
1© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_1

CHAPTER 1

LISP

LISP is an interesting programming language, and the ideas involved in building a LISP
interpreter are equally interesting [McC79]. This book contains an introduction to LISP
and it also contains the data structure details and the explicit code for a working LISP
interpreter.

LISP is a programming language with unique features. It is conceptually interactive.
Input commands are given one by one and the associated result values are printed out.
LISP is an applicative language, meaning that it consists mainly of functional application
commands. Besides functional application, there are forms of assignment commands
and conditional commands written in functional form. In general, iteration is replaced by
recursion.

The data values on which a LISP function may operate includes real numbers. Thus,
an expression like 1.5 + 2 is a LISP statement, which means: type out the result of applying
+ to the arguments 1.5 and 2. In LISP, function application statements are always written in
prefix form, for example, +(1.5, 2). Moreover, rather than writing f (x, y) to indicate the result
of the function f applied to the arguments x and y, we write (f x y) in LISP, so (+ 1.5 2)
is the LISP form for 1.5 + 2. Finally, functions in LISP are usually specified by identifier
names rather than special symbols. Thus the correct way to compute 1.5 + 2 in LISP is
to enter the expression (PLUS 1.5 2), which will, indeed, cause 3.5 to be printed out. An
expression such as (PLUS 1.5 2) is called a function call expression. LISP functions can
also operate on lists of objects; indeed the acronym LISP is derived from the phrase LISt
Processing.

LISP is commonly implemented with an interpreter program called the LISP
Interpreter. This program reads LISP expressions that are entered as input and evaluates
them and prints out the results. Some expressions specify that state-changing side-effects
also occur. We shall describe below how a particular LISP interpreter is constructed at the
same time that LISP itself is described.

There are a variety of dialects of LISP, including extended forms, which have
enriched collections of functions and additional datatypes. We shall focus on the
common core of LISP, but some definitions given here are not universal, and in a few
cases they are unique to the version of LISP presented herein (GOVOL). The GOVOL
dialect of LISP presented here is similar to the original LISP 1.5 [MIT62]; it is not as
complex as the current most frequently used varieties of LISP, but it contains all the
essential features of these more complex varieties, so that what you learn in this book will
be immediately applicable for virtually every LISP dialect. (Look up the programming
language Jovial to learn the meaning of GOVOL.)

	Chapter 1: LISP

