
281
© The Author(s) 2019
C. Sadowski and T. Zimmermann (eds.), Rethinking Productivity in Software Engineering,
https://doi.org/10.1007/978-1-4842-4221-6_24

CHAPTER 24

Enabling Productive
Software Development
by Improving Information
Flow
Gail C. Murphy, University of British Columbia, Canada

Mik Kersten, Tasktop Technologies, Canada

Robert Elves, Tasktop Technologies, Canada

Nicole Bryan, Austin, Texas, USA

At its core, software development is an information-intensive knowledge generation

and consumption activity. Information about markets and trends are analyzed to

create requirements that describe what a desired software system needs to do. Those

requirements become information for software developers to use to produce models and

code that, when executed, provide the behavior desired for the system. The execution of

a system creates more information that can be analyzed as to how the software performs,

and so on.

We are interested in how software tools can enable the productive development

of software. Our hypothesis has been that software development productivity can be

increased by improving the access and flow of information between the humans and

tools involved in creating software systems. In this chapter, we review an evolution of

technologies that we have introduced based on this hypothesis. These technologies are

in use by large software development organizations and have been shown to improve

https://doi.org/10.1007/978-1-4842-4221-6_24

282

software developer productivity. The description of these technologies highlights how

productivity can be considered at the individual (the Mylyn tool), team (the Tasktop Sync

tool), and organizational levels (the Tasktop Integration Hub).

�Mylyn: Improving Information Flow for the
Individual Software Developer
A software system cannot exist without code that executes to provide the behavior of the

software system. To produce code for a system, a software developer must deal with an

amazing amount of information, such as written requirements, documentation about

libraries and modules, and test suites. The result for a developer can be information

overload. Figure 24-1 shows a snapshot of an integrated development environment as

a software developer works on a bug fix. The developer is consulting a description of

the bug (A), the other hidden tabs in the main portion of the screen hold source code

already accessed as the developer is investigating the bug, the result of a search on a

portion of a method name described in the stack trace is shown in the bottom part of

the screen (B), and the left side provides access to the many bits of code making up the

system (C). Within this environment, to produce code for a new feature or a fix for a bug,

the developer must perform many navigation steps to access the contextual information

needed. The friction just to get started on a task can be significant. The more complex

the system, the more information a developer may need to find and cognitively maintain

to start work on the task. If the developer worked on only one task a day, the friction

might be manageable. However, studies have shown that developers, on average, work

on approximately five to ten tasks per day, spending only a few minutes at any one

time on a particular task before switching to another task [3]. As a result, developers

constantly spend time finding, and re-finding, the bits of information they need to work

on a task, impeding their productivity.

Chapter 24 Enabling Productive Software Development by Improving Information Flow

283

To address these points of information flow friction for an individual software

developer, we created the Mylyn task-focused interface for integrated development

environments [2]. Mylyn changes the paradigm with which a developer interacts with

the artifacts making up a software system by framing a developer’s work explicitly

around the tasks performed. With Mylyn, a developer begins work on a task by activating

a task description. A task description may be a description of a bug or a new feature

to develop in an issue tracker. Once a task is activated, Mylyn begins tracking the

information a developer accesses as part of the task, modeling the developer’s degree

of interest in information using an algorithm based on the frequency and recency with

which information is accessed. For instance, if a developer accesses a particular method

definition only once as part of a task, as work on the task progresses, the interest level

of that method in the degree-of- interest model will reduce. If another method is edited

heavily by the developer as part that task, the interest level will remain high. These

degree-of-interest values can be used in several ways. For example, the model can be

used to focus the development environment on just the information that matters for a

task. Figure 24-2 shows the development environment interface when focused on the

same bug-fixing task introduced earlier. In this view, the development environment

provides easy access to just the information that the developer needs for the task being

Figure 24-1.  Information overload in integrated development environment

Chapter 24 Enabling Productive Software Development by Improving Information Flow

284

worked on: all other information is easily accessible but does not visibly clutter the

screen. As a result, the developer can see how the information accessed fits into the

structure of the system (A) and has easier access to the parts when needed. Behind the

scenes, as a developer works, Mylyn is automatically modeling the information flow and

is surfacing the most important parts of that flow in the interface for easy access. This

model can then be used to flow information into other development tools. For example,

the active task can automatically populate commit messages for SCM systems such

as Git. Or it can be attached to an issue to share with another developer, allowing the

information accessed by one developer to another developer doing a code review for

that same issue.

To determine whether Mylyn helps improve productivity by giving developers

access to information when it is needed, we conducted a longitudinal field study. In this

study, we recruited 99 participants who were practicing software developers using the

Eclipse integrated software development environment. For the first two weeks of the

study, participants worked with the integrated development environment as normal.

The development environment was instrumented to collect logs of how the developer

Figure 24-2.  Mylyn’s task-focused interface active in integrated development
environment

Chapter 24 Enabling Productive Software Development by Improving Information Flow

285

worked. Once the developer had reached a threshold of coding activity, the developer

was invited to install the Mylyn tool within their integrated development environment.

Further logs of coding activity were then collected as the developer worked using Mylyn.

To ensure we could reasonably compare the activities before and after the installation

of Mylyn, we defined thresholds of coding activity for acceptance into the study. Sixteen

participants met our thresholds for study acceptance. For these participants, we

compared their edit ratios—–the relative amount of edit and navigation events in their

logs—both before and after Mylyn use. We found that the use of Mylyn improved the edit

ratio of developers, adding support that Mylyn reduces friction of accessing information

and improves productivity when looked at through the lens of actions performed. In

other words, developers coded more, and navigated around looking for information less,

when the tool focused their coding and supported their context switching. Mylyn is an

open source plugin for the Eclipse integrated development environment (www.eclipse.

org/mylyn) and has been use by developers around the world for more than 13 years.

�Tasktop Sync: Improving Information Flow
for the Development Team
In working with organizations using the open source Mylyn tool, and a commercial

version of Mylyn our company (Tasktop Technologies Inc.) produced called Tasktop Dev,

we learned about additional friction for accessing information that was occurring at the

team level. Increasingly, companies have been moving away from the use of one vendor’s

tools to support all development activities to the use of best-of-breed tools for each

development activity, chosen individually by the different teams in the organization. As a

result, business analysts who focus on requirements gathering may be using a tool from

one vendor, the developers writing code using another vendor’s tool, the testers a tool from

a third vendor, and so on. While each best-of-breed tool may enable productive work, the

information flow between teams is impeded as information must be manually re-entered

into a tool used by another team or moved in some other form, such as via a spreadsheet

or an e-mail. Information can also fail to flow, causing difficulties in the development,

such as errors when a given team may not have access to needed information. With

the increasing agility and need for speed of delivery in software development, a lack of

automation of information flow between teams is a major impediment. A Forester

survey in 2015 identified that gaps in the process of integrating tools had become the

number-one source of failure and cost overruns of efforts to modernize the software

Chapter 24 Enabling Productive Software Development by Improving Information Flow

http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn

286

lifecycle in organizations. The impact on the productivity of teams due to friction in the

flow of information between teams leads to a decrease in team productivity.

Through our work on Mylyn and Tasktop Dev, we have gained expertise on the

variety of ways in which tasks—a unit of work—are described in the best-of-breed tools

used by different teams in large software development organizations. We realized it

was possible to abstract the notion of a task across these tools and to enable automatic

movement of task information between tools. In 2009, we introduced a tool called

Tasktop Sync. Figure 24-3 provides an abstraction of what Tasktop Sync supports. By

serving as a platform, Tasktop Sync enables the flow of task information between tools

from many different kinds of teams, from the project management office through to

handling service requests.

Tasktop Sync works in the background, synchronizing information across tools in

near real time. Tasktop Sync accesses information in the tools via each tool’s API. As

each tool represents task information using a different schema and within a different

workflow, Tasktop Sync relies on configuration information to map and transform

data between the tools. For example, a task in a tool used by a business analyst may

be a requirement with a short-form identifier and a longer name. When synchronized

to a developer’s tool, the title of the associated task in a developer’s tool may become

Figure 24-3.  Tasktop Sync Platform view

Chapter 24 Enabling Productive Software Development by Improving Information Flow

287

a concatenation of the identifier and the longer name from the requirements tool.

The synchronization rules extend beyond simple data transformations, such as

concatenation. When a data value indicates workflow status, such as whether a defect

is new or has just been reopened, the status of the information must be appropriately

mapped to workflow in other tools. Sometimes the matching of workflow information

may require multiple changes of state of the data in another tool, such as requiring a task

to move from a created state automatically into an open state.

Synchronizing information between tools also requires the interpretation and

management of context of tasks between tools. In a business analyst’s tool, a task (a

requirement) may exist within a hierarchy. This hierarchical context must be mapped

appropriately to other tools. For instance, an issue tracker used by a developer may need

this information represented in an epic and user story structure. As tools can sometimes

represent contextual information in multiple ways, including as links to information in

other tools, maintaining context during a synchronization requires careful handling.

As software development is not a linear activity, to support teams appropriately,

Tasktop Sync enables bidirectional synchronization. For instance, if tasks created by

a business analyst in their tool have been synchronized to a developer’s tool and the

developer subsequently starts working on the task and adds a comment requiring

clarification on the nature of the task, the comment can be automatically synchronized

back to the business analyst’s tool. Combined, these capabilities of Tasktop Sync means

that a team member can work in a best-of-breed tool optimized for the work they

perform, yet they can interact directly with other team members in near real time in their

own best-of-breed tool choices.

Tasktop Sync has been used both within and between organizations to improve

the flow of information between teams involved in a software development project.

A credit card processing company used Tasktop Sync to integrate the results of tests from

a testing automation tool into a tool used by the organization to chart project progress.

A major automotive manufacturer used Tasktop Sync to synchronize change request

and defect data between their suppliers’ tools and the tools used in their organization.

An important factor in the automotive manufacturer’s case was the ability to configure

workflow differences between multiple repositories in use in particular instances of a

given tool by a supplier. The manufacturer reported times of less than three seconds to

synchronize information between a supplier and themselves, providing much needed

transparency between software that would be integrated into the manufacturer’s

product.

Chapter 24 Enabling Productive Software Development by Improving Information Flow

288

�Tasktop Integration Hub: Improving Information
Flow for a Software Development Organization
As we have been working to improve the flow of information in software development,

there have been substantial changes in the approaches taken by organizations to

develop software, largely catalyzed by the DevOps movement. Over the last ten years, the

DevOps movement has helped organizations consider how to increase automation in

all parts of the software life cycle and to increase the focus on simultaneously achieving

quality in software with faster delivery times [1]. Thinking about the overall software

delivery process has led to the emergence of a consideration of the value stream of

software delivery in which the delivery process is considered as an end-to-end feedback

loop of flowing value to customers in a way that optimizes for business value. As a simple

example, consider an organization with two software development delivery teams: one

that delivers a mobile app and another that delivers a web-based app to the company’s

insurance business. The first team is able to deliver more customer-facing features per

month than the second team. By analyzing the value stream of software delivery for

each delivery team, it is determined that the mobile app team uses an automated testing

process that speeds the creation of new features with high quality compared to the web-

based app team. The organization may use this information to improve the software

development processes across more of its teams.

At Tasktop, our products have continued to evolve. Our focus remains on improving

information flow across the organization, and our latest product offering, Tasktop

Integration Hub, has replaced the Sync and Dev products. Tasktop Integration Hub

enables visibility across an organization’s value stream of software delivery. Building on

our knowledge of synchronizing data across the tools used by different teams, Tasktop

Integration Hub provides insight into what information flows are occurring between

different tools for different projects. Figure 24-4 shows a sample Tasktop Integration

Landscape drawn automatically from the integrations various teams have set up

between their tools. A landscape enables an organization to consider, and optimize, the

steps that are occurring in their software development process. As it executes, Tasktop

Integration Hub captures data about how information is flowing across tools used by the

development teams. This data enables cross-toolchain reporting so that such aspects of

development as the time to value from requirement being specified to being deployed

can be tracked. The need for Tasktop Integration Hub came from the sheer number of

Chapter 24 Enabling Productive Software Development by Improving Information Flow

289

teams and tools that an enterprise IT organization needs to connect in order to support

the flow and access of information across their software delivery value streams.

By supporting visibility into the software life cycle and by supporting an ability

to track metrics as changes to the life cycle are introduced, Tasktop Integration Hub

enables a determination of where friction is occurring in the life cycle, a precursor to

being able to implement changes to reduce the friction and improve productivity at an

organizational level.

Returning to the example of the mobile app and web-based app delivery teams

within an organization, Tasktop Integration Hub provides an explicit view of how

information flows across the tools used by each delivery team and can report metrics

on how many customer-facing features are progressing through each of the tools used

by different parts of the delivery teams. Differences between various teams in this flow

of information through the value stream can be used to question different approaches

Figure 24-4.  Tasktop integration landscape

Chapter 24 Enabling Productive Software Development by Improving Information Flow

290

being taken and to identify where there are opportunities for improving productivity

through process changes, such as introducing automated testing.

�Takeaways
Delivering high-quality software quickly is the goal of many organizations, whether their

end goal is a software product or whether their business relies internally on the software

developed. As software is an information-intensive activity, the ability to deliver value

is critically dependent on the flow of, and access to, information. When information

does not flow appropriately, delivery is delayed, or worse, errors may occur, causing a

decrease in quality or a further delay in delivery. If the flow of information is supported

and optimized, delivery times can be shortened, and productivity within an organization

can rise.

In this chapter, we have considered how information flows at different levels within

a software development organization. Individuals must access particular information

within the tools they use. Teams must have access to information entered and updated

in the tools of other teams. Organizations must consider how the activities of different

teams combine to create a value stream of software delivery. By considering these

different flows and where friction occurs, tool support can be designed to help improve

flow and improve productivity. We have described our journey through initial academic

research, the open source Mylyn tool, and follow-on commercial application life-cycle

integration products built by Tasktop, which have led to productivity improvements

at the individual, team, and organization levels. Given how much software has

penetrated into every kind of business, improving the productivity of creating software

means improving the productivity of a vast number of businesses. Further analysis of

information flow may lead to additional productivity improvements in the future that

can have far reaching impacts into healthcare, commerce, and manufacturing domains

to name just a few.

Chapter 24 Enabling Productive Software Development by Improving Information Flow

291

�Key Ideas
The following are the key ideas of this chapter:

•	 The flow of information among software developers is directly related

to productivity.

•	 When the flow of information is adequately supported, delivery

times on software can be shortened, and productivity within an

organization can rise.

•	 Individuals, teams, and organizations need different kinds of support

for information flow.

•	 Individuals, teams, and organizations can benefit from information

flow that respects the best-of-breed and individual tools in which

they can work most effectively.

�References

	 [1]	 Humble, J. Continuous delivery sounds great, but will it work here.

CACM, 61 (4), pp. 34–39.

	 [2]	 Kersten, M. and Murphy, G.C., Using task context to improve

programmer productivity. In Proc. of FSE, 2006, pp. 1–11.

	 [3]	 Meyer, A.N., Fritz, T., Murphy, G.C., Zimmermann, T. Software

Developers’ Perceptions of Productivity. In Proc. of FSE, 2014,

pp. 19–29.

Chapter 24 Enabling Productive Software Development by Improving Information Flow

292

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 24 Enabling Productive Software Development by Improving Information Flow

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 24: Enabling Productive Software Development by Improving Information Flow
	Mylyn: Improving Information Flow for the Individual Software Developer
	Tasktop Sync: Improving Information Flow for the Development Team
	Tasktop Integration Hub: Improving Information Flow for a Software Development Organization
	Takeaways
	Key Ideas
	References

