform’s 

hardware concurrency.

global_control objects: A global_control object affects, during its lifetime, 

the soft limit on the number of worker threads that a TBB scheduler can use. At any 

point in time, the soft limit is the minimum value of all of the max_concurrency_limit 

values requested by the active global_control objects. If the soft limit was initialized 

before any of the active global_control objects were constructed, this initial value 

is also considered when finding the minimum value. When a global_control object 

is destroyed, the soft limit may increase if the destroyed object was the limiting max_

concurrency_limit value. Creation of a global_control object does not initialize 

the TBB scheduler nor increment the reference count on the scheduler. When the last 

global_control object is destroyed, the soft limit is reset to the default soft thread limit.

task_scheduler_init objects: A task_scheduler_init object creates the task arena 

associated with a master thread, but only if one does not already exist for that thread. 

If one already exists, the task_scheduler_init object increments the reference count 

of the task arena. When a task_scheduler_init object is destroyed, it decrements 

the reference count, and if the new count is zero, the task arena is destroyed. If a TBB 

scheduler does not exist when a task_scheduler_init object is constructed, a TBB 

scheduler is created, and if the soft thread limit has not been set by a global_control 

object, it is initialized using the constructor’s max_threads argument shown as follows:

P-1, where P is the number of logical cores if max_threads <= P - 1

max_threads otherwise

Chapter 11  Controlling the Number of Threads Used for Execution



320

task_arena objects: A task_arena object creates an explicit task arena that is not 

associated with a specific master thread. The underlying task arena is not initialized 

immediately during the constructor but lazily on first use (in our illustrations in 

this chapter, we show the construction of the object not the underlying task arena 

representation). If a thread spawns or enqueues a task into an explicit task_arena before 

that thread has initialized its own implicit task arena, this action acts like a first use of the 

TBB scheduler for that thread – including all of the side effects of a default initialization 

of its implicit task arena and possible initialization of the soft limit.

�The Best Approaches for Setting the Number 
of Threads
The combination of the task_scheduler_init, task_arena, and global_control classes 

provides a powerful set of tools for controlling the number of threads that can participate 

in the execution of parallel work in TBB.

The interaction of these objects can be confusing when combined in ways that fall 

outside of the expected patterns. Therefore, in this section, we focus on common scenarios 

and provide recommended approaches for using these classes. For simplicity in the figures 

that we show in this section, we assume that we are executing on a system that supports 

four logical cores. On such a system, the TBB library will, by default, create three worker 

threads, and there will be four slots in any default task arenas, with one slot reserved for 

a master thread. In our figures, we show the number of threads that are available in the 

global thread pool and the number of slots in the task arena(s). To reduce clutter in the 

figures, we do not show workers being assigned to slots. Downward arrows are used to 

indicate the lifetimes of objects. A large “X” indicates the destruction of an object.

�Using a Single task_scheduler_init Object 
for a Simple Application
The simplest, and perhaps most common, scenario is that we have an application with 

a single main thread and no explicit task arenas. The application may have many TBB 

algorithms, including use of nested parallelism, but does not have more than one user-

created thread – that is, the main thread. If we do nothing to control the number of 

threads managed by the TBB library, an implicit task arena will be created for the main 

thread when it first interacts with the TBB scheduler by spawning a task, executing a 

Chapter 11  Controlling the Number of Threads Used for Execution



321

TBB algorithm, or by using a TBB flow graph. When this default task arena is created, the 

global thread pool will be populated with one thread fewer than the number of logical 

cores in the system. This most basic case, with all default initializations, is illustrated for 

a system with four logical cores in Figure 11-5.

#include <tbb/tbb.h>

int main() {

tbb::parallel_for( …

);

flow::graph g;
/* construct and use graph */
g.wait_for_all();

tbb::parallel_for( …

};

return 0;

} X XDestroyed at end of program

first thread to
use scheduler

task arena created
for master thread

global thread pool

soft limit = 3

M

Task Arena

Figure 11-5.  Default initialization of the global thread pool and a single task 
arena for the main thread

The sample code is available at Github in ch11/fig_11_05.cpp and is instrumented 

so that it prints a summary of how many threads participate in each section of the code. 

Many of the examples in this chapter are instrumented similarly. This instrumentation 

is not shown in the source code in the figures but is available in the code at Github. 

Running this example on a system with four logical cores results in output similar to

There are 4 logical cores.

4 threads participated in 1st pfor

4 threads participated in 2nd pfor

4 threads participated in flow graph

Chapter 11  Controlling the Number of Threads Used for Execution



322

If we want different behavior in this simplest scenario, class task_scheduler_

init is sufficient for controlling the number of threads. All we need to do is create a 

task_scheduler_init object before our first use of TBB tasks and pass to it the desired 

number of threads we want our application to use. An example of this is shown in 

Figure 11-6. The construction of this object creates the task scheduler, populates the 

global thread pool (market) with an appropriate number of threads (at least enough to 

fill the slots in the task arena1), and constructs a single arena for the main thread with 

the requested number of slots. This TBB scheduler is destroyed when the single task_

scheduler_init object is destroyed.

1�This is a slight oversimplification. See the earlier sidebar on soft and hard limits in this chapter to 
learn more.

#include <tbb/tbb.h>

int main() {
tbb::task_scheduler_init init(8);

tbb::parallel_for( …

);

flow::graph g;
/* construct and use graph */
g.wait_for_all();

tbb::parallel_for( …

};

return 0;
} X X

Destroyed at end of scope

no global thread
pool exists

task arena created
for master thread

global thread pool

soft limit = 7

M

Task Arena

Figure 11-6.  Using a single task_scheduler_init object for a simple application

Chapter 11  Controlling the Number of Threads Used for Execution



323

Executing the code for Figure 11-6 will result in an output:

There are 4 logical cores.

8 threads participated in 1st pfor

8 threads participated in 2nd pfor

8 threads participated in flow graph

Note O f course, statically coding the number of threads to use is a really bad 
idea. We are illustrating capabilities with easy to follow examples with specific 
numbers. In order to write portable and more timeless code, we would almost 
never recommend coding specific numbers.

�Using More Than One task_scheduler_init Object 
in a Simple Application
A slightly more complicated use case is when we still have only a single application 

thread but we want to execute with different numbers of threads during different phases 

of the application. As long as we don’t overlap the lifetimes of task_scheduler_init 

objects, we can change the number of threads during an application’s execution by 

creating and destroying task_scheduler_init objects that use different max_threads 

values. A common scenario where this is used is in scaling experiments. Figure 11-7 

shows a loop that runs a test on 1 through P threads. Here, we create and destroy a series 

of task_scheduler_init objects, and therefore TBB schedulers, that support different 

numbers of threads.

Chapter 11  Controlling the Number of Threads Used for Execution



324

In Figure 11-7, each time we create the task_scheduler_init object init, the library 

creates a task arena for the main thread with one slot reserved for a master thread and 

i-1 additional slots. At the same time, it sets the soft limit and populates the global 

thread pool with at least i-1 worker threads (remember that that if max_threads is < P-1, 

it still creates P-1 threads in the global thread pool). When init is destroyed, the TBB 

scheduler is destroyed, including the single task arena and the global thread pool.

The output from a run of the sample code, in which run_test() contains a 

parallel_for with 400 milliseconds of work, results in output similar to

Test using 1 threads took 0.401094seconds

Test using 2 threads took 0.200297seconds

Test using 3 threads took 0.140212seconds

Test using 4 threads took 0.100435seconds

Figure 11-7.  A simple timing loop that runs a test using 1 through P threads

Chapter 11  Controlling the Number of Threads Used for Execution



325

�Using Multiple Arenas with Different Numbers of Slots 
to Influence Where TBB Places Its Worker Threads
Let’s now explore even more complicated scenarios, where we have more than one task 

arena. The most common way this situation arises is that our application has more than 

one application thread. Each of these threads is a master thread and gets its own implicit 

task arena. We can also have more than one task arena because we explicitly create 

arenas using class task_arena as described in Chapter 12. Regardless of how we wind 

up with multiple task arenas in an application, the worker threads migrate to task arenas 

in proportion to the number of slots they have. And the threads only consider task arenas 

that have tasks available to execute. As we noted earlier, we are assuming in this chapter 

that tasks are all of equal priority. Task priorities, which can affect how threads migrate 

to arenas, are described in more detail in Chapter 14.

Figure 11-8 shows an example with a total of three task arenas: two task arenas that 

are created for master threads (the main thread and thread t) and one explicit task 

arena, a. This example is contrived but shows code that is complicated enough to get our 

points across.

In Figure 11-8, there is no attempt to control the number of threads in the application 

or the number of slots in the task arenas. Therefore, each arena is constructed with the 

default number of slots, and the global thread pool is initialized with the default number 

of worker threads as shown in Figure 11-9.

Figure 11-8.  An application with three task arenas: the default arena for the main 
thread, an explicit task_arena a, and a default task arena for master thread t

Chapter 11  Controlling the Number of Threads Used for Execution

https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_14


326

tbb::parallel_for( …

);

tbb::task_arena a;

a.execute([]() { 
tbb::parallel_for( 

);  
});

tbb::parallel_for( …

); 

time

main thread

thread t

task arena
for t

first thread to 
use scheduler

task arena a

acts like first 
use of 
scheduler
by main thread

X X

X

Xend of scope

end of scope

M

Task Arena

Task Arena

M

global thread pool

soft limit = 3

M

Task Arena

Figure 11-9.  A possible execution of the example with three task arenas

Because we now have more than one thread, we use the vertical position in 

Figure 11-9 to indicate time; objects lower in the figure are constructed after objects 

higher in the figure. The figure shows one possible execution order, and in our 

illustration thread t is the first thread to spawn a task, by using a parallel_for, and so 

it creates the TBB scheduler and the global thread pool. As complicated as the example 

appears, the behavior is well defined.

As shown in Figure 11-9, the execution of the parallel_for algorithms in thread 

t and task arena a might overlap. If so, the three threads in the global thread pool are 

divided between them. Since there are three worker threads, one arena will initially get 

one worker thread and the other one will initially get two worker threads. Which arena 

gets fewer threads is up to the library’s discretion, and when either of these arenas runs 

out of work, the threads can migrate to the other arena to help finish the remaining work 

there. After the call to a.execute completes in the main thread in Figure 11-9, the final 

parallel_for executes within the main thread’s default arena, with the main thread 

filling its master slot. If at this point, the parallel_for in thread t is also complete, then 

all three worker threads can migrate to the main thread’s arena to work on the final 

algorithm.

Chapter 11  Controlling the Number of Threads Used for Execution



327

The default behavior shown in Figure 11-9 makes a lot of sense. We only have four 

logical cores in our system, so TBB initializes the global thread pool with three threads. 

When each task arena is created, TBB doesn’t add more threads to the global thread pool 

because the platform still has the same number of cores. Instead, the three threads in the 

global thread pool are dynamically shared among the task arenas.

The TBB library assigns threads to task arenas in proportion to the number of slots 

they have. But we don’t have to settle for task arenas with the default number of slots. We 

can control the number of slots in the different arenas by creating a task_scheduler_

init object for each application thread and/or by passing in a max_concurrency 

argument to explicit task_arena objects. A modified example that does this is shown in 

Figure 11-10.

Figure 11-10.  An application with three task arenas: the default arena for the 
main thread will have a max concurrency of 4, the explicit task_arena a has 
a max concurrency of 3, and the default arena for master thread t has a max 
concurrency of 2.

Now when we execute the application, the TBB library will only be able to provide 

at most one worker thread to thread t’s arena since it only has a single slot for a worker, 

and the remaining two can be assigned to the parallel_for in arena a. We can see an 

example execution that shows this in Figure 11-11.

Chapter 11  Controlling the Number of Threads Used for Execution



328

An execution of the sample code from Github, which tracks how many threads 

participates in each section, shows an output of

There are 4 logical cores.

3 threads participated in arena pfor

4 threads participated in main pfor

2 threads participated in std::thread pfor

Because we have limited the number of slots available to thread t, the other threads 

can no longer migrate from task_arena a to thread t after they finish their work. 

We need to be prudent when we limit slots. In this simple example, we have skewed 

execution in favor of task_arena a but have also restricted how many idle threads can 

assist thread t.

We have now controlled the number of slots for threads in task arenas but still relied 

on the default number of threads that TBB allocates in the global thread pool to fill these 

slots. If we want to change the number of threads that are available to the fill the slots, we 

need to turn to the class global_control.

tbb::task_scheduler_init i2(2);

tbb::parallel_for( …

);

tbb::task_scheduler_init i4(4);

tbb::task_arena a(3);

a.execute([]() {
tbb::parallel_for( 

);  
});

tbb::parallel_for( …

); 

time

main thread

thread t

task arena a

task arena   
for main

thread

first task_scheduler_init creates the global 
thread pool and initializes the soft limit

X X Xend of scope

X
end of scope

M

Task Arena

M

Task Arena

M

global thread pool

soft limit = 3

Task Arena

Figure 11-11.  A possible execution of the example with three task arenas after we 
have explicitly set the number of slots in the various arenas

Chapter 11  Controlling the Number of Threads Used for Execution



329

�Using global_control to Control How Many Threads Are 
Available to Fill Arena Slots
Let’s revisit the example from the previous section one more time, but double the 

number of threads in the global thread pool. Our new implementation is shown in 

Figure 11-12.

We now use a global_control object to set the number of threads in the global 

thread pool. Remember that a global_control object is used to affect global parameters 

used by the scheduler; in this case, we are changing the max_allowed_parallelism 

parameter. We also use a task_scheduler_init object in thread t and an argument to 

the task_arena constructor to set the maximum number of threads that can be assigned 

to each task arena. Figure 11-13 shows an example execution on our four-core machine. 

The application now creates seven worker threads (eight total threads minus the already 

available master thread), and the worker threads are divided up unequally between the 

Figure 11-12.  An application with three task arenas and a global_control object

Chapter 11  Controlling the Number of Threads Used for Execution



330

explicit task_arena a and the default arena for thread t. Since we do nothing special for 

the main thread, the final parallel_for uses its default task arena with P slots.

Executing the sample code for Figure 11-13 yields an output similar to

There are 4 logical cores.

6 threads participated in arena pfor

4 threads participated in main pfor

2 threads participated in std::thread pfor

�Using global_control to Temporarily Restrict 
the Number of Available Threads
Another common scenario is to use a global_control object to temporarily change the 

number of threads for a specific phase of an application as shown in Figure 11-14. In 

this example, the master thread creates a thread pool and task arena that can support 12 

worker threads by constructing a task_scheduler_init object. But a global_control 

object is used to restrict a specific parallel_for to only seven worker threads. While the 

task arena retains 12 slots during the whole application, the number of threads available 

in the thread pool is temporarily reduced, so at most seven of the slots in the task arena 

can be filled with workers.

tbb::task_scheduler_init i2(nt/4);

tbb::parallel_for( …

);

// mp is max_allow_parallelism
// nt is 8
tbb::global_control gc(mp, nt);

tbb::task_arena a(3*nt/4);

a.execute([]() {
tbb::parallel_for( 

);  
});

tbb::parallel_for( …

); 

time

main thread

thread t

soft limit = 7

first thread to  use scheduler,
but soft limit is set

X
end of scope

task arena a

acts like first 
use of 
scheduler
by main thread

X X Xend of scope

M
Task Arena

M
Task Arena

global thread pool

soft limit = 7M

Task Arena

Figure 11-13.  A possible execution of the example with three task arenas after we 
have explicitly set the soft limit using a global_control object

Chapter 11  Controlling the Number of Threads Used for Execution



331

When the global_control object is destroyed, the soft limit is recalculated, using 

any remaining global_control objects. Since there are none, the soft limit is set to the 

default soft limit. This perhaps unexpected behavior is important to note, since we need 

to create an outer global_control object if we want to maintain 11 threads in the global 

thread pool. We show this in Figure 11-15.

In Figures 11-14 and 11-15, we cannot use a task_scheduler_init object to 

temporarily change the number of threads because a task arena already exists for the 

main thread. If we create another task_scheduler_init object in the inner scope, it 

only increments the reference count on that task arena and does not create a new one. 

Therefore, we use a global_control object to restrict the number of threads that are 

available instead of reducing the number of arena slots.

If we execute the code in Figure 11-14, we see an output similar to

There are 4 logical cores.

12 threads participated in 1st pfor

8 threads participated in 2nd pfor

4 threads participated in 3rd pfor

#include <tbb/tbb.h>

int main() {

tbb::task_scheduler_init i1(12);

tbb::parallel_for( …

);
{
tbb::global_control g2(mp, 8);

tbb::parallel_for( …

);
}

tbb::parallel_for( …

);
return 0;

}

no global thread
pool exists

task arena created
for master thread

changes 
max_allowed_
parallelism

Xend of scope X

end of scope (max_allowed_parallelism=8 removed
returns to default soft limit)

time

M

Task Arena

global thread pool

soft limit = 11

global thread pool

soft limit = 7

global thread pool

soft limit = 3

Figure 11-14.  Using a global_control object to temporarily change the number 
of threads available for a specific algorithm instance and then return to default 
setting

Chapter 11  Controlling the Number of Threads Used for Execution



332

After adding an outer global_control object, as done in Figure 11-15, the resulting 

output is

There are 4 logical cores.

12 threads participated in 1st pfor

8 threads participated in 2nd pfor

12 threads participated in 3rd pfor

�When NOT to Control the Number of Threads
When implementing a plugin or a library, its best to avoid using global_control objects. 

These objects affect global parameters, so our plugin or library function will change the 

number of threads available to all of the components in the application. Given the local 

view of a plugin or library, that’s probably not something it should do. In Figure 11-14, we 

temporarily changed the number of threads in the global thread pool. If we did something 

like this from inside a library call, it would not only affect the number of threads available 

in the task arena of the calling thread, but every task arena in our application. How can a 

library function know this is the right thing to do? It very likely cannot.

#include <tbb/tbb.h>

int main() {
tbb::global_control gc1(mp, 12);
tbb::task_scheduler_init i1(12);

tbb::parallel_for( …

);
{
tbb::global_control g2(mp, 8);

tbb::parallel_for( …

);
}

tbb::parallel_for( …

);
return 0;

}

no global thread
pool exists

task arena created
for master thread

changes 
max_allowed_
parallelism

X
end of scope

X

end of scope (max_allowed_parallelism=8 removed
max_allowed_parallelism=12)

soft limit = 11

time

M

Task Arena

global thread pool

soft limit = 11

global thread pool

soft limit = 11

global thread pool

soft limit = 7

Figure 11-15.  Using global_control objects to temporarily change the number of 
threads available for a specific algorithm instance

Chapter 11  Controlling the Number of Threads Used for Execution



333

We recommend that libraries do not meddle with global parameters and leave that 

only to the main program. Developers of applications that allow plugins should clearly 

communicate to plugin writers what the parallel execution strategy of the application is, 

so that they can implement their plugins appropriately.

SETTING THE STACK SIZE FOR WORKER THREADS

The task_scheduler_init and global_control classes can also be used to set the 

stack size for the worker threads. The interaction of multiple objects are the same as when 

used to set the number of threads, with one exception. When there is more than one global_

control object that sets the stack size, the stack size is the maximum, not the minimum,  

of the requested values.

The second argument to the task_scheduler_init object is thread_stack_size.  

A value of 0, which is the default, instructs the scheduler to use the default for that platform. 

Otherwise, the provided value is used.

The global_control constructor accepts a parameter and value. If the parameter argument 

is thread_stack_size, then the object changes the value for the global stack size 

parameter. Unlike the max_allowed_paralleism value, the global thread_stack_size 

value is the maximum of the requested values.

Why change the default stack size?

A thread’s stack has to be large enough for all of memory that is allocated on its stack, 

including all of the local variables on its call stack. When deciding how much stack is needed, 

we have to consider the local variables in our task bodies but also how recursive execution of 

task trees might lead to deep recursion, especially if we have implemented our own task-

based algorithms using task blocking. If we don’t remember how this style can lead to an 

explosion in stack usage, we can look back at the section, The low-level task interface: part 
one/task blocking in Chapter 10.

Since the proper stack size is application dependent, there is unfortunately no good rule of 

thumb to share. TBB’s OS-specific default is already a best guess at what a thread typically 

needs.

Chapter 11  Controlling the Number of Threads Used for Execution

https://doi.org/10.1007/978-1-4842-4398-5_10


334

�Figuring Out What’s Gone Wrong
The task_scheduler_init, task_arena, and global_control classes were introduced 

over time into the TBB library to solve specific problems. The task_scheduler_init 

class was sufficient in the early days of TBB, when few applications were parallel, and 

when they were, there was often only a single application thread. The task_arena class 

helped users manage isolation in applications as they became more complex. And the 

global_control class gave users better control of the global parameters used by the 

library to further manage complexity. Unfortunately, these features were not created 

together as part of one cohesive design. The result is that when used outside of the 

scenarios we have previously outlined, their behaviors can sometimes be nonintuitive, 

even if they are well defined.

The two most common sources of confusion are (1) knowing when a TBB scheduler 

is created by default and (2) races to set the global thread pool’s soft limit.

If we create a task_scheduler_init object it either creates a TBB scheduler or else 

increments the reference count on the scheduler if it already exists. Which interfaces in 

the TBB library act like a first use of the TBB scheduler can be hard to keep straight. It’s 

very clear that executing any of the TBB algorithms, using a TBB flow graph or spawning 

tasks, is a use of the TBB scheduler. But as we noted early, even executing tasks in an 

explicit task_arena is treated as a first use of the TBB scheduler, which impacts not only 

the explicit task arena, but may impact the calling thread’s default task arena. What about 

using thread local storage or using one of the concurrent containers? These do not count. 

The best advice, other than paying close attention to the implications of the interfaces 

being used, is that if an application uses an unexpected number of threads – especially if 

it uses the default number of threads when you think you have changed the default – is to 

look for places where a default TBB scheduler may have been inadvertently initialized.

The second common cause of confusion is races to set the soft limit on the number 

of available threads. For example, if two application threads execute in parallel and both 

create a task_scheduler_init object, the first one to create its object will set the soft 

limit. In Figure 11-16, two threads executing concurrently in the same application  

both create task_scheduler_init objects – one requesting max_threads=4 and the other  

max_threads=8. What happens with the task arenas is simple: each master thread gets 

its own task arena with the number of slots it requested. But what if the soft limit on the 

number of threads in the global thread pool has not been set yet? How many threads 

does the TBB library populate the global thread pool with? Should it create 3 or 7 or 

3+7=10 or P-1 or …?

Chapter 11  Controlling the Number of Threads Used for Execution



335

As we outlined in our description of task_scheduler_init, it does none of these 

things. Instead, it uses whichever request comes first. Yes, you read that right! If thread 

1 just so happens to create its task_scheduler_init object first, we get a TBB scheduler 

with a global thread pool with three worker threads. If thread 2 creates its task_

scheduler_init object first, we get a thread pool with seven worker threads. Our two 

threads may be sharing three worker threads or seven worker threads; it all depends on 

which one wins the race to create the TBB scheduler first!

We shouldn’t despair though; almost all of the potential pitfalls that come along with 

setting the number of threads can be addressed by falling back to the common usage 

patterns described earlier in this chapter. For example, if we know that our application 

may have a race like that shown in Figure 11-16, we can make our desires crystal clear by 

setting the soft limit in the main thread using a global_control object.

�Summary
In this chapter, we provided a brief recap of the structure of the TBB scheduler before 

introducing the three classes used to control the number of threads used for parallel 

execution: class task_scheduler_init, class task_arena, and class global_

control. We then described common use cases for controlling the number of threads 

used by parallel algorithms – working from simple cases where there is a single main 

thread and a single task arena to more complex cases where there are multiple master 

threads and multiple task arenas. We concluded by pointing out that while there are 

potential gotchas in using these classes, we can avoid these by carefully using the classes 

to make our intention clear without relying on default behaviors or the winners of races.

tbb::task_scheduler_init i1(4);

tbb::parallel_for( …

);

time

end of scope

tbb::task_scheduler_init i1(8);

tbb::parallel_for( …

);

end of scope

thread 1 thread 2

when ref count
reaches zero

M

Task Arena
M

Task Arena

global thread pool

soft limit = ?

XXX

Figure 11-16.  The concurrent use of two task_scheduler_init objects

Chapter 11  Controlling the Number of Threads Used for Execution



336

Open Access   This chapter is licensed under the terms of the Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

noncommercial use, sharing, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license and indicate if you modified the licensed material. 

You do not have permission under this license to share adapted material derived from 

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.

Chapter 11  Controlling the Number of Threads Used for Execution

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 11: Controlling the Number of Threads Used for Execution
	A Brief Recap of the TBB Scheduler Architecture
	Interfaces for Controlling the Number of Threads
	Controlling Thread Count with task_scheduler_init
	Controlling Thread Count with task_arena
	Controlling Thread Count with global_control
	Summary of Concepts and Classes

	The Best Approaches for Setting the Number of Threads
	Using a Single task_scheduler_init Object for a Simple Application
	Using More Than One task_scheduler_init Object in a Simple Application
	Using Multiple Arenas with Different Numbers of Slots to Influence Where TBB Places Its Worker Threads
	Using global_control to Control How Many Threads Are Available to Fill Arena Slots
	Using global_control to Temporarily Restrict the Number of Available Threads

	When NOT to Control the Number of Threads
	Figuring Out What’s Gone Wrong
	Summary




